Apparatus and method for preparing platelet rich plasma and concentrates thereof

Information

  • Patent Grant
  • 7866485
  • Patent Number
    7,866,485
  • Date Filed
    Tuesday, July 31, 2007
    17 years ago
  • Date Issued
    Tuesday, January 11, 2011
    13 years ago
Abstract
A Platelet Rich Plasma separator assembly is disclosed. The assembly can include a cylindrical outer wall closed at the top by an upper plate and closed at the bottom. A bottom plate having an upper surface sloped down to a central opening. The top edge of the inner wall terminates at a distance from the upper plate to define an annular erythrocyte passageway therebetween. The inner wall has an outer surface and an inner surface that slopes radially inward from its top edge to its bottom at an angle of from 0.2 to 5 degrees with a central axis of the inner wall. A cylindrical depth filter is positioned between the inner surface of the outer wall and the outer surface of the inner wall in communication with the inner wall through the erythrocyte passageway.
Description
FIELD

This disclosure relates to a device and method for preparing platelet-plasma concentrates with wound healing properties for use as a tissue sealant, adhesive, etc. The concentrates have a fully active (un-denatured) fibrinogen concentration that is greater than the concentration of fibrinogen in whole blood and a platelet concentration that is greater than the concentration of platelets in whole blood.


BACKGROUND

Blood can be fractionated, and the different fractions of the blood are useful for different medical needs. Under the influence of gravity or centrifugal force, blood can separate into three layers. At equilibrium, the top low-density layer is a straw-colored clear fluid called plasma. Plasma is a water solution of salts, metabolites, peptides, and many proteins ranging from small (insulin) to larger molecules (complement components).


The bottom, high-density layer is a deep red viscous fluid comprising unnucleated red blood cells (erythrocytes) specialized for oxygen transport. The red color is imparted by a high concentration of chelated iron or heme that is responsible for the erythrocytes' high specific gravity. The relative volume of whole blood that consists of erythrocytes is called the hematocrit, and in normal human beings this can range from about 30% to about 60%, such as about 37% to about 52% of whole blood.


The intermediate layer can be the smallest, appearing as a thin white band above the erythrocyte layer and below the plasma layer; this is called the buffy coat. The buffy coat itself has two major components, nucleated leukocytes (white blood cells) and anuclear smaller bodies called platelets (or thrombocytes). Leukocytes confer immunity and contribute to debris scavenging. Platelets seal ruptures in blood vessels to stop bleeding, and deliver growth and wound healing factors to a wound site. Slower speed centrifugation or shorter duration centrifugation permits separation of erythrocytes and leukocytes from plasma, while the smaller platelets remain suspended in the plasma, resulting in platelet rich plasma (PRP).


U.S. Pat. No. 5,585,007 identifies methods for making plasma concentrates from whole blood for use in wound healing and as a tissue sealant. This patent is hereby incorporated by reference in its entirety. This device, designed for placement in a medical laboratory or surgical amphitheatre, uses a disposable cartridge for preparing tissue sealant. The device was particularly applicable for stat preparations of autologous tissue sealants. Preparation in the operating room of about 5 ml of sealant from about 50 ml of patient blood required less than about 15 minutes. There was reduced risk of tracking error because preparation could take place in the operating room during the surgical procedure. Chemicals added could be limited to anticoagulant (e.g., citrate) and calcium chloride. The disposable cartridge could fit in the palm of the hand and was hermetically sealed to reduce exposure to patient blood and to ensure sterility. Adhesive and tensile strengths of the product were comparable or superior to pooled blood fibrin sealants made by precipitation methods. Use of antifibrinolytic agents (such as aprotinin) was not necessary because the tissue sealant contained high concentrations of natural inhibitors of fibrinolysis from the patient's blood.


This device used a new sterile disposable cartridge with the separation chambers for each run. Since the device was designed to be used in a normal medical setting with ample power, the permanent components were designed for long-term durability, safety and reliability, and were relatively heavy, using conventional centrifuge motors and accessories.


Small, self-contained centrifugal devices for obtaining platelet concentrates from blood are described in, copending U.S. patent application Ser. No. 10/394,828 filed Mar. 21, 2003, the entire contents of which are hereby incorporated by reference. This device separates blood into erythrocyte, plasma, and platelet layers. The device can be used to selectively remove the platelet layer as a platelet concentrate, that is, platelets suspended in a minimal amount of plasma.


Platelet rich plasma is a concentrated platelet product that can be produced from whole blood through commercially available systems, resulting in varying levels of platelet concentration. Platelets play a crucial role in the signaling cascade of normal wound healing. Activated platelets release the contents of their α-granules resulting in a deposition of powerful growth factors such as platelet derived growth factor (PDGF), transforming growth factor ‘β-(TGF-β)’, vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). PRP has been used in many different clinical applications, demonstrating the effectiveness and importance of the product for a variety of medical procedures. For example, percutaneous application of PRP to patients with severe lateral epicondylitis, ‘i.e. tennis elbow’ resulted in improved elbow function and reduced pain. Early maturation of bony fusion was observed when platelet concentrate was used during lumbar spinal fusions. Chronic diabetic foot ulcers treated with PRP achieved increased healing rates compared to the control group receiving standard care. Studies by S. Bhanot, and J. C Alex, FACIAL PLASTIC SURGERY, 18(1): 27-33 (2002) show decreased formation of hematoma and seroma, decreased postoperative swelling, and improved healing time for plastic surgeries that included PRP in the treatment. Further, during dental surgeries, the use of PRP has improved bone regeneration around implants.


PRP have demonstrated numerous clinical benefits to patients. Concentrations of at least about 1,000×103 platelets/μL may be useful. The system described in copending U.S. patent application Ser. No. 10/394,828 can provide platelets up to about 8 times baseline concentration, and the normal human platelet range is about 200×103 platelets/μL to about 400×103 platelets/μL. This means a highly effective concentrate in a range of about 1,600×103 platelets/μL to about 3,200×103 platelets/μL.


SUMMARY

A PRP (Platelet Rich Plasma) separator assembly can comprise a cylindrical outer wall closed at the top by an upper plate and closed at the bottom. The outer wall has an inner surface. A cylindrical inner wall concentric with a cylindrical outer wall can having a top edge and a bottom. The inner wall defines a central axis. The bottom of the inner wall is closed by a sloped bottom plate having a central opening, the bottom plate has an upper surface sloped down to a central opening. The top edge of the inner wall terminates at a distance from the upper plate to define an annular erythrocyte passageway therebetween. The inner wall has an outer surface and an inner surface that slopes radially inward from a top edge to a bottom at an angle of from about 0.2 to about 5 degrees relative to a central axis of the inner wall. A cylindrical depth filter is positioned between the inner surface of the outer wall and the outer surface of the inner wall in communication with the inner wall through the erythrocyte passageway.


The distance between the top of the inner wall and the upper plate can be from about 0.02 to about 50 mm, such as about 0.02 mm to about 10 mm. The depth filter can extend beyond the top edge of the inner wall. According to various, embodiments, the upper plate has a bottom surface, and the depth filter extends to the bottom surface.


For producing platelet rich plasma concentrate for wound healing, the depth filter can have the capacity to accept up to or more than about 85 percent of the hematocrit value of a patent's blood and less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from a patient's blood.


For producing platelet rich plasma concentrate for hemostasis, the depth filter can have the capacity to accept up to or more than about 97 percent of the hematocrit value of a patent's blood and less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from a patient's blood.


For all applications, the depth filter can have the capacity to accept up to or more than about 99 percent of the hematocrit value of a patent's blood and less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from a patient's blood.


The depth filter can have the capacity to accept about 100 percent of the hematocrit value of a patent's blood and less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from a patient's blood.


The PRP separator can be mounted for rotation about an outlet tube concentric with the central axis.


The separation chamber can include a balanced array of separator plates extending radially inward from the inner wall and upward from the bottom plate, the separation chamber can be balanced for substantially vibration-free rotation about the central axis.


The PRP separator-concentrator assembly can comprise the PRP separation assembly described above in combination with a PRP concentrator assembly. The concentration assembly has a PRP concentration sump; an axially concentric rigid stationary outlet tube secured to the housing and extending through the PRP separation assembly to the PRP concentrate sump; and the PRP separation assembly is attached to and positioned above the PRP concentration assembly to form a combined separator-concentrator assemblage that is rotatable about the outlet tube.


A PRP separator-concentrator can include a PRP concentrator that comprises a concentration chamber having a floor for supporting desiccating beads and a wall with at least one opening covered or closed with a screen, the screen having openings that are sized to retain the desiccating beads in the concentration chamber, the concentration chamber being surrounded by an outer wall with a sloped floor secured thereto, the sloped floor including at its center, a PRP concentrate sump.


