Efforts in the composites manufacturing industry have been directed toward low cost manufacturing processes such as Liquid Composite Molding (LCM). In any LCM process, a fibrous preform material is placed into a mold, which is then closed and sealed to prevent leakage before a liquid resin is injected into the mold. The most common LCM process that uses two sided rigid tooling is called Resin Transfer Molding (RTM). The rigid tooling in RTM encompasses the fibers and compresses them to the desired fiber volume fraction. Resin is then injected through ports located in the rigid tooling to fill the empty spaces between stationary fibers before the resin cures. An LCM process that uses single sided tooling is Vacuum Assisted Resin Transfer Molding (VARTM), in which the mold is sealed by enveloping the fabric with a non-rigid polymer or film adhered to the tooling surface with a sealant tape, forming a vacuum bag. A vacuum pump is used to compact the preform and draw the resin from a reservoir with atmospheric pressure. Several variations of this process have been introduced to overcome the disadvantage of lengthy filling times, which is especially protracted when manufacturing large structures. One particular variation of VARTM that significantly decreases filling time is called the Seemann's Composite Resin Infusion Molding Process (SCRIMP). SCRIMP involves placement of a layer of highly permeable fabric, commonly referred to as the distribution media, on top of fiber mats and inside the vacuum bag to increase the flow rate of resin into the part being manufactured.
Both the VARTM and SCRIMP processes have drawbacks, resulting in a need to improve the process of liquid composite molding.
Briefly, the present invention provides a vacuum-induced injection molding apparatus comprising a tool surface having an injection port extending therethrough and a flexible film extending over and sealingly coupled to the tool surface. The flexible film comprises an outer surface and an inner surface such that the flexible film inner surface and the tool surface define a volume. A vacuum chamber is sealingly coupled to the outer surface of the flexible film. A vacuum port is in fluid communication with the volume.
The present invention also provides a method of injection molding a polymer matrix composite. The method comprises the steps of providing a tool surface having an injection port extending therethrough; extending a flexible film over and sealingly coupling the flexible film to the tool surface, forming a volume; layering a plurality of fabric preforms within the volume; sealing an external vacuum chamber to the flexible film proximate to the injection port, wherein the external vacuum chamber includes a vacuum port; drawing a vacuum through the vacuum port, wherein the vacuum drawing draws the flexible film and the plurality of fabric preforms toward the vacuum port; and injecting a polymer resin through the injection port and between the plurality of fabric preforms.
The foregoing summary, as well as the following detailed description of an exemplary embodiment of the invention, will be better understood when read in conjunction with the appended drawings, which are incorporated herein and constitute part of this specification. For the purposes of illustrating the invention, there are shown in the drawings exemplary embodiments of the invention. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings, which are not drawn to scale, the same reference numerals are employed for designating the same elements throughout the several figures. In the drawings:
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import. Features of exemplary embodiments of this invention will now be described with reference to the figures. It will be appreciated that the spirit and scope of the invention is not limited to the embodiments selected for illustration. Also, it should be noted that the drawings are not rendered to any particular scale or proportion. It is contemplated that any of the configurations and materials described hereafter can be modified within the scope of this invention.
The present invention improves upon the VARTM and SCRIMP processes discussed above by adding a vacuum induced pre-form relaxation (VIPR) chamber over at least a portion of the mold in order to enhance resin flow through the mold. The VIPR process introduces an additional step in processes such as VARTM and SCRIMP, which makes the use of injection ports attractive for on-line resin flow control. The inventive process is a variation of prior work in the field of resin delivery referred to as the Flow Flooding Chamber (FFC) method.
The FFC method of resin delivery consists of a chamber formed by a rigid external plate and a seal that covers the entire surface of a part, forming a volume that can be evacuated. The principle of the FFC method of resin delivery is to stretch and lift the VARTM vacuum bag, thus creating an open gap above the fabric layers and below the vacuum bag. Resin flows quickly into this gap due to extremely low resistance across the entire surface of the part. When the vacuum in the FFC chamber is released, the vacuum bag is again subjected to the atmospheric pressure, which closes the gap by driving the resin through the thickness of the part. The FFC process behaves more like SCRIMP, with the gap serving as a collapsible distribution media and without the need to lay up the part with distribution media and peel ply, which are then removed and discarded.
