Apparatus and method for processing fluids from a well

Information

  • Patent Grant
  • 9291021
  • Patent Number
    9,291,021
  • Date Filed
    Monday, July 14, 2014
    10 years ago
  • Date Issued
    Tuesday, March 22, 2016
    8 years ago
Abstract
Provided is a system, including a first module (35b) configured to process fluid from a well, wherein the first module (35b) has an extension conduit (5b), having a connection that is coupleable to a central mandrel of a manifold (5), a processing device arranged in a region surrounding the extension conduit (5b), a processing input (18a), and a processing output (19a). Further provided is a method of processing well fluids, including diverting fluids from a bore of a manifold (1) to a processing module (35b), wherein the processing module (35b) is coupled to a mandrel of the manifold (5), processing the fluids in the processing module (35b), and returning the fluids to a flowpath (19a) for recovery.
Description
FIELD OF THE INVENTION

The present invention relates to apparatus and methods for processing well fluids. Embodiments of the invention can be used for recovery and injection of well fluids. Some embodiments relate especially but not exclusively to recovery and injection, into either the same, or a different well.


BACKGROUND

This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


As will be appreciated, oil and natural gas have a profound effect on modern economies and societies. In order to meet the demand for such natural resources, numerous companies invest significant amounts of time and money in searching for and extracting oil, natural gas, and other subterranean resources from the earth. Particularly, once a desired resource is discovered below the surface of the earth, drilling and production systems are employed to access and extract the resource. These systems can be located onshore or offshore depending on the location of a desired resource. Further, such systems generally include a wellhead assembly through which the resource is extracted. These wellhead assemblies generally include a wide variety of components and/or conduits, such as a christmas tree (tree), various control lines, casings, valves, and the like, that control drilling and/or extraction operations.


Subsea manifolds such as trees (sometimes called christmas trees) are well known in the art of oil and gas wells, and generally comprise an assembly of pipes, valves and fittings installed in a wellhead after completion of drilling and installation of the production tubing to control the flow of oil and gas from the well. Subsea trees typically have at least two bores one of which communicates with the production tubing (the production bore), and the other of which communicates with the annulus (the annulus bore).


Typical designs of conventional trees may have a side outlet (a production wing branch) to the production bore closed by a production wing valve for removal of production fluids from the production bore. The annulus bore also typically has an annulus wing branch with a respective annulus wing valve. The top of the production bore and the top of the annulus bore are usually capped by a tree cap which typically seals off the various bores in the tree, and provides hydraulic channels for operation of the various valves in the tree by means of intervention equipment, or remotely from an offshore installation.


Wells and trees are often active for a long time, and wells from a decade ago may still be in use today. However, technology has progressed a great deal during this time, for example, subsea processing of fluids is now desirable. Such processing can involve adding chemicals, separating water and sand from the hydrocarbons, etc.


Conventional treatment methods involve conveying the fluids over long distances for remote treatment, and some methods and apparatus include localized treatment of well fluids, by using pumps to boost the flow rates of the well fluids, chemical dosing apparatus, flow meters and other types of treatment apparatus.


One problem with locating the treatment apparatus locally on the tree is that the treatment apparatus can be bulky and can obstruct the bore of the well. Therefore, intervention operations requiring access to the wellbore can require removal of the treatment apparatus before access to the well can be gained.


SUMMARY OF THE INVENTION

According to a first aspect of the present invention there is provided an apparatus for the processing of fluids from an oil or gas well, the apparatus comprising a processing device, and a wellbore extension conduit.


Typically the apparatus is modular and the wellbore extension conduit extends through the module. The wellbore extension conduit typically comprises sealed tubing that optionally extends at least partially through a central axis of the apparatus, and the processing device is arranged around the central axis, spaced from the wellbore extension conduit.


The apparatus can be built in modules, with a first part of the module, for example, a lower surface, being adapted to attach to an interface of a manifold such as a tree, and a second part, for example an upper surface, being adapted to attach to a further module. The second part (e.g. the upper surface) can typically be arranged in the same manner as the manifold interface, so that further modules can be attached to the first module, which typically has the same connections and footprint of the manifold interface. Thus, modules adapted to connect to the manifold interface in the same manner as the first module can connect instead to the first or to subsequent modules in the same manner, allowing stacking of separate modules on the manifold, each one connecting to the module below as if it were connecting to the manifold interface.


The wellbore extension conduit is typically straight and is aligned with the wellbore, although some embodiments of the invention incorporate versions in which the wellbore extension conduit is deviated from the axis of the wellbore itself. Embodiments with straight extension conduits in axial alignment with the wellbore have the advantage that the wellbore can be accessed in a straight line, and plugs or other items in the wellbore, perhaps below the tree, can be pulled through the modules via the extension conduits without removing or adjusting the modules. Embodiments in which the wellbore extension conduit is deviated from the axis of the wellbore tend to be more compact and adaptable to large pieces of processing equipment. The wellbore can be the production bore, or a production flowline.


The upper surface of the module will typically have fluid and/or power conduit connectors in the same locations as the respective connectors are disposed in the lower surface, but typically, the upper surface connectors will be adapted to mate with the lower surface connectors, so that the upper surface connectors can mate with the lower surface connectors on the lower surface of the module above. Therefore, where the upper surface has a male connector, the lower surface can typically have a female connector, or vice versa.


Typically the module can have support structures such as posts that are adapted to transfer loads across the module to the hard points on the manifold. In certain embodiments, the weight of the processing modules can be borne by the wellbore mandrel.


In some embodiments, the processing device can connect directly into the wellbore mandrel. For example, conduits connecting directly to the mandrel can route fluids to be processed to the processing device. The processing device can optionally connect to a branch of the manifold, typically to a wing branch on a tree. The processing device can typically have an inlet that draws production fluids from a diverter insert located in a choke conduit of the branch of the manifold, and can return the fluids to the diverter insert via an outlet, after processing.