A PRP separator-concentrator can include a stationary bead rake that is secured to a stationary tube and extends outward therefrom, the rake having distal ends that are spaced at a distance from the upright screen supports. The concentrator chamber can contain sufficient desiccating beads to remove enough water to produce a product having from above one time up to about four times a base concentration or higher.


A process for separating platelet rich plasma from blood comprising a plasma, erythrocytes and platelets employs a device comprising cylindrical inner wall having a top edge and a central axis surrounded by a depth filter having a capacity to receive all of the erythrocytes in the blood but insufficient to receive all of the plasma in the blood, the inner surface of the inner wall having an angle of from about 0.2 degrees, including about 0.2 to about 20 degrees, such as about 0.2 degrees to about five degrees, from the central axis of the inner wall. The process can include: a) spinning the inner cylinder about its central axis at a speed that centrifugally separates the erythrocytes from the plasma and platelets and causes the erythrocytes to slide up the inner surface; b) continuing spinning for a time sufficient to allow the erythrocytes to flow up the inner surface and over the top edge into the depth filter, leaving platelet enriched plasma behind in the inner cylinder; c) slowing or discontinuing the spinning to permit the platelet enriched plasma to flow to the bottom of the inner cylinder.


The inner surface of the inner wall can be segmented by radially extending plates into separation zones, the plates maintaining substantially balanced distribution of the blood in the separation zones during rotation of the separation chamber, thereby reducing vibration and erythrocyte displacement from the depth filter. The rotational speed of the separation chamber can be accelerated to centrifugal speeds at a rate that allows balanced distribution of blood in the separation zones. After the centrifuging is complete, the rotation speed of the separation chamber can be decelerated to below centrifugal speeds at a rate that allows balanced distribution of the PRP in the separation zones. The acceleration and deceleration process can reduce vibration and erythrocyte displacement from the depth filter. The process can include separating platelet rich plasma from blood according to the above process and then concentrating the platelet rich plasma by contacting the platelet rich plasma with desiccating beads in a rotating concentrating chamber while the beads are stirred with a rake to form a platelet rich plasma concentrate.


When the concentrating chamber includes an outer screened cylinder confining the desiccating beads, the platelet rich plasma concentrate can be separated from the beads by rotating the concentrating chamber about its central axis at a speed that separates platelet rich plasma concentrate from the beads.


According to various embodiments, a process for preparing platelet rich plasma concentrate for wound healing, at least about 85 volume percent of the hematocrit value of the blood and less than a major portion of the erythrocyte depleted platelet rich plasma can remain after the erythrocyte fraction is retained by the depth filter.


According to various embodiments, a process for preparing platelet rich plasma concentrate for hemostasis, at least about 97 volume percent of the hematocrit value of the blood and less than a major portion of the erythrocyte free platelet rich plasma can remain after the erythrocyte separation is retained by the depth filter.


According to various embodiments, a process for preparing platelet rich plasma concentrate for all applications, at least about 99 volume percent of the hematocrit value of the blood and less than a major portion of the erythrocyte free platelet rich plasma can remain after the erythrocyte separation is retained by the depth filter.


According to various embodiments, a process for preparing platelet rich plasma concentrate for all applications, about 100 volume percent of the hematocrit value of the blood and less than a major portion of the erythrocyte free platelet rich plasma can remain after the erythrocyte separation is retained by the depth filter.


In the above processes for preparing platelet rich plasma concentrate for hemostasis, optionally less than a significant portion of the erythrocyte free platelet rich plasma remaining after the erythrocyte separation is retained by the depth filter.


A Platelet Rich Plasma separator assembly comprising a cylindrical outer wall closed at the top by an upper plate and closed at the bottom. The outer wall has an inner surface; a cylindrical inner wall concentric with the cylindrical outer wall and having a top edge and a bottom. The inner wall has a central axis. The bottom of the inner wall is closed by a sloped bottom plate having a central opening, the bottom plate having an upper surface sloped down to a central opening. The top edge of the inner wall terminates at a distance from the upper plate to define an annular erythrocyte passageway therebetween. The inner wall has an outer surface and an inner surface that slopes radially inward from its top edge to its bottom at an angle of from about 0.2 degrees, including about 0.2 to about 5 degrees with the central axis of the inner wall. A cylindrical depth filter is positioned between the inner surface of the outer wall and the outer surface of the inner wall in communication with the inner wall through the erythrocyte passageway. The device can be combined with a PRP concentrator assembly. The concentration assembly has a PRP concentration sump; an axially concentric rigid stationary outlet tube secured to the housing and extending through the PRP separation assembly to the PRP concentrate sump; and the PRP separation assembly is attached to and positioned above the PRP concentration assembly to form a combined separator-concentrator assemblage that is rotatable about the outlet tube.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a disposable separation and concentration assembly and a permanent drive assembly, with desiccating beads shown in only half of the concentration subassembly.



FIG. 2 is a front plan view of the outer housing of the separation-concentration assembly of this invention.



FIG. 3 is a perspective view of the outer housing of FIG. 2 showing details of the motor assembly connector.



FIG. 4 is a cross-sectional drawing of the separation-concentration sub-assemblies shown in FIG. 1.



FIG. 5 is a top view of the outer cap subassembly of the separation-concentration assembly shown in FIG. 4.



FIG. 6 is a cross-sectional view of the outer cap subassembly shown in FIG. 5, taken along the line 6-6.



FIG. 7 is an exploded, isometric view of the outer cap subassembly shown in FIG. 5.



FIG. 8 is a top view of the top bucket cap subassembly of the separation-concentration assembly shown in FIG. 4.



FIG. 9 is a cross-sectional view of the top bucket cap subassembly shown in FIG. 8, taken along the line 9-9.



FIG. 10 is an exploded view of the sample inlet subassembly.



FIG. 11 is a top plan view of the top bucket subassembly of the separation-concentration assembly shown in FIG. 4.



FIG. 12 is a cross-sectional view of the top bucket subassembly of FIG. 11, taken along the line 12-12.



FIG. 12A is a cross-sectional exploded sectional view of an upper portion of the separation-concentration sub-assemblies shown in FIGS. 11 and 12.



FIG. 13 is a front plan view of the valve assembly of the separation-concentration assembly shown in FIG. 4.



FIG. 14 is an exploded, isometric view of the valve assembly of FIG. 13.



FIG. 15 is a cross-sectional view of the bottom bucket subassembly shown in FIG. 4, taken along the central axis.



FIG. 16 is an enlarged cross-sectional view of the motor drive connector shown in FIG. 15.



FIG. 17 is a front plan view of the basket subassembly of the separation-concentration assembly shown in FIG. 4.



FIG. 18 is a cross-sectional view of the basket subassembly of FIG. 16, taken along the line 18-18.



FIG. 19 is a top plan view of the mixer assembly of the separation-concentration assembly shown in FIG. 4.



FIG. 20 is a cross-sectional view of the mixer assembly of FIG. 19, taken along the line 20-20.



FIG. 21 is an isometric view of the mixer assembly of FIGS. 19 and 20.



FIG. 22 is a perspective view of the motor drive assembly of this invention.



FIG. 23 is a cross-sectional view of the motor drive assembly of FIG. 22 taken along the line 23-23.



FIG. 24 is a cross-sectional view of the motor drive assembly of FIG. 22 taken along the line 24-24.



FIG. 25 is a cross-sectional view of the upper bucket and valve assembly of FIG. 4, taken along the central axis.



FIG. 26 is a cross-sectional view of the upper bucket and valve assembly of FIG. 21, taken along the line 26-26.



FIG. 27 is a cross-sectional view of the upper bucket and valve assembly of FIG. 4, after the centrifugal action of the spinning upper bucket has extended the arms of the valve assembly and opened the valve.



FIG. 28 is a cross-sectional view of the view of upper bucket and valve assembly of FIG. 27, taken along the line 28-28.



FIG. 29 is a cross-sectional view of the upper bucket and valve assembly of FIG. 27, after rotational displacement of the arms of the valve assembly.



FIG. 30 is a cross-sectional view of the upper bucket and valve assembly of FIG. 29, taken along the line 30-30.



FIG. 31 is a cross-sectional view of the upper bucket and valve assembly of FIG. 29, after centrifugal separation has been completed.



FIG. 32 is a cross-sectional view of the separation and concentration assembly of FIG. 1, after blood has been introduced into the separation chamber.



FIG. 33 is a cross-sectional view of the separation and concentration assembly of FIG. 32 as erythrocytes are separated from the plasma-platelet mixture during high speed centrifugation.



FIG. 34 is cross-sectional view of the separation and concentration assembly of FIG. 33, after platelet-plasma fraction has passed into the concentration chamber.



FIG. 35 is a cross-sectional view of the separation and concentration assembly of FIG. 34 at the beginning of the high speed centrifugation to separate the platelet-plasma concentrate from the hydrogel bead.