In order for the FFC method of resin delivery to be effective, the VARTM film must stretch and create an open gap between the preform and the film. This is possible when the vacuum within the FFC is at a much lower pressure than the pressure under the film. It is difficult, however, to control the gap thickness and the amount of resin flowing into the gap. The VIPR process is similar in that it utilizes an external rigid chamber, but influences the preform properties to affect the flow behavior without creating the gap.
The VIPR chamber according to the several embodiments of the present invention may be used in both the VARTM process without distribution media, which is referred to as V-VIPR, and the SCRIMP process, with distribution media, which is referred to as S-VIPR. In addition, the VIPR chamber can be configured to cover only a portion of the preform, thus influencing flow in a local region of interest.
In the VIPR process, the VIPR chamber is placed over a region of interest and the vacuum applied to the chamber is significantly less than the vacuum used to drive the flow of resin. In this configuration, the VARTM film will not lift off the preform to form a gap, but will simply relax the fabric layers, causing the fabric layers to be more permeable.
Referring to
Tooling surface 102 also includes an exterior face 106 that is juxtaposed away from mold face 104. A plurality of toolside injection ports 110A through 110F extend through tooling surface 102 from exterior face 106 to mold face 104. A resin supply container 112 having a supply of resin 114 therein is coupled to one of injection ports 110C at exterior face 106.
A flexible polymer film 120 is disposed over tooling surface 102. Polymer film 120 is sealingly coupled to mold face 104 of tooling surface 102 by a sealant 122. An exemplary sealant may be a vacuum bag sealant tape, supplied by Airtech Advance Materials Group of Hunting Beach Calif. Polymer film 120 includes an outer surface and an inner surface such that the film inner surface and mold face 104 define a volume. A plurality of fabric preforms 124 are layered on mold face 104 within the volume between mold face 104 and polymer film 120.
A VIPR chamber 130 is sealingly, but releasably, coupled to at least a portion of the outer surface of polymer film 120 in the region where resin supply container 112 is coupled to tooling surface 102. As shown in
VIPR chamber 130 is a rigid chamber, including a rigid plate 132 that contacts polymer film 120. A sealant 134, such as, for example, the Airtech vacuum bag sealant tape discussed above, may be used to seal VIPR chamber 130 to polymer film 120. A VIPR chamber vacuum port 136 extends through rigid plate 132 and is in fluid communication with the volume. A vacuum device 138 having a vacuum regulator 139 is coupled to vacuum port 136 to draw a vacuum from the volume.
As VIPR chamber 130 is placed on a selected region of mold face 104, polymer film 120 compresses the fabric preforms 124 within that region with less than one atmospheric pressure. With less compression applied to the region, the pores between the fibers of fabric preforms 124 are larger, and therefore the region has a lower fiber volume fraction. The permeability of the fabric preforms 124 in this region is increased and resin 114 flows more easily through fabric preforms 124 due to the larger pores.
In operation, a vacuum is applied to VIPR chamber 130 via vacuum device 138 and vacuum port 136. The vacuum lifts fabric preforms 124. Additionally, the vacuum lifts polymer film 120 from fabric preforms 124. A gap is formed between polymer film 120 and mold face 104. Resin 114 is pumped into injection port 110C to which resin supply container 112 is coupled and into the volume formed by polymer film 120 over mold face 104. The vacuum causes the layers of fabric preform 120 to relax, making them permeable to the resin 114. Resin 114 consequently flows into the volume with less resistance than without VIPR chamber 130.
One advantage of injection ports 110A through 110F extending through tooling surface 102 to mold face 104 is that injection ports 110A through 110F are permanently mounted to mold face 104. Tool side injection ports 110A through 110F reduce the amount of work required while assembling fabric preform 124 as well as the amount of resin 114 used per part manufactured. Additionally, injection ports 110A through 110F may be distributed along the part being manufactured to create desired flow patterns for successful filling of a variety of preform geometries.
To optimize injection of resin 114, the distance between injection ports 110A through 110F can be adjusted. Since the porous volume of fabric preform 124 increases when VIPR chamber 130 is used, excess resin 114 will be present in the region where VIPR chamber 130 is used. Once the flow front of resin 114 reaches the end of VIPR chamber 130, the vacuum applied to VIPR chamber 130 can be released. Atmospheric pressure will force any excess resin 114 into any remaining dry sections of fabric preform 124. The distance between injection ports 110A through 110F can be optimized so that the flow front of resin 114 reaches the next injection port 110 at approximately the same time when all excess resin 114 is disbursed.