The diverter insert can have a flow diverter to divide the choke conduit into two separate fluid flowpaths within the choke conduit, for example the choke body, and the flow diverter can be arranged to control the flow of fluids through the choke body so that the fluids from the well to be processed are diverted through one flowpath and are recovered through another, for transfer to a flowline, or optionally back into the well. Optionally the flow diverter has a separator to divide the branch bore into two separate regions.


The oil or gas well is typically a subsea well but the invention is equally applicable to topside wells. The manifold may be a gathering manifold at the junction of several flow lines carrying production fluids from, or conveying injection fluids to, a number of different wells. Alternatively, the manifold may be dedicated to a single well; for example, the manifold may comprise a christmas tree.


By “branch” we mean any branch of the manifold, other than a production bore of a tree. The wing branch is typically a lateral branch of the tree, and can be a production or an annulus wing branch connected to a production bore or an annulus bore respectively.


Optionally, the flow diverter is attached to a choke body. “Choke body” can mean the housing which remains after the manifold's standard choke has been removed. The choke may be a choke of a tree, or a choke of any other kind of manifold.


The flow diverter could be located in a branch of the manifold (or a branch extension) in series with a choke. For example, in an embodiment where the manifold comprises a tree, the flow diverter could be located between the choke and the production wing valve or between the choke and the branch outlet. Further alternative embodiments could have the flow diverter located in pipework coupled to the manifold, instead of within the manifold itself. Such embodiments allow the flow diverter to be used in addition to a choke, instead of replacing the choke.


Embodiments where the flow diverter is adapted to connect to a branch of a tree means that the tree cap does not have to be removed to fit the flow diverter. Embodiments of the invention can be easily retro-fitted to existing trees. Preferably, the flow diverter is locatable within a bore in the branch of the manifold. Optionally, an internal passage of the flow diverter is in communication with the interior of the choke body, or other part of the manifold branch.


The invention provides the advantage that fluids can be diverted from their usual path between the well bore and the outlet of the wing branch. The fluids may be produced fluids being recovered and traveling from the well bore to the outlet of a tree. Alternatively, the fluids may be injection fluids traveling in the reverse direction into the well bore. As the choke is standard equipment, there are well-known and safe techniques of removing and replacing the choke as it wears out. The same tried and tested techniques can be used to remove the choke from the choke body and to clamp the flow diverter onto the choke body, without the risk of leaking well fluids into the ocean. This enables new pipework to be connected to the choke body and hence enables safe re-routing of the produced fluids, without having to undertake the considerable risk of disconnecting and reconnecting any of the existing pipes (e.g. the outlet header).


Some embodiments allow fluid communication between the well bore and the flow diverter. Other embodiments allow the wellbore to be separated from a region of the flow diverter. The choke body may be a production choke body or an annulus choke body. Preferably, a first end of the flow diverter is provided with a clamp for attachment to a choke body or other part of the manifold branch. Optionally, the flow diverter has a housing that is cylindrical and typically the internal passage extends axially through the housing between opposite ends of the housing. Alternatively, one end of the internal passage is in a side of the housing.


Typically, the flow diverter includes separation means to provide two separate regions within the flow diverter. Typically, each of these regions has a respective inlet and outlet so that fluid can flow through both of these regions independently. Optionally, the housing includes an axial insert portion.


Typically, the axial insert portion is in the form of a conduit. Typically, the end of the conduit extends beyond the end of the housing. Preferably, the conduit divides the internal passage into a first region comprising the bore of the conduit and a second region comprising the annulus between the housing and the conduit. Optionally, the conduit is adapted to seal within the inside of the branch (e.g. inside the choke body) to prevent fluid communication between the annulus and the bore of the conduit.


Alternatively, the axial insert portion is in the form of a stem. Optionally, the axial insert portion is provided with a plug adapted to block an outlet of the christmas tree, or other kind of manifold. Preferably, the plug is adapted to fit within and seal inside a passage leading to an outlet of a branch of the manifold. Optionally, the diverter assembly provides means for diverting fluids from a first portion of a first flowpath to a second flowpath, and means for diverting the fluids from a second flowpath to a second portion of a first flowpath. Preferably, at least a part of the first flowpath comprises a branch of the manifold. The first and second portions of the first flowpath could comprise the bore and the annulus of a conduit.


The diverter insert is optional and in certain embodiments the processing device can take fluids from a bore of the well and return them to the same or a different bore, or to a branch, without involving a flow diverter having more than one flowpath. For example, the fluids could be taken through a plain single bore conduit from one hub on a tree into the processing apparatus, and back into a second hub on the same or a different tree, through a plain single bore conduit.


According to a second aspect of the present invention there is provided a manifold having apparatus according to the first aspect of the invention. Typically, the processing device is chosen from at least one of: a pump; a process fluid turbine; injection apparatus for injecting gas or steam; chemical injection apparatus; a chemical reaction vessel; pressure regulation apparatus; a fluid riser; measurement apparatus; temperature measurement apparatus; flow rate measurement apparatus; constitution measurement apparatus; consistency measurement apparatus; gas separation apparatus; water separation apparatus; solids separation apparatus; and hydrocarbon separation apparatus.


Optionally, the flow diverter provides a barrier to separate a branch outlet from a branch inlet. The barrier may separate a branch outlet from a production bore of a tree. Optionally, the barrier comprises a plug, which is typically located inside the choke body (or other part of the manifold branch) to block the branch outlet. Optionally, the plug is attached to the housing by a stem which extends axially through the internal passage of the housing.