FIG. 36 is a cross a cross-sectional view of the separation and concentration assembly of FIG. 35 after platelet-plasma concentrate has collected in the platelet-plasma concentrate sump.





DETAILED DESCRIPTION

The apparatus and method can prepare a PRP concentrate that combines enhanced platelet levels in a plasma concentrate, in which the fibrinogen levels have not been significantly denatured. The product can combine the sealant and properties of the plasma concentrates for use in certain types of surgery with the healing properties provided by elevated platelet levels.



FIG. 1 is a cross-sectional view of a disposable separation and concentration assembly and a permanent drive assembly, with desiccating beads shown in half of the concentration subassembly. Details of the sub-sections of this assembly are hereinafter described in conjunction with more detailed drawings.


The upper housing 2 is described in greater detail hereinbelow in conjunction with FIGS. 2 and 3.


The motor drive subsystem 4 is described together with the motor drive system in conjunction with FIGS. 22-24.


The separation system 3 enclosed in the upper housing 2 is described in greater detail with regard to FIG. 4. The separation system comprises a combination of subsystems including the outer cap subassembly 6 described in greater detail with respect to FIGS. 5-7; a top bucket 8 described in greater detail with regard to FIGS. 8 and 9; a sample inlet subassembly shown in FIG. 10; a top bucket cap subassembly 10 described in greater detail with respect to FIGS. 11 and 12; and a valve subassembly 12 described in greater detail with respect to FIGS. 13 and 14.


The concentrating system 11 includes a lower bucket 14 and drive connector 16, described in greater detail with regard to FIGS. 15 and 26; a basket subassembly 18 described in greater detail with regard to FIGS. 17 and 18; and a mixer assembly described in greater detail with regard to FIGS. 19 to 21.



FIG. 2 is a front view of the outer housing of the separation-concentration assembly of this invention, and FIG. 3 is a perspective view of the outer housing of FIG. 2 showing details of the motor assembly connector.


The upper housing 2 isolates the sterile separation and concentration systems shown in FIG. 1. The upper portion of the outer housing 2 is sealed with an outer cap subassembly 34 having a blood inlet tube 86 and a PRP concentrate outlet port 62 and cap 66. Referring to FIG. 3, the lower assembly connector has a drive recess 42 shaped to engage the motor subassembly, and with spacer receptors 44 for holding spacers 46. The outer housing 2 and its enclosed separation components are a disposable unit and can be used with a permanent drive assembly shown in FIGS. 1 and 22 to 24. The lower assembly includes an axially concentric motor drive receptor 48 and a plurality of tapered engagement and locking slots 50 that engage with corresponding mounting projections of the motor drive assembly (not shown).



FIG. 4 is a cross-sectional drawing of the separation-concentration sub-assemblies shown in FIG. 1. The outer housing 2 encloses an upper separation subassembly 3 and a lower concentration subassembly 11.


The top of the outer housing 2 is closed with outer cap subassembly 6 shown in greater detail with regard to FIGS. 5-7. The outer cap subassembly 6 comprises a circular cap 56 with an annular flange 58 extending downward for securing it to the top of the upper housing 2. Concentrate outlet conduit 60 passes through an outlet conduit hole 62 in the center of the plate 56, extending through the plate and communicating with the separation chamber 64 (FIG. 4). Circular cap 66 has a central receptor 68 that engages with a Luer fitting 70 on the upper end of the outlet conduit 60 to maintain a sterile closure during the separation process.


An inlet port hole 72 is positioned in the circular cap 56, spaced from the central axis. The inlet port hole 72 is sized to engage the exterior inlet conduit 74 shown in FIG. 4.


The Luer fitting 70 is provided to engage an empty applicator syringe for removing platelet rich plasma concentrate product according to this invention. The lower end of the concentrate outlet conduit 60 constitutes a receptor for receiving the upper end of rigid tube 74 (FIG. 4).


The bucket cap 10 shown in FIG. 4 is described in greater detail with regard to FIGS. 8-10. FIG. 8 is a top view of the top bucket cap subassembly 10 of the separation-concentration assembly shown in FIG. 4, and FIG. 9 is a cross-sectional view of the top bucket cap subassembly shown in FIG. 10, taken along the line 9-9. The cap subassembly 10 closes the top separation bucket 8 shown in greater detail with respect to FIGS. 11 and 12. The top bucket cap 10 comprises a circular plate 76 with a connecting flange 78 that extends downward from the lower edge of plate 76. The upper plate 6 is fixed to the outer housing 2 (FIG. 4) and is stationary during the separation and concentration processes. Top bucket cap 10 is secured to the top bucket 8 during the separation and concentration processes.


The circular cap 10 has an axially concentric hole with a valve assembly guide tube 80 extending downwardly therefrom. The lower end of the guide tube 80 has a valve assembly stop flange 82 secured thereto. The upper end of the guide tube 80 supports sleeve bearing 84. The sleeve bearing 84 can be formed of materials that are wear resistant and can be sterilized in an appropriate manner. Materials that can be used for the sleeve bearing include polyaryletherketone such as TECAPEEK™ Classix™, and the like.


The circular cap 10 has a sample inlet subassembly 86 that aligns with the hole 72 in the circular cap 56 (FIG. 5).



FIG. 10 is an exploded view of the sample inlet subassembly 86. The sample inlet subassembly 86 comprises an inlet tube 92 mounted in the plate 76, the top of the inlet tube 92 including an annular receptor 94. A sterile filter 96 can be positioned in the lower end of the passageway 97 of tube 92.


The subassembly 86 includes a removable inlet tube 98. Inlet tube 98 comprises a central tube 100 having at its upper end an integral Luer fitting 102. At an intermediate level of the tube 100, an annular plate 103 extends outward from the tube 100. An integral cylindrical flange 104 extends downward from the outer edge of the plate 103. The flange 104 is sized to engage the receptor 94. The lower end 105 of the tube 100 is sized to engage the upper end of the passageway 97.


The inlet tube is provided with a cap 106 that engages the Luer fitting 102 to provide a sterile closure of the removable inlet tube 98 prior to use, such as during shipment and handling.


The inlet tube 98 in passing through the hole 72 in the stationary circular cap 56 locks the separation and concentration subassemblies against rotation during shipment and storage. After the patient blood is introduced into the top bucket 8 (FIG. 4) through the inlet subassembly 86, the inlet tube 98 is removed, unlocking the separation and concentration sub-assemblies 3 and 11 from the stationary circular cap 6, freeing them for rotation about the central tube 74.


A sterile breathing tube 108 is secured to the circular plate 76 to permit air flow from the separation chamber 64 when blood is introduced and to permit air movement into the system when platelet-rich concentrate is removed from the concentrating system 11, as described in greater detail hereinafter. Sterile air filter 110 in breathing tube 108 (FIG. 9) prevents entrance of micro-organisms into the interior of the separation chamber, preserving sterility.


The top bucket subassembly in FIG. 4 is shown in detail in FIGS. 11 and 12. FIG. 11 is a top view of the top bucket subassembly 10 of the separation-concentration assembly shown in FIG. 4, and FIG. 12 is a cross-sectional view of the top bucket subassembly of FIG. 11, taken along the line 12-12. The top bucket subassembly 10 comprises a cylindrical outer wall 112 having a top edge 114 that is secured to the inner surface of the flange 58 of the upper bucket cap 10. The lower end of the cylindrical outer wall 112 is closed with integral sloped floor plate 116 with a central passageway 118 that constitutes a central flow passageway for separated platelet-plasma. The inner wall surface of the passageway 118 constitutes a valve seat 119 for the valve assembly described in greater detail hereinafter with respect to FIGS. 13 and 14. Spaced from the central passageway 118 and secured to the floor plate 116 are vent columns 120 with filters 122 in their bottom. The columns 120 serve as vents allowing movement of air from the concentration subassembly into the separation chamber when liquid flows through downward through the central passage 118, as is explained hereinafter. Filters 122 prevent escape of hydrogel beads from the basket subassembly 18 through the vent columns 120 during transport or handling of the device of this invention. Surrounding the central passageway 118 and secured to the upper surface of the tapered floor plate 116 are upwardly extending abutment plates 124, each having an upper valve arm abutment surface 128.


Referring to FIG. 12A, the separation zone can be further limited by an inner cylinder 135 extending from the upper surface of the bottom plate 116 upward to an upper lip 137. The inner surface of the cylinder 141 can have a slope “a” of from about 0.2 degrees, including between about 0.2 to about 5 degrees and optionally between about 0.2 to about 2 degrees relative to the central axis. This slope can be selected to facilitate flow of erythrocytes along the surface and beyond the lip 137 into the depth filter 138. Because the slope can be selected to be small, the separation of platelets trapped by the erythrocytes is facilitated, leaving a maximum quantity of platelets suspended in the plasma phase.