After resin 114 has filled the volume in the area of VIPR chamber 130, VIPR chamber 130 may be removed from polymer film 120 and relocated over a different injection port 110. Resin supply container 112 is then moved and coupled to the selected injection port 110, where the process is repeated. During the injection process, air trapped within the volume between polymer film 120 and mold face 104 may be ejected through vent 111. Optionally, a vacuum pump 116 may be coupled vent 111 to assist in evacuating air from the volume.
Tool side ports in SCRIMP have not been effective because the transverse through thickness permeability of most fabrics is very low under full vacuum. Hence, resin 114 entering from the tool side injection port has to overcome the resistance through the thickness of the fabric before it can reach distribution media 226 and spread over the entire surface of the part. In the VIPR method, when VIPR chamber 130 is placed above injection ports 110C and 110D in tooling surface 102 as shown in
When using distribution media 226, when VIPR chamber 130 is placed above an injection ports 110C and 110D, the region of fabric preform 124 underneath VIPR chamber 130 relaxes, increasing the through-thickness permeability, which results in resin 114 reaching distribution media 226 with little resistance.
The VIPR principle was initially investigated and validated with an experiment where a short length of 24 ounce E-glass fiber preform 124 provided by Saint Gobain Performance Plastics was filled using the established SCRIMP technique, using full vacuum to inject the resin. The identical experiment was repeated with the aid of the S-VIPR technique, where VIPR chamber 130 was placed on top of distribution media 226 and covered the entire mold face 104 and full vacuum was again used to inject resin 114 and 5 inches of mercury (in. Hg) vacuum was applied within VIPR chamber 130 to relax the compacted preform fabric layers 124, increasing their in-plane and transverse permeabilities.
The results of the experiments show that the normalized fill time achieved with VIPR chamber 130 was reduced approximately 2.8 times compared to conventional SCRIMP.
Once a vacuum is applied in chamber 130, fabric preform 124 under VIPR chamber 130 relaxes, increasing the permeability of the fibers of fabric preform 124 located under VIPR chamber 130. However, the fibers which lie directly underneath sealant 134 of VIPR chamber 130 become greatly compressed because the pressure is directly transferred to the frame of VIPR chamber 130. Since a portion of the frame is perpendicular with the direction of the resin flow, the concentrated, highly-compressed portion of the mold becomes a significant barrier to resin flow. To overcome this, in an alternative embodiment, a molding apparatus 300, shown in
The next issue explored was the range of distance away from a resin injection site for which the use of VIPR chamber 130 is effective. To study the influence of chamber location from the injection sites on the flow front velocity, VIPR chamber 130 was positioned at three different locations in the mold along the flow direction. The chamber length was always one third the overall length of the mold. Three experiments were conducted in which VIPR chamber 130 was placed at the first, second, or last third of the mold. The results indicated that, the closer the chamber to the injection source, the larger effect is seen on the flow front velocity.
In side-by-side comparisons of the flow front location for a traditional SCRIMP method versus the S-VIPR method showed that when the VIPR chamber was placed adjacent to or around the injection port, the flow front location of the S-VIPR method advanced faster than the flow front location for the SCRIMP method. In similar side-by-side comparisons with the VIPR chamber placed away from the injection port, the flow-front advancement speeds were almost exactly the same. As verified by these comparisons, greater flow speed is thus facilitated by locating the VIPR chamber closer to the injection port.
To optimize the process, the distance between injection sites can be adjusted. Because the porous volume increases when VIPR chamber 130 is used, there is typically excess resin within the region where chamber is used. Once the flow front reaches the end of VIPR chamber 130, the vacuum may be released, allowing atmospheric pressure to force any excess resin into any remaining dry sections of the part. The distance between sequential injection sites can be optimized so that the flow front reaches the next injection site around the same time that all the excess resin is disbursed.
Several experiments were carried out in order to understand the behavior of the VIPR process and the potential implications for on-line control. For consistency the same amount and type of materials were used in all experiments except where noted.
These experiments focused on the ability of the VIPR process to decrease the fill time in a vacuum infusion molding process. Since the SCRIMP process has been identified as a preferred vacuum infusion technique, it was selected as the basis of comparison for the experiments. The use of multiple sequential injection sites was used during the experimentation to mimic the current commercial manufacturing practice for large scale structures. The goal of the experiments was to demonstrate the advantage of tool side ports in V-VIPR without the use of the distribution media as compared to VARTM and SCRIMP.