Alternatively, the barrier comprises a conduit of the diverter assembly which is engaged within the choke body or other part of the branch. Optionally, the manifold is provided with a conduit connecting the first and second regions. Optionally, a first set of fluids are recovered from a first well via a first diverter assembly and combined with other fluids in a communal conduit, and the combined fluids are then diverted into an export line via a second diverter assembly connected to a second well.


According to a fourth aspect of the present invention, there is provided a method of processing wellbore fluids, the method comprising the steps of: connecting a processing apparatus to a manifold, wherein the processing apparatus has a processing device and a wellbore extension conduit, and wherein the wellbore extension conduit is connected to the wellbore of the manifold; diverting the fluids from a first part of the wellbore of the manifold to the processing device; processing the fluids in the processing device; and returning the processed fluids to a second part of the wellbore of the manifold.


Typically, the method is for recovering fluids from a well, and includes the final step of diverting fluids to an outlet of the first flowpath for recovery therefrom. Alternatively or additionally, the method is for injecting fluids into a well. The fluids may be passed in either direction through the diverter assembly.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying figures in which like characters represent like parts throughout the figures, wherein:



FIG. 1 is a plan view of a typical horizontal production tree;



FIG. 2 is a side view of the FIG. 1 tree;



FIG. 3 is a plan view of FIG. 1 tree with a first fluid processing module in place;



FIG. 4 is a side view of the FIG. 3 arrangement;



FIG. 5 is a side view of the FIG. 3 arrangement with a further fluid processing module in place;



FIG. 6 is a plan view of a typical vertical production tree;



FIG. 7 is a side view of the FIG. 6 tree;



FIG. 8 is a side view of FIG. 6 tree with first and second fluid processing modules in place;



FIG. 9 is a schematic diagram showing the flowpaths of the FIG. 5 arrangement;



FIG. 10 is a schematic diagram showing the flowpaths of the FIG. 8 arrangement;



FIG. 11 shows a plan view of a further design of wellhead;



FIG. 12 shows a side view of the FIG. 11 wellhead, with a processing module; and



FIG. 13 shows a front facing view of the FIG. 11 wellhead.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present invention will be described below. These described embodiments are only exemplary of the present invention. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


Referring now to the drawings, a typical production manifold on an offshore oil or gas wellhead comprises a christmas tree with a production bore 1 leading from production tubing (not shown) and carrying production fluids from a perforated region of the production casing in a reservoir (not shown). An annulus bore 2 (see FIG. 9) leads to the annulus between the casing and the production tubing. A tree cap typically seals off the production bore 1, and provides a number of hydraulic control channels by which a remote platform or intervention vessel can communicate with and operate valves in the christmas tree. The cap is removable from the christmas tree in order to expose the production bore in the event that intervention is required and tools need to be inserted into the wellbore. In the modern horizontal trees shown in FIGS. 1-5, a large diameter production bore 1 is provided to feed production fluids directly to a production wing branch 10 from which they are recovered.


The flow of fluids through the production and annulus bores is governed by various valves shown in the schematic arrangements of FIGS. 9 and 10. The production bore 1 has a branch 10 which is closed by a production wing valve PWV. A production swab valve PSV closes the production bore 1 above the branch 10, and a production master valve PMV closes the production bore 1 below the branch 10.


The annulus bore 2 is closed by an annulus master valve AMV below an annulus outlet controlled by an annulus wing valve AWV. An annulus swab valve ASV closes the upper end of the annulus bore 2.


All valves in the tree are typically hydraulically controlled by means of hydraulic control channels passing through the cap and the body of the apparatus or via hoses as required, in response to signals generated from the surface or from an intervention vessel.


When production fluids are to be recovered from the production bore 1, PMV is opened, PSV is closed, and PWV is opened to open the branch 10 which leads to a production flowline or pipeline 20. PSV and ASV are generally only opened if intervention is required.


The wing branch 10 has a choke body 15a in which a production choke 16 is disposed, to control the flow of fluids through the choke body and out through production flowline 20.


The manifold on the production bore 1 typically comprises a first plate 25a and a second plate 25b spaced apart in vertical relationship to one another by support posts 14a, so that the second plate 25b is supported by the posts 14a directly above the first plate 25a. The space between the first plate 25a and the second plate 25b is occupied by the fluid conduits of the wing branch 10, and by the choke body 15a. The choke body 15a is usually mounted on the first plate 25a, and above it, the second plate 25b will usually have a cut-out section to facilitate access to the choke 16 in use.


The first plate 25a and the second plate 25b each have central apertures that are axially aligned with one another and with the production bore 1 for allowing passage of the central mandrel 5 of the wellbore, which protrudes between the plates 25 and extends through the upper surface of the second plate to permit access to the wellbore from above the wellhead for intervention purposes. The upper end of the central mandrel is optionally capped with the tree cap or a debris cover (removed in drawings) to seal off the wellbore in normal operation.


Referring now to FIGS. 3 and 4, the conventional choke 16 has been removed from the choke body 15a, and has been replaced by a fluid diverter that takes fluids from the wing branch 10 and diverts them through an annulus of the choke body to a conduit 18a that feeds them to a first processing module 35b. The second plate 25b can optionally act as a platform for mounting the first processing module 35b. A second set of posts 14b are mounted on the second plate 25b directly above the first set of posts 14a, and the second posts 14b support a third plate 25c above the second plate 25b in the same manner as the first posts 14a support the second plate 25b above the first plate 25a. Optionally, the first processing module 35b disposed on the second plate 25b has a base that rests on feet set directly in line with the posts 14 in order to transfer loads efficiently to the hard points of the tree. Optionally, loads can be routed through the mandrel of the wellbore, and the posts and feet can be omitted.