The depth filter 138 can extend from the bottom surface 145 past top edge 137 to completely block the opening defined by the top lip 137 and the bottom surface 145. This can be provided to assist in preventing the return of erythrocytes to the plasma from the volume between the outer cylinder 3 and the inner cylinder 135. In various embodiments, the depth filter can extend to the bottom plate 116 which can insure complete capture of erythrocytes. In various embodiments, if the space between the upper edge 137 and lower surface 145 is sufficiently small and risk of a return of a small amount of erythrocytes to the plasma is acceptable, the depth filter can be omitted.


A plurality of radially inwardly extending separation plates 130 are secured to the inner surface of the cylindrical outer wall 112 and the sloped floor plate 116. Each adjacent pair of these plates defines a separation zone 132. The plates 130 can be evenly spaced around the cylindrical outer wall to provide a balanced subassembly. They can be in matched, opposed pairs, for example the three matched sets as shown in FIG. 11. The top edge 134 of each of the separation plates 130 is spaced at a distance below the top edge 114 to permit overflow of blood in order to achieve an even distribution of blood between each the separation zones 132 during the spin acceleration stages and during the spin deceleration stages. This can maintain balance and minimize vibration of the rotating assembly.


The space between the interior surface 136 of the cylindrical outer wall segments and the outer surface 143 of the inner cylinder in each of the each separation zones 132 contains the open-cell foam segment or depth filter segment 138. The foam segments 138 have pores and passageways sized to allow infiltration of erythrocytes into the foam and subsequent entrapment of erythrocytes during the high speed centrifugation of the separation stage. The pores and passageways are sized to retain entrapped erythrocytes thereafter when the spinning slows or stops and the erythrocyte-free platelet-plasma suspension flows downward through the opening 118.


The distance between the lip 137 and the lower surface 145 of the upper plate is sufficient to permit flow of all erythrocytes into the depth filter 138 during the separation phase. It can be between about 0.02 and about 50 mm, such as about 0.02 mm to about 10 mm, or another dimension that facilitates a selected amount, such as complete erythrocyte removal while trapping a minimum portion of the platelets.


The provision of the inner sloped cylinder can increase the proportion of platelets remaining in the plasma.



FIG. 13 is a front view of the valve assembly 12 of the separation-concentration assembly shown in FIG. 4, and FIG. 14 is an exploded, isometric view of the valve assembly of FIG. 13. The valve assembly 12 comprises a central tube 140, the lower end constituting a valve face 142. The valve face 142 comprises an annular receptor 144 that receives and holds an O-ring 146. The outermost surface of the O-ring 146 can be sized to form a sealing engagement with the valve seat 119 (See FIGS. 11 and 12).


The valve assembly 12 includes two opposed centrifugal arms 148 secured to the tube 140 above the valve face 142. Each centrifugal arm 148 has a flexible portion 150 adjacent the tube 140 and a rigid arm portion 152. The distal end of the rigid arm portion 152 includes a weight receptor 154 in which a weight 156 is secured to provide additional weight to the end of the rigid arm portion. Operation of the valve assembly is described hereinafter with respect to FIGS. 25-31.


The lower bucket 14 in FIG. 4 is shown in detail in FIGS. 15 and 16. Referring to FIG. 15, the lower bucket 14 has a cylindrical sidewall 158 and a sloped bucket bottom 160, the lower portion of which forms a platelet-plasma concentrate sump 162 in which concentrated platelet and plasma concentrate collects. A plurality of basket supports 164 extend upward from the top surface of the slopped bucket bottom 160, the top surfaces 166 of which support a concentrating basket subassembly 18 described hereinafter with regard to FIGS. 17 and 18.


An axially concentric drive receptor 168, shown in detail in FIG. 16, is secured to the bottom surface of the bucket bottom 160. The drive connector receptor 168 can have any configuration that will releasably couple with a suitably configured motor drive connector. In the configuration shown in FIGS. 15 and 16, the drive receptor 168 comprises an outer cylinder 170 and a plurality of ridges 172, each ridge having a tapered leading engagement surface 174, an abutment surface 176 and an upper plate 178. The upper plate 178 transmits the torque from the drive motor (described hereinafter with respect to FIGS. 22-24) to the lower bucket bottom 160 and from there to the concentrating and separating subassemblies, all of which are secured together to form a unitary rotatable assembly.



FIG. 17 is a front view of the basket subassembly 18 of the separation-concentration assembly shown in FIG. 4, and FIG. 18 is a cross-sectional view of the basket subassembly of FIG. 17, taken along the line 18-18. The basket subassembly 18 comprises a cylinder 180 secured to a circular floor plate 182. A slip bearing 184 is positioned in the axial center of the circular plate 182 for engaging the rigid tube 74 (FIG. 4). The slip bearing 184 can be formed of a material that is wear resistant and can be sterilized in an appropriate manner, these materials can be the same or similar to those that form the sleeve bearing 84. The cylinder 180 has an array of windows or openings 186 around its circumference, each window closed or coveted with a fine screen 188 having a mesh size sufficiently small to prevent escape of hydrogel beads 19 (FIGS. 1 and 4) from the basket during spinning.



FIG. 19 is a top view of the mixer assembly of the separation-concentration assembly shown in FIG. 4. FIG. 20 is a cross-sectional view of the mixer assembly of FIG. 18, taken along the line 20-20, and FIG. 21 is an isometric view of the mixer assembly of FIGS. 19 and 20. The mixer assembly 20 comprises a rake 190 secured to stationary tube 74. The upper end 192 of the stationary tube 74 is secured to the upper cap subassembly 34 to secure it against rotation. At the lower end 194 of the stationary tube 74 is a port for removal of platelet-plasma concentrate from the sump 162 (FIG. 15). The rake 190 comprises a radially extending spine 196 from which integral rake elements 198 extend downward to an elevation short of the bottom plate 182 of the basket subassembly 18 as shown in FIGS. 4, 17 and 18. The spine 196 can have optional breakaway notches 200 adjacent its center. The notches 200 weaken the spine and direct fracture of the spine 196 at the location of the notches in the event that the pressure produced by contact of the beads 19 with the rake elements 198 during the final centrifugal spin becomes excessive.


The stationary tube 74 extends through the sleeve bearing 184 of the basket subassembly 18 and through the sleeve bearing 84 of the top bucket cap, permitting free rotation of the separating and concentrating assemblies around the stationary tube. The stationary tube 74 is fixed to the outer cap subassembly 6 and the stationary outer housing 2.



FIG. 4 is a comprehensive assemblage of the components shown in FIGS. 5-20.


Concentrating desiccating hydrogel beads 19 fill the lower half of the basket 18 (only one side is shown empty to enable unobstructed viewing of the windows 186 and screen 188 elements (FIGS. 1, 17 and 18).


The concentrating desiccating hydrogel beads 19 can be insoluble beads or disks that will absorb a substantial volume of water and low molecular weight solutes while excluding high molecular weight solutes and particulates and will not introduce undesirable contaminants into the plasma. They can be dextranomer or acrylamide beads that are commercially available (appropriate materials include Debrisan from Pharmacia and BIO-GEL P™ from Bio-Rad Laboratories, respectively). Alternatively, other concentrators can be used, such as SEPHADEX™ moisture or water absorbents (available from Pharmacia), silica gel, zeolites, cross-linked agarose, etc., in the form of insoluble inert beads.



FIG. 4 in conjunction with subassembly FIGS. 5-21 shows the assembly prior to use with the valve assembly 12 secured for shipment by the sleeve 80 into which the valve assembly tube 140 extends and the abutment flange 82 is secured to the bottom of the sleeve 80. The valve face 142 is shown in position against the seat 119. This confines the beads to the basket 18 and prevents escape of beads into the upper separation chamber 64 if the device is inverted or shaken during transport or handling.


The assembly is secured against rotation around the rigid tube 74 by the position of the removable inlet tube 98 in the hole 72 of the stationary outer cap subassembly 6.


The upper edge of the cylinder 180 of the basket assembly 18 is secured against the lower surface of the tapered bottom 116, and the lower surface of the plate 182 is secured against the upper edge surfaces 166 (FIG. 15) of the supports 164.


Thus assembled, the upper separation subassembly 3 and the lower concentration subassembly 11 rotate as a single unit around the fixed tube 74. The upper separation subassembly is positioned on the central tube 74 by the slip bearing 84 through which the fixed tube 74 extends. The lower separation subassembly is positioned on the central tube 74 by the slip bearing 184 through which the fixed tube extends. The rake assembly 20 including the tube 74 remains stationary during rotation of the separation and concentration subassemblies 3 and 11 in the separation and concentration phases, to be described in greater detail hereinafter.



FIG. 22 is a perspective view of the motor drive assembly. FIG. 23 is a cross-sectional view of the motor drive assembly taken along the line 23-23, and FIG. 24 is a cross-sectional view of the motor drive assembly taken along the line 24-24.