In order to maintain a consistent basis of comparison for all the experiments, the parameters listed in Table 1 were used for all experiments.
For SCRIMP and VARTM processes, a tooling surface 600 shown in
For both tooling surfaces 600 and 700, fabric layers 124 were placed on the tooling surface. When conducting an experiment with SCRIMP, one layer of distribution media (not shown) was placed on top of the fabric layers 124. For comparison purposes, no distribution media was used during the V-VIPR process. The use of the V-VIPR process did not eliminate the possibility of using distribution media, but the goal was to explore the advantages of the V-VIPR process without the need for distribution media.
Next, fabric layers 124, with or without distribution media, were covered with a is non-porous polymer film 120 and sealed with sealant tape 122. A vacuum pump (not shown) then evacuated the air from the mold and simultaneously compressed the fabric layers 124. The vacuum was then cycled on and off twenty times in order to ensure consistent nesting between the fabric layers 124. During the V-VIPR process experiments, the VIPR chamber 130 was placed on top of the polymer film 120 over each injection site 710. A separate vacuum of 5 in. Hg was applied to VIPR chamber 130 and held until resin infused the entire region under VIPR chamber 130.
The infusion in all the experiments was initiated along the edge of the left side of tooling surfaces 600, 700, as shown in
A total of seven experiments were performed, which compared the V-VIPR process with tool side ports 710 and no distribution media with SCRIMP and VARTM with tool side ports 710 as well as omega tubes 602, using traditional SCRIMP as the baseline comparison. The details of the experiments are listed in Table 2 and the resulting comparisons of fill times are shown in
The results displayed in
The experimental progress with the VIPR process may offer fully automated VARTM control with on-line feedback and flow correction. The use of distribution media is optional, but is effective in spreading excess resin collected in the chamber to remaining dry sections of the preform. The use of the VIPR process can be highly effective in reducing the filling time of large parts and offers many advantages over the standard SCRIMP process. The VIPR process allows one to do port-based control in VARTM processes.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
This application claims priority to provisional application number U.S. 61/088,444, filed Aug. 13, 2008, which is incorporated herein, in its entirety, by reference.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of ONR Grant No. N00014-06-1-1000, awarded by the Office of Naval Research.
Number | Name | Date | Kind |
---|---|---|---|
3339239 | Peck | Sep 1967 | A |
4622091 | Letterman | Nov 1986 | A |
4902215 | Seemann, III | Feb 1990 | A |
5052906 | Seemann | Oct 1991 | A |
5316462 | Seemann | May 1994 | A |
5443778 | Schlingman | Aug 1995 | A |
5772950 | Brustad et al. | Jun 1998 | A |
5885495 | Ibar | Mar 1999 | A |
5902535 | Burgess et al. | May 1999 | A |
6298896 | Sherrill | Oct 2001 | B1 |
6299819 | Han | Oct 2001 | B1 |
6406660 | Spurgeon | Jun 2002 | B1 |
6555045 | McClure | Apr 2003 | B2 |
7334782 | Woods | Feb 2008 | B2 |
7517481 | Advani et al. | Apr 2009 | B2 |
7762122 | Advani | Jul 2010 | B2 |
20020022422 | Waldrop, III et al. | Feb 2002 | A1 |
20020081147 | Gianaris | Jun 2002 | A1 |
20020155186 | Walsh | Oct 2002 | A1 |
20030111773 | Janusson | Jun 2003 | A1 |
20030211194 | Louderback et al. | Nov 2003 | A1 |
20040049324 | Walker | Mar 2004 | A1 |
20040109909 | Dubay | Jun 2004 | A1 |
20050042961 | Lehmann et al. | Feb 2005 | A1 |
20050053765 | Albers et al. | Mar 2005 | A1 |
20050253309 | Hou et al. | Nov 2005 | A1 |
20060255500 | Advani | Nov 2006 | A1 |
20070063393 | Vernin et al. | Mar 2007 | A1 |
20070158874 | Van Herpt | Jul 2007 | A1 |
20090273107 | Advani et al. | Nov 2009 | A1 |
20110046771 | Alms | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
0045555 | Aug 1981 | EP |
WO 2004101259 | Nov 2004 | WO |
WO 2007040797 | Apr 2007 | WO |
WO 2007040797 | Apr 2007 | WO |
WO 2007054101 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100072677 A1 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
61088444 | Aug 2008 | US |