The first processing module contains a processing device for processing the production fluids from the wing branch 10. Many different types of processing devices could be used here. For example, the processing device could comprise a pump or process fluid turbine, for boosting the pressure of the production fluids. Alternatively, or additionally, the processing apparatus could inject gas, steam, sea water, or other material into the fluids. The fluids pass from the conduit 18a into the first processing module 35b and after treatment or processing, they are passed through a second choke body 15b which is blanked off with a cap, and which returns the processed production fluids to the first choke body 15a via a return conduit 19a. The processed production fluids pass through the central axial conduit of the fluid diverter in the choke body 15a, and leave it via the production flowpath 20. After the processed fluids have left the choke body 15a, they can be recovered through a normal pipeline back to the surface, or re-injected into a well, or can be handled or further processed in any other way desirable.


The injection of gas could be advantageous, as it would give the fluids “lift”. The addition of steam has the effect of adding energy to the fluids.


Injecting sea water into a well could be useful to boost the formation pressure for recovery of hydrocarbons from the well, and to maintain the pressure in the underground formation against collapse. Also, injecting waste gases or drill cuttings etc into a well obviates the need to dispose of these at the surface, which can prove expensive and environmentally damaging.


The processing device could also enable chemicals to be added to the fluids, e.g. viscosity moderators, which thin out the fluids, making them easier to pump, or pipe skin friction moderators, which minimize the friction between the fluids and the pipes. Further examples of chemicals which could be injected are surfactants, refrigerants, and well fracturing chemicals. Processing device could also comprise injection water electrolysis equipment. The chemicals/injected materials could be added via one or more additional input conduits.


The processing device could also comprise a fluid riser, which could provide an alternative route between the well bore and the surface. This could be very useful if, for example, the branch 10 becomes blocked.


Alternatively, processing device could comprise separation equipment e.g. for separating gas, water, sand/debris and/or hydrocarbons. The separated component(s) could be siphoned off via one or more additional processes.


The processing device could alternatively or additionally include measurement apparatus, e.g. for measuring the temperature/flow rate/constitution/consistency, etc. The temperature could then be compared to temperature readings taken from the bottom of the well to calculate the temperature change in produced fluids. Furthermore, the processing device could include injection water electrolysis equipment.


Alternative embodiments of the invention can be used for both recovery of production fluids and injection of fluids, and the type of processing apparatus can be selected as appropriate.


A suitable fluid diverter for use in the choke body 15a in the FIG. 4 embodiment is described in application WO/2005/047646, the disclosure of which is incorporated herein by reference.


The processing device(s) is built into the shaded areas of the processing module 35b as shown in the plan view of FIG. 3, and a central axial area is clear from processing devices, and houses a first mandrel extension conduit 5b. At its lower end near to the second plate 25b, the first mandrel extension conduit 5b has a socket to receive the male end of the wellbore mandrel 5 that extends through the upper surface of the second plate 25b as shown in FIG. 2. The socket has connection devices to seal the extension conduit 5b to the mandrel 5, and the socket is stepped at the inner surface of the mandrel extension conduit 5b, so that the inner bore of the mandrel 5 is continuous with the inner bore of the mandrel extension conduit 5b and is sealed thereto. When the mandrel extension conduit 5b is connected to the mandrel 5, it effectively extends the bore of the mandrel 5 upwards through the upper surface of the third plate 25c to the same extent as the mandrel 5 extends through the second plate 25b as shown in FIG. 2.


The upper surface of the third plate 25c though which the first mandrel extension conduit 5b protrudes, as shown in FIG. 4, has, therefore, the same profile (as regards the wellbore mandrel) as the basic tree shown in FIG. 1. The mandrel extension conduit 5b can be plugged. The other features of the upper surface of the third plate 35c are also arranged as they are on the basic tree, for example, the hard points for weight bearing are provided by the posts 14, and other fluid connections that may be required (for example hydraulic signal conduits at the upper face of the second plate 25b that are needed to operate instruments on the tree) can have continuous conduits that provide an interface between the third plate 25c and the second 25b.


The third plate 25c has a cut out section to allow access to the second choke body 15b, but this can be spaced apart from the first choke body 15a, and does not need to be directly above. This illustrates that while it is advantageous in certain circumstances for the conduit adapting to the basic tree to be in the same place on the upper surface as its corresponding feature is located on the lower plate, it is not absolutely necessary, and linking conduits (such as conduits 18 and 19) can be routed around the processing devices as desired.


The guide posts 14 can optionally be arranged as stab posts 14′ extending upward from the upper surface of the plates, and mating with downwardly-facing sockets 14″ on the base of the processing module above them, as shown in FIG. 4. In either event, it is advantageous (but not essential) that the support posts on a lower module are directly beneath those on an upper module, to enhance the weight bearing characteristics of the apparatus. A control panel 34b can be provided for the control of the processing module 35b. In the example shown in FIG. 4, the processing module comprises a pump.


Referring now to FIG. 5, a second processing module 35c has been installed on the upper surface of the third plate 25c. The blank cap in the second choke body 15b has been replaced with a fluid diverter 17b similar to the diverter now occupying the first choke body 15a. The diverter 17b is provided with fluid conduits 18b and 19b to send fluids to the second processing module 35c and to return them therefrom, via a further blanked choke body 15c, for transfer back to the first choke body 15a, and further treatment, recovery or injection as previously described.


Above the second processing module 35c is a fourth plate 25d, which has the same footprint as the second and third plates, with guide posts 14″ and fluid connectors etc in the same locations. The second processing module 35c, which may incorporate a different processing device from the first module 35b, for example a chemical dosing device, is also built around a second central mandrel extension conduit 5c, which is axially aligned with the mandrel bore 5 and the first extension 5b. It has sockets and seals in order to connect to the first mandrel extension conduit just as the first extension conduit 5b connects to the mandrel 5, so the mandrel effectively extends continuously through the two processing units 35b and 35c and has the same top profile as the basic wellhead, thereby facilitating intervention using conventional equipment without having to remove the processing units.