The outer shell 202 of the motor housing 4 encloses the motor 218 and supports the control interface 204 and the power connector 206. The separation-concentrating assemblies are supported on the raised annular support surface 208 surrounding the motor connector 210. Motor connector 210 has a configuration that will releasably engage the drive receptor 168 (FIG. 16). The bottom of the housing 22 is closed by support plate 212. A control and power plate 214 for the system is supported by four support struts 216 attached to the underside of the housing shell 202. Plate 214 is a conventional printed circuit or equivalent board with the electronic components of the control and power system for the device, and in its center, a support 217 for the motor 218. The electrical components are connected to the control interface 204 and power connector 206 by conventional wiring circuits (not shown). Four support feet 220 are secured to the bottom of the support plate 212 and provide friction surfaces 222 to secure the device on a laboratory surface.



FIGS. 25-31 illustrate the operation of the valve subassembly during and immediately after the initial separation process. Blood and blood products are omitted from these cross-sectional views to allow an unobstructed view of the valve assembly elements at each stage.



FIG. 25 is a cross-sectional view of the upper bucket and valve subassembly of FIG. 4, taken along the central axis, and FIG. 26 is a cross-sectional view of the upper bucket and valve assembly of FIG. 25, taken along the line 26-26. This is the view when blood is initially introduced into the top bucket 8. The arms 148 of the valve subassembly are in their initial upright position, with the central tube 140 positioned in the guide tube 80 and the upper end of each arm contacting the flange 82. The valve face 142 is in position in the valve seat 119 (FIG. 12) at the upper end of the central passageway 118, closing the passageway and preventing escape of blood. The flexible portions 150 of the arms 148 are positioned in the channels between the abutment plates 124 and 126, preventing rotation of the arms 148 about tube 74 during shipment and handling.



FIG. 27 is a cross-sectional view of the upper bucket and valve assembly of FIGS. 25 and 26, after the centrifugal action of the spinning upper bucket has extended the arms of the valve assembly and opened the valve, and FIG. 28 is a cross-sectional view of the view of upper bucket and valve assembly of FIG. 27, taken along the line 28-28. After the desired volume of patient blood has been introduced into the top bucket 8, the separation and concentration assembly is rotated around the tube 74 at a high speed, the centrifugal force created by this rotation causing the blood to flow outward where it can be distributed evenly by the separation plates into the separation zones 132. The centrifugal force pools the blood against the outer surface of the foam segments 138 where the more dense materials, such as erythrocytes, preferentially move into the foam, leaving behind less dense material, such as erythrocyte-free plasma which can also contain the less dense platelets.


Under the force of centrifugation, the valve arms 148 rotate outward until they contact the sloped floor 116. This action slides the valve central tube 140 upward to the upper portion of the guide cylinder 180, pulling the valve face 142 from the central passageway 118 and out of contact with the valve seat 119 to open the passageway 118. As the arms 148 rotate outward and the valve face 142 is lifted, the lower flexible ends 150 of the arms 148 are also pivoted upward from between the abutment plates 124 and 126, freeing the arms for rotation about the tube 74. Because the liquid is held against the foam segments 138 by centrifugal force, it does not flow through the open passageway 118.



FIG. 29 is a cross-sectional view of the upper bucket and valve assembly of FIGS. 27 and 28, after rotational displacement of the arms of the valve assembly, and FIG. 30 is a cross-sectional view of the valve structure of FIG. 29, taken along the line 30-30. When the arms 148 are lifted from between the abutment plates and are freed from constraint by the abutment plates 124, rotational motion causes the arms 148 to rotate about the rigid tube 74. The rotation continues until one of the arms 148 contacts an adjacent separation plate 130 in its rotational path. This rotational displacement aligns the lower flexible ends 150 of the arms 148 above a portion of an abutment surface 128 of an abutment plate 124.



FIG. 31 is a cross-sectional view of the upper bucket and valve assembly of FIG. 29 and 30, after centrifugal separation has been completed and the rotation of the separation and concentration subassemblies is slowed or stopped. Under the force of gravity, the platelet-plasma mixture flows to the bottom of the tapered floor 116, down its sloped surface to the central passageway 118, and through the central passageway 118 to the basket subassembly 18 for concentration. The removal of the strong centrifugal action may permit the arms 148 to spring upward, causing the valve face 142 to move downward toward the central passageway 118. This movement is stopped when one or both flexible arm portions 150 contact an opposed abutment surface 128, leaving the central passageway open to the flow of the platelet-plasma mixture.


The operation of the device including the separation phase and concentrating phase of a material, such as whole blood, are described hereinafter in conjunction with FIGS. 32-36. Although the separation and concentration of whole blood are described in detail, other materials can also be separated and concentrated.



FIG. 32 is a cross-sectional view of the separation and concentration assemblies of FIG. 4, after blood 202 has been introduced into the separation assembly 3 through the tube 110 from a syringe secured to the Luer fitting 102. The upper tube 100 with the Luer fitting is then removed, unlocking the separation and concentration assemblies 3 and 11 for rotation. The blood flows into the bottom of the top bucket 8. Air displaced by the incoming liquid escapes through breathing tube 108. The valve face 142 is in a closed position, preventing escape of the blood from the bucket 8. The operation of the system is then initiated, and the motor 218 spins the separation and concentration assemblies together around the rigid tube 74.



FIG. 33 is a cross-sectional view of the separation and concentration assemblies of FIG. 32 as erythrocytes are separated from the plasma-platelet mixture during high speed centrifugation. As the separation and concentration assemblies turn at a high speed, the blood is forced against the foam 138. The erythrocytes, being denser than other blood components, migrate into the pores and passageways of the foam. The valve subassembly opens the valve 142 as the centrifugal forces pivot the outer ends of the arms 148 away from the center, raising the valve face 142 face from valve seat 119 in the central passageway 118. However, as long as the high speed centrifugation continues, all of the liquid can be maintained against the foam. The centrifugal forces also force the hydrogel beads 19 radially outward against the outer screens 188 of the basket subassembly, out of contact with elements of the rake 190. Centrifugation is continued until a majority of the erythrocytes are completely trapped in the foam. Because any erythrocytes can weaken the gel product formed when the product is applied, the removal of a maximum proportion of the erythrocytes can be selected. The speed of centrifugation tends to separate erythrocytes from platelets, leaving a substantial portion of the platelets in the plasma while entrapping a majority of the erythrocytes in the foam.



FIG. 34 is a cross-sectional view of the separation and concentration assembly of FIG. 33. After the spinning is slowed or stopped, the platelet-plasma fraction 204 flows to the bottom of the upper bucket 8 and down through the central passageway 118 into the basket subassembly 18 where it comes into contact with the desiccating hydrogel beads 19. These beads concentrate the plasma by absorbing water from the liquid. The separation and concentrating assemblies are then rotated at a slow speed by the motor 218, stirring the beads by moving them through the stationary spines 196 of the rake 190. Agitating the beads insures maximum contact of the beads surfaces with the plasma and reduces gel polarization that arises when the plasma thickens adjacent the bead surfaces. This desiccating phase is continued until the desired proportion of the water has been removed and the desired concentration of the plasma has been achieved.



FIG. 35 is a cross-sectional view of the separation and concentration assembly of FIG. 34 at the beginning of high speed centrifugation separation of the platelet-plasma concentrate from the hydrogel beads. At this stage, removal and selected or maximum recovery of the platelet rich plasma concentrate 206 from the beads 19 is obtained. The separation and concentration assemblies are rapidly rotated by the motor 218 around the stationary tube 74, creating centrifugal forces that force the platelet rich plasma concentrate and the beads 19 against the screen elements 188 of the basket 18. The screen elements prevent escape of the beads 19 as the continuing centrifugal force causes the platelet enriched plasma concentrate to flow from the beads and through the screen. This high speed centrifugation is continued until a selected or maximum recovery of the platelet rich plasma is obtained.


The absorption of water by the hydrogel beads is accompanied by an increase in bead diameter, increasing the bead volume. If the increased bead volume causes the ends of the rake 190 to drag on beads packed on the screen surface, the rake can break along the break-away notches 200 (FIG. 19), and the rake fragments become mixed with the beads.



FIG. 36 is a cross-sectional view of the separation and concentration assembly of FIG. 35 after the high speed centrifugation has ended and the platelet-plasma concentrate has flowed into the platelet-plasma concentrate sump 162. The cap 66 has been removed, exposing Luer fitting 70 at the upper end of the tube 60. An applicator syringe (not shown) can be secured to the Luer fitting 70. The platelet-rich plasma concentrate is removed from the sump 162 by retracting the barrel of the applicator syringe, drawing platelet rich plasma concentrate up through the tubes 74 and 60 and into the syringe. Breathing tube 108 permits air to flow into the system to replace the volume of liquid removed by the syringe, thus preventing the creation of a partial vacuum in the system that would impede liquid removal.


Regarding the concentration factor, for maximum wound-healing, the platelet level can be maximized and high concentrate ion factors can be created. For homeostasis, plasma concentrations of about 3 to about 4 fold over anti-coagulated plasma levels are most effective. Concentrations below about 3 fold have an insufficient fibrinogen concentration. Concentrations higher than about 4 fold have excessive levels of total protein (principally albumin) which interferes with the fibrin gel structure. To obtain a preparation that maximizes haemostatic effectiveness while also providing improved (albeit perhaps less than maximal) wound-healing potential, a concentration range of about 3 to about 4 fold over anti-coagulated plasma levels may be selected. For applications where sealant activity is not desired, high concentrations may be selected.


Regarding erythrocyte levels, normal human hematocrits vary from about 37 percent or lower to about 52 percent for whole blood, measured after a very high speed spin. To achieve concentrations of about 3 fold or higher, some erythrocyte removal may be selected. However, the tensile strength of concentrated plasma gels diminish as the level of erythrocyte contamination increases. The concentration of erythrocytes in the final concentrate should be less than about 3 to about 5 percent to provide effective haemostatic properties. The separation and concentration device can be used to remove as much of the erythrocytes as is technically practical with the system, although trace contamination is acceptable. For applications where sealant activities are not desired, higher levels of erythrocytes can be maintained.


Regarding volume, both the depth filter and the beads reduce the liquid volumes being processed. Because of this volume loss, from about 14 to about 17 percent volume yields of effective haemostatic wound-healing product is generally obtained from average patient blood with the separation and concentration device. To make an effective product, the depth filter volume is selected to retain about 50 percent of the anti-coagulated blood (blood containing anticoagulant) and product about a 50 percent yield of PRP. The amount of the beads, in water absorption units, is selected to retain water equaling about 67 percent of the PRP volume.


Regarding accuracy, the amount of the depth filter and beads in each system is carefully selected to yield an optimum product. However, because of the wide range of hematocrit levels in patient populations, an approximate balance of components can be determined and selected.


If too much blood is added to the device, there is a greater chance that the product will have a substantial erythrocyte contamination, and the final product will be less concentrated than selected because the volume exceeds the practical capacity of the depth filter. Because the volume retained by the depth filter is about half the total volume of blood to be processed, if the volume of blood introduced into the device is too small, a substantially lower volume of PRP may be delivered to the beads. For example, if the blood volume is low by about 25 percent, this will result in about 50 percent of the desired volume being delivered to the beads. If the volume of PRP contacting the beads is low by 33 percent or more, no product will be recovered because the beads may absorb as much as about 67 percent or more of the targeted PRP volume. If the volume contacting the beads is short by about 17 percent, this may yield half of the desired volume of final product with twice the desired concentration (and hence of little value as a hemostat). In other words, a small error in the volume of blood introduced into the device is amplified into a large error in final product volume and concentration factor.


The systems can be designed to specifically match the hematocrit levels of the particular patient's blood to be processed. For a single optimized universal device, the device is optimized for the average patient blood, using fixed volumes of depth filter and blood, and a fixed bead water absorption capacity.


If it is selected to tolerate inaccuracy of introduced blood volume, the device can incorporate an overflow chamber as described in provisional patent application Ser. No. 60/654,718 filed Feb. 17, 2005 and U.S. patent application Ser. No. 11/342,761, filed on Jan. 30, 2006, the contents of which are hereby incorporated by reference.


EXAMPLE
Standard System Operation

Blood was processed with a device as shown and described in this application.


1) The initial spin was continued for 10 seconds at 250 rpm. This spin allows beads to be flung out into the cage under sufficiently low rpm that the initial imbalance does not generate excessive vibration. The outer ends of the rakes (the outermost tines) level the beads around the perimeter of the basket to balance the beads.


2) The erythrocytes were separated with the an erythrocyte separation spin of 3200 rpm for 90 seconds, packing the erythrocytes into the depth filter.


3) The PRP was concentrated by slowing the spin to 50 rpm for 45 seconds, draining PRP into the concentrator chamber and mixing the PRP with the beads.


4) The PRP concentrate was then removed from the beads by a final high-speed spin at 3200 rpm for 45 seconds.


The rates of acceleration and deceleration between stages were moderated to reduce vibration.


The process parameters were as follows:















Start Volume
150 cc


Retained by depth filter
 75 cc


Recovered concentrate
 23 cc


Platelet count
3 fold increase over whole blood


Fibrinogen concentration
2.8-3.2 fold increase over while blood


Erythrocytes in product
Undetected (less than 1%)









The teachings herein are merely exemplary in nature and, thus, variations that do not depart from the gist of the teachings are intended to be within the scope of the teachings. Such variations are not to be regarded as a departure from the spirit and scope of the teachings.

Claims
  • 1. A multi-component material separator assembly comprising: a cylindrical outer wall closed at the top by an upper plate having a bottom surface and closed at the bottom, the outer wall having an inner surface;an inner wall generally concentric with the cylindrical outer wall and having a top edge and a bottom, the inner wall having a central axis, the bottom of the inner wall being closed by a sloped bottom plate having a central opening, the bottom plate having an upper surface sloped down to the central opening, the top edge of the inner wall terminating at a distance from the upper plate to define an annular erythrocyte passageway therebetween, the inner wall having an outer surface and having an inner surface that slopes radially inward from the top edge to the bottom at an angle from about 0.2 degrees relative to the central axis of the inner wall;an area for placing a material within the inner wall; anda cylindrical depth filter positioned between the inner surface of the outer wall and the outer surface of the inner wall in communication with the inner wall through the erythrocyte passageway.
  • 2. The multi-component material separator of claim 1, wherein the angle is less than about five degrees.
  • 3. The multi-component material separator of claim 1 wherein the depth filter extends at least from the top edge of the inner wall to the bottom surface of the upper plate.
  • 4. The multi-component material separator of claim 3 wherein the depth filter extends to the upper surface of the bottom plate.
  • 5. The multi-component material separator of claim 1 for producing platelet rich plasma concentrate for wound healing, wherein the depth filter has the capacity to accept at least about 85 percent of the hematocrit value of a blood sample and to accept less than a major portion of the platelet rich plasma remaining after the erythrocyte separation from the blood sample.
  • 6. The multi-component material separator of claim 1 for producing platelet rich plasma concentrate for hemostasis, healing and/or pain relief, wherein the depth filter has the capacity to accept at least 97 percent of the hematocrit value of a blood sample and to accept less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from the blood sample.
  • 7. The multi-component material separator of claim 1 for producing platelet rich plasma concentrate, wherein the depth filter has the capacity to accept at least 99 percent of the hematocrit value of a blood sample and to accept less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from blood sample.
  • 8. The multi-component material separator of claim 1 for producing platelet rich plasma concentrate, wherein the depth filter has the capacity to accept 100 percent of the hematocrit value of a blood sample and to accept less than a major portion of the platelet rich plasma remaining after the erythrocytes separation from blood sample.
  • 9. The multi-component material separator of claim 1 mounted for rotation about an outlet tube concentric with the central axis.
  • 10. The multi-component material separator of claim 1, further comprising a balanced array of separator plates extending radially inward from the outer and inner walls and upward from the bottom plate, the separator being balanced for substantially vibration-free rotation about the central axis.
  • 11. A multi-component material separator-concentrator comprising the multi-component material separation assembly of claim 1 in combination with a multi-component material concentrator assembly for producing platelet rich plasma, the concentrator assembly having: a multi-component material concentration sump;an axially concentric rigid stationary outlet tube secured to a housing and extending through the multi-component material separation assembly to the multi-component material concentrate sump; andwherein the multi-component material separation assembly is attached to and positioned above the multi-component material concentration assembly to form a combined separator-concentrator that is rotatable about the outlet tube.
  • 12. The multi-component material separator-concentrator of claim 11 wherein the concentrator assembly comprises a concentration chamber having a floor for supporting desiccating beads and a wall with at least one opening closed with a screen, the screen having openings that are sized to retain the desiccating beads in the concentration chamber, the concentration chamber being surrounded by an outer wall with a sloped floor secured thereto, the sloped floor including at its center the multi-component material concentration sump.
  • 13. The multi-component material separator-concentrator of claim 11 wherein a stationary bead rake is secured to the stationary outlet tube and extends outward therefrom, the rake having distal ends that are spaced at a distance from upright screen supports.
  • 14. The multi-component material separator-concentrator of claim 12 wherein the concentrator chamber contains sufficient desiccating beads to remove the water required for platelet rich plasma having from 1× to 3× concentration.
  • 15. A multi-component material separator assembly comprising: a outer wall having first and second ends, the first end closed by a cap plate, the second end integrally extended to a sloped floor having a central passageway defining a valve seat, the outer wall having an inner surface;an inner wall having first and second ends and a central axis, the second end of the inner wall terminating at the sloped floor, the first end of the inner wall terminating at a distance from the cap plate forming a erythrocyte passageway between the outer and inner walls, the inner wall having an outer surface and an inner surface, the inner surface sloping radially inward from the first end to the bottom at an angle from about 0.2 degrees relative to the central axis of the inner wall and an inlet region to at least a portion of a volume defined by the inner wall; anda depth filter positioned between the inner surface of the outer wall and the outer surface of the inner wall, the depth filter extending to the cap plate and blocking the erythrocyte passageway.
  • 16. The multi-component material separator of claim 15, wherein the angle ranges from about 0.2 degrees to about five degrees.
  • 17. The multi-component material separator of claim 16, wherein the angle is less than 2 degrees.
  • 18. The multi-component material separator of claim 15, further comprising a balanced array of separator plates extending radially inward from the outer wall through the inner wall and upward from the sloped floor, the separator plates defining a plurality of separation zones.
  • 19. The multi-component material separator of claim 18, wherein the separator plates terminate at a distance below the first end of the outer wall for permitting blood overflow and even distribution between the separation zones.
  • 20. The multi-component material separator of claim 19, wherein the depth filter fills the space between the outer and inner walls in each of the separation zones.
  • 21. The multi-component material separator of claim 20, wherein the depth filter includes a plurality of pores sized for trapping and retaining erythrocytes.
  • 22. A multi-component material separator assembly comprising: a cylindrical outer wall having first and second ends, the first end closed by a cap plate with an inlet through the cap plate, the second end integrally extended to a sloped floor having a central passageway defining a valve seat, the outer wall having an inner surface;an inner wall generally concentric with the cylindrical outer wall and having first and second ends and a central axis, the second end of the inner wall terminating at the sloped floor, the first end of the inner wall terminating at a distance from the cap plate forming a erythrocyte passageway between the outer and inner walls, the inner wall having an outer surface and an inner surface, the inner surface sloping radially inward from the first end to the bottom at an angle ranging from about 0.2 degrees to about 2 degrees relative to the central axis of the inner wall;a cylindrical depth filter positioned between the inner surface of the outer wall and the outer surface of the inner wall, the depth filter extending to the cap plate and blocking the erythrocyte passageway; anda plurality of separator plates extending radially inward from the outer wall through the inner wall and upward from the sloped floor, the separator plates defining a plurality of separation zones.
  • 23. The multi-component material separator of claim 22, wherein the depth filter includes a plurality of pores sized for trapping and retaining erythrocytes.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of copending U.S. patent application Ser. No. 11/342,749 filed Jan. 30, 2006, which claims the benefit of U.S. Provisional Application Nos. 60/723,312, filed on Oct. 4, 2005; 60/654,718, filed on Feb. 17, 2005; and 60/651,050, filed on Feb. 7, 2005. This application also claims the benefit of the U.S. Provisional Application No. 60/834,550, filed on Jul. 31, 2006. The disclosures of the above applications are incorporated herein by reference.