Processing units can be arranged in parallel or in series. FIGS. 6-8 show a further embodiment of a vertical tree. Like parts between the two embodiments have been allocated the same reference numbers, but the second embodiment's reference numbers have been increased by 100.


In the embodiment shown in FIGS. 6-8, the vertical tree has a central mandrel 100 with a production bore 101 and an annulus bore 102 (see FIG. 6). The production bore 101 feeds a production choke 116p in a production choke body 115p through a production wing branch 110, and the annulus bore 102 feeds an annulus choke 116a in an annulus choke body 115a through an annulus wing branch 111. The tree has a cap 106 to seal off the mandrel and the production and annulus bores, located on top of a second plate 125b disposed directly above a lower first plate 125a as previously described. The second plate 125b is supported by tubular posts 114a, and guide posts 114′ extend from the upper surface of the second plate 125b. ROV controls are provided on a control panel 134 as with the first embodiment.



FIG. 8 shows a first processing module 135b disposed on the top of the second plate 125b as previously described. The first processing module 135b has a central axial space for the first mandrel extension conduit 105b, with the processing devices therein (e.g. a pump) displaced from the central axis as previously described. A second processing module 135c is located on top of the first, in the same manner as described with reference to the FIG. 5 embodiment. The second processing module 135c also has a central axial space for the second mandrel extension conduit 105c, with the processing devices packed into the second processing module 135c being displaced from the central axis as previously described. The second processing module 135c can comprise a chemical injection device. The second mandrel extension conduit 105c connects to the first 105b as previously described for the first embodiment.


The production fluids are routed from the production choke body 115p by a fluid diverter 117p as previously described through tubing 118p and 119p to the first processing module 135b, and back to the choke body 115p for onward transmission through the flowline 120. Optionally the treated fluids can be passed through other treatment modules arranged in series with the first module, and stacked on top of the second module, as previously described.


The fluids flowing up the annulus are routed from the annulus choke body 115a by a fluid diverter 117a as previously described through tubing 118a and 119a to the second processing module 135c, and back to the choke body 115a for onward transmission. Optionally the treated fluids can be passed through other treatment modules arranged in series with the second module, and stacked on top of the second or further modules, as previously described.



FIGS. 11-13 show an alternative embodiment, in which the wellhead has stacked processing modules as previously described, but in which the specialized dual bore diverter 17 insert in the choke body 15 has been replaced by a single bore jumper system. In the modified embodiment shown in these figures, the same numbering has been used, but with 200 added to the reference numbers. The production fluids rise up through the production bore 201, and pass through the wing branch 211 but instead of passing from there to the choke body 215, they are diverted into a single bore jumper bypass 218 and pass from there to the process module 235. After being processed, the fluids flow from the process module through a single bore return line 219 to the choke body 215, where they pass through the conventional choke 216 and leave through the choke body outlet 220. This embodiment illustrates the application of the invention to manifolds without dual concentric bore flow diverters in the choke bodies.


Embodiments of the invention provide intervention access to trees or other manifolds with treatment modules in the same way as one would access trees or other manifolds that have no such treatment modules. The upper surfaces of the topmost module of embodiments of the invention are arranged to have the same footprint as the basic tree or manifold, so that intervention equipment can land on top of the modules, and connect directly to the bore of the manifold without spending any time removing or re-arranging the modules, thereby saving time and costs.


Modifications and improvements may be incorporated without departing from the scope of the invention. For example the assembly could be attached to an annulus bore, instead of to a production bore.


Any of the embodiments which are shown connected to a production wing branch could instead be connected to an annulus wing branch, or another branch of the tree, or to another manifold. Certain embodiments could be connected to other parts of the wing branch, and are not necessarily attached to a choke body. For example, these embodiments could be located in series with a choke, at a different point in the wing branch.


While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.