US Referenced Citations (261)
Number Name Date Kind
2553004 Rabatine May 1951 A
3141846 Laven, Jr. Jul 1964 A
3409165 Creith Nov 1968 A
3420374 Umeda Jan 1969 A
3441143 Kudlaty Apr 1969 A
3453364 Flodin et al. Jul 1969 A
3469369 Helmke Sep 1969 A
3508653 Coleman Apr 1970 A
3593915 Steinacker Jul 1971 A
3647070 Adler Mar 1972 A
3779383 Ayres Dec 1973 A
3785549 Latham, Jr. Jan 1974 A
3814248 Lawhead Jun 1974 A
3850369 Bull et al. Nov 1974 A
3879295 Glover et al. Apr 1975 A
3894952 Ayres Jul 1975 A
3897343 Ayres Jul 1975 A
3909419 Ayres Sep 1975 A
3929646 Adler Dec 1975 A
3931010 Ayres et al. Jan 1976 A
3931018 North, Jr. Jan 1976 A
3935113 Ayres Jan 1976 A
3941699 Ayres Mar 1976 A
3972812 Gresl, Jr. Aug 1976 A
3982691 Schlutz Sep 1976 A
4001122 Griffin Jan 1977 A
4046699 Zine, Jr. Sep 1977 A
4055501 Cornell Oct 1977 A
4059108 Latham, Jr. Nov 1977 A
4077396 Wardlaw et al. Mar 1978 A
4152270 Cornell May 1979 A
4159896 Levine et al. Jul 1979 A
4187979 Cullis et al. Feb 1980 A
4204537 Latham, Jr. May 1980 A
4225580 Rothman et al. Sep 1980 A
4229298 Bange Oct 1980 A
4269718 Persidsky May 1981 A
4294707 Ikeda et al. Oct 1981 A
4298598 Schwarz et al. Nov 1981 A
4300717 Latham, Jr. Nov 1981 A
4303193 Latham, Jr. Dec 1981 A
4314823 Rich, Jr. et al. Feb 1982 A
4322298 Persidsky Mar 1982 A
4332351 Kellogg et al. Jun 1982 A
4362567 Schwarz et al. Dec 1982 A
4364832 Ballies Dec 1982 A
4377572 Schwarz et al. Mar 1983 A
4414976 Schwarz et al. Nov 1983 A
4416654 Schoendorfer et al. Nov 1983 A
4417981 Nugent Nov 1983 A
4424132 Iriguchi Jan 1984 A
4427650 Stroetmann et al. Jan 1984 A
4427651 Stroetmann et al. Jan 1984 A
4442655 Stroetmann et al. Apr 1984 A
4446021 Aufderhaar et al. May 1984 A
4453939 Zimmerman et al. Jun 1984 A
4464167 Schoendorfer et al. Aug 1984 A
4537767 Rothman et al. Aug 1985 A
RE32089 Blatt et al. Mar 1986 E
4610656 Mortensen Sep 1986 A
4617009 Ohlin et al. Oct 1986 A
4627879 Rose et al. Dec 1986 A
4631055 Redl et al. Dec 1986 A
4632761 Bowers et al. Dec 1986 A
4639316 Eldegheidy Jan 1987 A
4650678 Fuhge et al. Mar 1987 A
4655211 Sakamoto et al. Apr 1987 A
4672969 Dew Jun 1987 A
4675117 Neumann et al. Jun 1987 A
4680025 Kruger et al. Jul 1987 A
4714457 Alterbaum Dec 1987 A
4722790 Cawley et al. Feb 1988 A
4724317 Brown et al. Feb 1988 A
4735616 Eibl et al. Apr 1988 A
4735726 Duggins Apr 1988 A
4755300 Fischel et al. Jul 1988 A
4755301 Bowers Jul 1988 A
4770779 Ichikawa et al. Sep 1988 A
4776964 Schoendorfer et al. Oct 1988 A
4818291 Iwatsuki et al. Apr 1989 A
4818386 Burns Apr 1989 A
4828710 Itoh et al. May 1989 A
4832851 Bowers et al. May 1989 A
4834890 Brown et al. May 1989 A
4839058 Cawley et al. Jun 1989 A
4844818 Smith Jul 1989 A
4846780 Galloway et al. Jul 1989 A
4846974 Kelley et al. Jul 1989 A
4871462 Fischel et al. Oct 1989 A
4874368 Miller et al. Oct 1989 A
4877520 Burns Oct 1989 A
4879031 Panzani Nov 1989 A
4900453 Sedlmayer Feb 1990 A
4902281 Avoy Feb 1990 A
4928603 Rose et al. May 1990 A
4929242 Desecki et al. May 1990 A
4943273 Pages et al. Jul 1990 A
4946601 Fiehler Aug 1990 A
4950220 Wells et al. Aug 1990 A
4957638 Smith Sep 1990 A
4983157 Pober et al. Jan 1991 A
4983158 Headley Jan 1991 A
4985153 Kuroda et al. Jan 1991 A
5000970 Shanbhag et al. Mar 1991 A
5002571 O'Donnell, Jr. et al. Mar 1991 A
5019243 McEwen et al. May 1991 A
5030215 Morse et al. Jul 1991 A
5030341 McEwen et al. Jul 1991 A
5045048 Kaleskas et al. Sep 1991 A
5053127 Schoendorfer et al. Oct 1991 A
5071570 Shiraki et al. Dec 1991 A
5100564 Pall et al. Mar 1992 A
5104375 Wolf et al. Apr 1992 A
5112484 Zuk, Jr. May 1992 A
5112490 Turpen May 1992 A
5131907 Williams et al. Jul 1992 A
5137832 Levine et al. Aug 1992 A
5141645 Shiraki et al. Aug 1992 A
5147290 Jonsson et al. Sep 1992 A
5152905 Pall et al. Oct 1992 A
5156613 Sawyer Oct 1992 A
5165938 Knighton Nov 1992 A
5171456 Hwang et al. Dec 1992 A
5173295 Wehling et al. Dec 1992 A
5185001 Galanakis Feb 1993 A
5188583 Guigan et al. Feb 1993 A
5190057 Sarfarazi Mar 1993 A
5190759 Lindblad et al. Mar 1993 A
5204537 Bennet et al. Apr 1993 A
5206023 Hunziker Apr 1993 A
5217426 Bacehowski et al. Jun 1993 A
5217627 Pall et al. Jun 1993 A
5219328 Morse et al. Jun 1993 A
5226877 Epstein Jul 1993 A
5234608 Duff Aug 1993 A
5236604 Fiehler Aug 1993 A
5258126 Pall et al. Nov 1993 A
5260420 Burnouf-Radosevich et al. Nov 1993 A
5269927 Fiehler Dec 1993 A
5271852 Luoma, II Dec 1993 A
5279825 Wehling et al. Jan 1994 A
5281342 Biesel et al. Jan 1994 A
5290552 Sierra et al. Mar 1994 A
5290918 Bui-Khac et al. Mar 1994 A
5298171 Biesel et al. Mar 1994 A
5304372 Michalski et al. Apr 1994 A
5316674 Pall et al. May 1994 A
5318524 Morse et al. Jun 1994 A
5318782 Weis-Fogh et al. Jun 1994 A
5321126 van Dommelen et al. Jun 1994 A
5322620 Brown et al. Jun 1994 A
5330974 Pines et al. Jul 1994 A
5344752 Murphy Sep 1994 A
5370802 Brown Dec 1994 A
5376263 Fischel Dec 1994 A
5387187 Fell et al. Feb 1995 A
5393674 Levine et al. Feb 1995 A
5395923 Bui-Khac et al. Mar 1995 A
5403272 Deniega et al. Apr 1995 A
5405607 Epstein Apr 1995 A
5411885 Marx May 1995 A
5417650 Gordon May 1995 A
5420250 Lontz May 1995 A
5443481 Lee Aug 1995 A
5454958 Fiehler Oct 1995 A
5456693 Conston et al. Oct 1995 A
5456885 Coleman et al. Oct 1995 A
5484383 Fitch, Jr. et al. Jan 1996 A
5494578 Brown et al. Feb 1996 A
5494592 Latham, Jr. et al. Feb 1996 A
5505685 Antwiler Apr 1996 A
5510102 Cochrum Apr 1996 A
5533518 Vogler Jul 1996 A
5560830 Coleman et al. Oct 1996 A
5577513 Van Vlasselaer Nov 1996 A
5585007 Antanavich et al. Dec 1996 A
5589462 Patat et al. Dec 1996 A
5601727 Bormann et al. Feb 1997 A
5607579 Latham, Jr. et al. Mar 1997 A
5614106 Payrat et al. Mar 1997 A
5632905 Haynes May 1997 A
5641622 Lake et al. Jun 1997 A
5643192 Hirsh et al. Jul 1997 A
5674173 Hlavinka et al. Oct 1997 A
5733545 Hood, III Mar 1998 A
5736033 Coleman et al. Apr 1998 A
5788662 Antanavich et al. Aug 1998 A
5795489 Holm et al. Aug 1998 A
5795571 Cederholm-Williams et al. Aug 1998 A
5853600 McNeal et al. Dec 1998 A
5860937 Cohen Jan 1999 A
5889584 Wardlaw Mar 1999 A
5918622 Perez et al. Jul 1999 A
5924972 Turvaville et al. Jul 1999 A
5934803 Hutter Aug 1999 A
5980757 Brown et al. Nov 1999 A
6011490 Tonnesen et al. Jan 2000 A
6022306 Dumont et al. Feb 2000 A
6025201 Zelmanovic et al. Feb 2000 A
6051146 Green et al. Apr 2000 A
6053856 Hlavinka Apr 2000 A
6054122 MacPhee et al. Apr 2000 A
6063297 Antanavich et al. May 2000 A
6071423 Brown et al. Jun 2000 A
6090793 Zimmermann et al. Jul 2000 A
6096309 Prior et al. Aug 2000 A
6102843 Kelley et al. Aug 2000 A
6117425 MacPhee et al. Sep 2000 A
6153113 Goodrich et al. Nov 2000 A
6196987 Holmes et al. Mar 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6200287 Keller et al. Mar 2001 B1
6214338 Antanavich et al. Apr 2001 B1
6245900 Yamasaki et al. Jun 2001 B1
6277961 Hock et al. Aug 2001 B1
6280400 Niermann Aug 2001 B1
6296602 Headley Oct 2001 B1
6316247 Katz et al. Nov 2001 B1
6322785 Landesberg et al. Nov 2001 B1
6334842 Hlavinka et al. Jan 2002 B1
6342157 Hood, III Jan 2002 B1
6368298 Beretta et al. Apr 2002 B1
6472162 Coelho et al. Oct 2002 B1
6516953 DiCesare et al. Feb 2003 B1
6544162 Van Wie et al. Apr 2003 B1
6563953 Lin et al. May 2003 B2
6629919 Egozy et al. Oct 2003 B2
6676629 Andrew et al. Jan 2004 B2
6758978 Bedell Jul 2004 B1
6764531 Hogan Jul 2004 B2
6777231 Katz et al. Aug 2004 B1
6905612 Dorian et al. Jun 2005 B2
6979307 Beretta et al. Dec 2005 B2
7011644 Andrew et al. Mar 2006 B1
7077273 Ellsworth et al. Jul 2006 B2
7179391 Leach et al. Feb 2007 B2
20020032112 Pages Mar 2002 A1
20020076400 Katz et al. Jun 2002 A1
20030082152 Hedrick et al. May 2003 A1
20030191429 Andrew et al. Oct 2003 A1
20040171146 Katz et al. Sep 2004 A1
20040182788 Dorian et al. Sep 2004 A1
20040182795 Dorian et al. Sep 2004 A1
20050076396 Katz et al. Apr 2005 A1
20050084961 Hedrick et al. Apr 2005 A1
20050109716 Leach et al. May 2005 A1
20050153441 Hedrick et al. Jul 2005 A1
20050153442 Katz et al. Jul 2005 A1
20050196874 Dorian et al. Sep 2005 A1
20050247715 Ellsworth et al. Nov 2005 A1
20050260174 Fraser et al. Nov 2005 A1
20050260175 Hedrick et al. Nov 2005 A1
20050282275 Katz et al. Dec 2005 A1
20060083720 Fraser et al. Apr 2006 A1
20060175242 Dorian et al. Aug 2006 A1
20060196885 Leach et al. Sep 2006 A1
20060243676 Swift et al. Nov 2006 A1
20070036768 Fraser et al. Feb 2007 A1
20070075016 Leach Apr 2007 A1
20080011684 Dorian et al. Jan 2008 A1
20080283474 Leach et al. Nov 2008 A1
Foreign Referenced Citations (43)
Number Date Country
4286396 Jan 1999 AU
9103724 Mar 1993 BR
1321138 Aug 1993 CA
2182862 Jun 1996 CA
1074709 Jul 1993 CN
56103 Oct 1860 DE
1443359 Nov 1968 DE
4202667 May 1993 DE
090997 Oct 1983 EP
0102773 Mar 1984 EP
0109374 May 1984 EP
0253198 Jan 1988 EP
534178 Mar 1993 EP
0534178 Mar 1993 EP
0592242 Apr 1994 EP
1427279 Jun 2004 EP
1467746 Oct 2004 EP
1670315 Jun 2006 EP
1716901 Nov 2006 EP
854715 Nov 1960 GB
60250014 Dec 1985 JP
2036872 Feb 1990 JP
02071747 Mar 1990 JP
6250014 Sep 1994 JP
11502502 Mar 1999 JP
02129224 Oct 2000 JP
2001017540 Jan 2001 JP
246078 May 2007 MX
WO-8400905 Mar 1984 WO
WO-8802259 Apr 1988 WO
WO-9010031 Sep 1990 WO
WO-9222312 Dec 1992 WO
WO-9305067 Mar 1993 WO
WO-9407548 Apr 1994 WO
WO-9616714 Jun 1996 WO
WO-9617871 Jun 1996 WO
WO-0224107 Mar 2002 WO
WO-03015800 Feb 2003 WO
WO-03092894 Nov 2003 WO
WO-2004009207 Jan 2004 WO
WO-2004037427 May 2004 WO
WO-2004104553 Dec 2004 WO
WO-2007142908 Dec 2007 WO
Related Publications (1)
Number Date Country
20080011684 A1 Jan 2008 US
Provisional Applications (4)
Number Date Country
60723312 Oct 2005 US
60654718 Feb 2005 US
60651050 Feb 2005 US
60834550 Jul 2006 US
Continuation in Parts (1)
Number Date Country
Parent 11342749 Jan 2006 US
Child 11831605 US