Claims
  • 1. A subsea tree assembly mountable adjacent to a subsea production flowline, comprising: a subsea tree with a production line therein, said subsea tree comprising an upper end;a retrievable bridge comprising a production line connector and a production flowline connector operable for connection and fluid communication with said upper end of said subsea tree and with an upwardly directed end of said production flow line, respectfully, said retrievable bridge defining a fluid flow passageway therein, whereby said production line of said subsea tree is in fluid communication with said production flowline only through said retrievable bridge and only after said retrievable bridge is connected to said subsea tree and said production flowline;an annulus connection between said retrievable bridge and an annulus line of said subsea tree, said annulus connection being the only annulus line fluid connection between said retrievable bridge and said annulus line of said subsea tree, andan annulus access valve for access to said annulus line located in said subsea tree, an annulus master valve for said annulus line located in said subsea tree, and an annulus line to production line crossover valve located in said subsea tree to provide a valve between said annulus line and said subsea tree production line within said subsea tree.
  • 2. The subsea tree assembly of claim 1, further comprising an intervention access passageway and an intervention package connection at an upper end thereof operable for connection to an intervention package.
  • 3. The subsea tree assembly of claim 2, further comprising a valve within said intervention access passageway.
  • 4. The subsea tree assembly of claim 1 wherein said retrievable bridge defines therein a choke within said fluid flow passageway.
  • 5. The subsea tree assembly of claim 1 wherein said retrievable bridge comprises a subsea control module, said subsea control module comprising a plurality of electronic sensors.
  • 6. The subsea tree assembly of claim 1 wherein said retrievable bridge comprises a flowmeter.
  • 7. The subsea tree assembly of claim 1 wherein said retrievable bridge comprises an injection choke.
  • 8. A retrievable bridge to provide the only fluid communication available between a subsea installation comprising a subsea tree and a production flowline, said retrievable bridge comprising: a first connector for connecting to said subsea tree installation and a second connector for connecting to said production flowline, said retrievable bridge, when installed, defining a fluid flow passageway which connects between said subsea tree and said production flowline; andan intervention access passageway and an intervention package connection positioned at an upper end of said retrievable bridge operable for connection to an intervention package.
  • 9. The retrievable bridge of claim 8 further comprising a valve within said intervention access passageway.
  • 10. The retrievable bridge of claim 8 wherein said retrievable bridge defines therein a choke within said fluid flow passageway.
  • 11. The retrievable bridge of claim 8 wherein said retrievable bridge comprises a subsea control module, said subsea control module comprising a plurality of electronic sensors.
  • 12. The retrievable bridge of claim 8 wherein said retrievable bridge comprises a flowmeter.
  • 13. The retrievable bridge of claim 8 wherein said retrievable bridge comprises an injection choke.
  • 14. A retrievable bridge for fluidly connecting between a production line in a subsea tree and a production flowline, said subsea tree and said retrievable bridge comprising: at least two connectors in said retrievable bridge for connecting to said production line in a top of said subsea tree and an upwardly extending top of said production flowline, said retrievable bridge, when installed, defining a fluid flow passageway which connects between said production line and said production flowline, and a choke to control fluid flow through said fluid flow passageway;an annulus connection between said retrievable bridge and an annulus line of said subsea tree, said annulus connection being the only annulus line fluid connection between said retrievable bridge and said annulus line of said subsea tree; andan annulus access valve for access to said annulus line located in said subsea tree, an annulus master valve for said annulus line located in said subsea tree, and an annulus line to production line crossover valve located in said subsea tree to provide a valve between said annulus line and said subsea tree production line within said subsea tree.
  • 15. The retrievable bridge of claim 14 further comprising a subsea control module comprising electronic sensors.
  • 16. The retrievable bridge of claim 14 further comprising a flow meter.
  • 17. The retrievable bridge of claim 14 further comprising an intervention access passageway and an intervention package connection positioned at an upper end of said retrievable bridge operable for connection to an intervention package.
  • 18. The retrievable bridge of claim 17 further comprising a valve within said intervention access passageway.
  • 19. An assembly mountable to a subsea tree and connectable to a subsea production flowline, the subsea tree including a production bore, comprising: a pipework communicating with the production bore and including a pipework bore and an access port to the pipework bore;a module comprising a production connector for connection to the access port for fluid communication with the production bore and a flowline connector for connection with a flowline, the module defining a fluid flow passageway therein, wherein the module, after connection to the access port, establishes fluid communication between the subsea tree and the subsea production flowline using the fluid flow passageway.
  • 20. The assembly of claim 19 wherein the module includes a processing apparatus.
  • 21. The assembly of claim 20 wherein the processing apparatus is selected from the group consisting of a pump, a process fluid turbine, an injection apparatus for injecting gas or steam a material injection apparatus, a chemical reaction vessel, a pressure regulation apparatus, a fluid riser, a measurement apparatus, a temperature measurement apparatus, a flow rate measurement apparatus, a constitution measurement apparatus, a consistency measurement apparatus, a gas separation apparatus, a water separation apparatus, a solids separation apparatus, a hydrocarbon separation apparatus, or a combination thereof.
  • 22. A flow processing module to provide the only fluid communication between a tree pipework communicating with a lateral production port of a subsea tree and a production flowline pipework, the flow processing module comprising a connector assembly for connecting the module to the tree pipework and to the production flowline pipework, the module, when installed, forming a fluid flow passageway which connects the tree pipework and the production flowline pipework.
  • 23. The flow processing module of claim 22 wherein the module includes a flow measuring device without a production wing valve on the module.
  • 24. The flow processing module of claim 22 wherein the module includes a processing apparatus.
  • 25. The flow processing module of claim 24 wherein the processing apparatus includes at least one of the group consisting of a pump, a process fluid turbine, an injection apparatus for injecting gas or steam, a material injection apparatus, a chemical reaction vessel, a pressure regulation apparatus, a fluid riser, a measurement apparatus, a temperature measurement apparatus, a flow rate measurement apparatus, a constitution measurement apparatus, a consistency measurement apparatus, a gas separation apparatus, a water separation apparatus, a solids separation apparatus, and a hydrocarbon separation apparatus.
  • 26. A flow processing module for fluidly connecting a production bore in a subsea tree and a production flowline to a processing apparatus, the flow processing module comprising at least two connectors, one for connecting to the production bore in the subsea tree and another for connecting to the production flowline, the module, when installed, defining a fluid flow passageway which connects the production bore and the production flowline, and a choke and a valve to control fluid flow through the fluid flow passageway.
  • 27. The flow processing module of claim 26 further including an intervention access passageway and an intervention package connection positioned at an upper end of the flow processing module operable for connection to an intervention package.
Priority Claims (1)
Number Date Country Kind
0625526.9 Dec 2006 GB national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/591,443 filed Aug. 22, 2012, which is a divisional of U.S. application Ser. No. 12/515,729 (now U.S. Pat. No. 8,297,360) filed May 20, 2009, which is a 35 U.S.C. §371 national stage application of PCT/US2007/084884 filed Nov. 15, 2007, which claims the benefit of Great Britain Patent Application No. 0625526.9 filed Dec. 18, 2006, each of which is hereby incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (266)
Number Name Date Kind
1758376 Sawyer May 1930 A
1944573 Williams et al. Jan 1934 A
1944840 Humason Jan 1934 A
1994840 Thoen Mar 1935 A
2132199 Yancey Oct 1938 A
2233077 Gillespie et al. Feb 1941 A
2276883 Schon et al. Mar 1942 A
2412765 Buddrus et al. Dec 1946 A
2415992 Clair Feb 1947 A
2790500 Jones Apr 1957 A
2893435 Eichenberg Jul 1959 A
2962356 Johns Nov 1960 A
3101118 Culver et al. Aug 1963 A
3163224 Haeber et al. Dec 1964 A
3358753 Haeber Dec 1967 A
3378066 Otteman et al. Apr 1968 A
3593808 Nelson Jul 1971 A
3595311 Harbonn et al. Jul 1971 A
3603409 Watkins Sep 1971 A
3608631 Sizer et al. Sep 1971 A
3688840 Curington et al. Sep 1972 A
3705626 Glenn, Jr. et al. Dec 1972 A
3710859 Hanes et al. Jan 1973 A
3753257 Arnold Aug 1973 A
3777812 Burkhardt et al. Dec 1973 A
3820558 Mueller Jun 1974 A
3834460 Brun et al. Sep 1974 A
3953982 Pennock May 1976 A
3957079 Whiteman May 1976 A
4042033 Holland et al. Aug 1977 A
4046191 Neath Sep 1977 A
4046192 Darnborough Sep 1977 A
4095649 Chateau et al. Jun 1978 A
4099583 Maus Jul 1978 A
4102401 Erbstoesser Jul 1978 A
4105068 Tam Aug 1978 A
4120362 Chateau et al. Oct 1978 A
4134456 Ball Jan 1979 A
4161367 Cuiper et al. Jul 1979 A
4190120 Regan Feb 1980 A
4210208 Shanks Jul 1980 A
4223728 Pegg Sep 1980 A
4260022 Van Bilderbeek Apr 1981 A
4274664 Thominet Jun 1981 A
4291772 Beynet Sep 1981 A
4294471 Van Bilderbeek Oct 1981 A
4347899 Weeter Sep 1982 A
4401164 Baugh Aug 1983 A
4403658 Watkins Sep 1983 A
4405016 Best Sep 1983 A
4444275 Beynet Apr 1984 A
4457489 Gilmore Jul 1984 A
4478287 Hynes et al. Oct 1984 A
4502534 Roche et al. Mar 1985 A
4503878 Taylor Mar 1985 A
4509599 Chenoweth et al. Apr 1985 A
4572298 Weston Feb 1986 A
4589493 Kelly et al. May 1986 A
4607701 Gunderson Aug 1986 A
4610570 Brockway Sep 1986 A
4626135 Roche Dec 1986 A
4629003 Baugh Dec 1986 A
4630681 Iwamoto Dec 1986 A
4646844 Roche et al. Mar 1987 A
4648629 Baugh Mar 1987 A
4695190 Best et al. Sep 1987 A
4702320 Gano et al. Oct 1987 A
4721163 Davis Jan 1988 A
4749046 Gano Jun 1988 A
4756368 Ikuta et al. Jul 1988 A
4813495 Leach Mar 1989 A
4820083 Hall Apr 1989 A
4830111 Jenkins et al. May 1989 A
4832124 Rayson May 1989 A
4848471 Bencze et al. Jul 1989 A
4848473 Lochte Jul 1989 A
4848475 Dean et al. Jul 1989 A
4874008 Lawson Oct 1989 A
4896725 Parker et al. Jan 1990 A
4899822 Daeschler et al. Feb 1990 A
4911240 Haney et al. Mar 1990 A
4919207 Ikuta et al. Apr 1990 A
4926898 Sampey May 1990 A
4972904 Godare Nov 1990 A
5010956 Bednar Apr 1991 A
5025865 Caldwell Jun 1991 A
5044672 Skeels Sep 1991 A
5069286 Roensch Dec 1991 A
5074519 Pettus Dec 1991 A
5085277 Hopper Feb 1992 A
5143158 Watkins Sep 1992 A
5163782 Paulo Nov 1992 A
5195589 Mota et al. Mar 1993 A
5201491 Domangue Apr 1993 A
5213162 Iato May 1993 A
5244045 Mota Sep 1993 A
5248166 Wilkins Sep 1993 A
5255745 Czyrek Oct 1993 A
5280766 Mohn Jan 1994 A
5295534 Porter Mar 1994 A
5299641 Paulo Apr 1994 A
5310006 Freitas et al. May 1994 A
5398761 Reynolds et al. Mar 1995 A
5456313 Hopper Oct 1995 A
5462361 Sato Oct 1995 A
5492436 Suksumake Feb 1996 A
5526882 Parks Jun 1996 A
5535826 Brown Jul 1996 A
5544707 Hopper Aug 1996 A
5649594 Flak et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5719481 Mo Feb 1998 A
5730551 Skeels Mar 1998 A
5807027 Ostergaar Sep 1998 A
5868204 Pritchett et al. Feb 1999 A
5884706 Edwards Mar 1999 A
5927405 Monjure Jul 1999 A
5944152 Lindsay Aug 1999 A
5967235 Scott Oct 1999 A
5971077 Lilley Oct 1999 A
5988282 Jennings et al. Nov 1999 A
5992526 Cunningham et al. Nov 1999 A
5992527 Garnham et al. Nov 1999 A
6039119 Hopper et al. Mar 2000 A
6050339 Milberger Apr 2000 A
6053252 Edwards Apr 2000 A
6076605 Lilley Jun 2000 A
6098715 Seixas Aug 2000 A
6109352 Edwards Aug 2000 A
6116784 Brotz Sep 2000 A
6123312 Dai Sep 2000 A
6138774 Bourgoyne, Jr. Oct 2000 A
6145596 Dallas Nov 2000 A
6182761 Bednar Feb 2001 B1
6186239 Monjure Feb 2001 B1
6209650 Ingebrigtsen et al. Apr 2001 B1
6227300 Cunningham May 2001 B1
6289992 Monjure Sep 2001 B1
6296453 Layman Oct 2001 B1
6321843 Baker Nov 2001 B2
6352114 Toalson et al. Mar 2002 B1
6357529 Kent et al. Mar 2002 B1
6367551 Fenton Apr 2002 B1
6388577 Carstensen May 2002 B1
6457529 Calder Oct 2002 B2
6457530 Lam Oct 2002 B1
6457540 Gardes Oct 2002 B2
6460621 Fenton et al. Oct 2002 B2
6481504 Gatherar Nov 2002 B1
6484807 Allen Nov 2002 B2
6494267 Allen Dec 2002 B2
6497286 Hopper Dec 2002 B1
6516861 Allen Feb 2003 B2
6554075 Fikes et al. Apr 2003 B2
6557629 Wong May 2003 B2
6612368 Kent Sep 2003 B2
6612369 Rocha et al. Sep 2003 B1
6637514 Donald Oct 2003 B1
6648070 Cove et al. Nov 2003 B2
6651745 Lush Nov 2003 B1
6655455 Bartlett et al. Dec 2003 B2
6675900 Baskett et al. Jan 2004 B2
6698520 Fenton et al. Mar 2004 B2
6719059 Dezen et al. Apr 2004 B2
6755254 DeBerry Jun 2004 B2
6760275 Carstensen Jul 2004 B2
6763890 Polsky et al. Jul 2004 B2
6763891 Humphrey et al. Jul 2004 B2
6805200 DeBerry Oct 2004 B2
6823941 Donald Nov 2004 B2
6832874 Appleford et al. Dec 2004 B2
6840323 Fenton Jan 2005 B2
6902005 Radi et al. Jun 2005 B2
6907932 Reimert Jun 2005 B2
6966383 Millberger Nov 2005 B2
6968902 Fenton Nov 2005 B2
6988553 DeBerry Jan 2006 B2
7032673 Dezen Apr 2006 B2
7040408 Sundararajan May 2006 B2
7069995 Chan Jul 2006 B2
7073592 Polsky et al. Jul 2006 B2
7111687 Donald Sep 2006 B2
7201229 White Apr 2007 B2
7210530 Lush May 2007 B2
7243729 Tyrrell et al. Jul 2007 B2
7270185 Fontana Sep 2007 B2
7331396 Reimert et al. Feb 2008 B2
7363982 Hopper Apr 2008 B2
7520989 Ostergaard Apr 2009 B2
7565931 Saucier Jul 2009 B2
7569097 Campen Aug 2009 B2
7596996 Zollo et al. Oct 2009 B2
7647974 Fenton Jan 2010 B2
7658228 Moksvold Feb 2010 B2
7699099 Bolding Apr 2010 B2
7718676 Moussey May 2010 B2
7740074 White Jun 2010 B2
7757772 Donohue Jul 2010 B2
7770653 Hill Aug 2010 B2
7823648 Bolding Nov 2010 B2
7828064 Robichaux et al. Nov 2010 B2
7909103 Fenton Mar 2011 B2
7992633 Donald et al. Aug 2011 B2
7992643 Donald et al. Aug 2011 B2
8011436 Christie et al. Sep 2011 B2
8066067 Donald et al. Nov 2011 B2
8066076 Donald et al. Nov 2011 B2
8091630 Donald et al. Jan 2012 B2
8118102 Robichaux et al. Feb 2012 B2
8122948 Donald et al. Feb 2012 B2
8167049 Donald et al. May 2012 B2
8220535 Donald et al. Jul 2012 B2
8245787 White Aug 2012 B2
8272435 Donald et al. Sep 2012 B2
8281864 Donald et al. Oct 2012 B2
8297360 Donald et al. Oct 2012 B2
8672038 Tan et al. Mar 2014 B2
8776891 Donald et al. Jul 2014 B2
8776893 Donald et al. Jul 2014 B2
20010011593 Wilkins Aug 2001 A1
20010050185 Calder et al. Dec 2001 A1
20020000315 Kent et al. Jan 2002 A1
20020070026 Fenton et al. Jun 2002 A1
20020074123 Regan Jun 2002 A1
20030010498 Tolman et al. Jan 2003 A1
20030019632 Humphrey et al. Jan 2003 A1
20030145997 Langford et al. Aug 2003 A1
20030146000 Dezen et al. Aug 2003 A1
20040026084 Donald Feb 2004 A1
20040057299 Kozakai et al. Mar 2004 A1
20040154790 Cornelssen et al. Aug 2004 A1
20040154800 Jack et al. Aug 2004 A1
20040200620 Ostergaard Oct 2004 A1
20040206507 Bunney Oct 2004 A1
20040251030 Appleford et al. Dec 2004 A1
20050028984 Donald et al. Feb 2005 A1
20050058535 Meshenky et al. Mar 2005 A1
20050109514 White et al. May 2005 A1
20050121198 Andrews Jun 2005 A1
20050173322 Ostergaard Aug 2005 A1
20050263194 Tseng et al. Dec 2005 A1
20060237194 Donald et al. Oct 2006 A1
20070144743 White et al. Jun 2007 A1
20080047714 McMiles Feb 2008 A1
20080128139 White Jun 2008 A1
20080169097 Bolding et al. Jul 2008 A1
20080277122 Tinnen Nov 2008 A1
20080302535 Barnes Dec 2008 A1
20090025936 Donald et al. Jan 2009 A1
20090126938 White May 2009 A1
20090260831 Moksvold Oct 2009 A1
20090266542 Donald et al. Oct 2009 A1
20090266550 Fenton Oct 2009 A1
20090294125 Donald et al. Dec 2009 A1
20090294132 Donald et al. Dec 2009 A1
20090301727 Donald et al. Dec 2009 A1
20090301728 Donald et al. Dec 2009 A1
20100018693 Duncan et al. Jan 2010 A1
20100025034 Donald et al. Feb 2010 A1
20100044038 Donald et al. Feb 2010 A1
20100206546 Donald et al. Aug 2010 A1
20100206547 Donald et al. Aug 2010 A1
20100206576 Donald et al. Aug 2010 A1
20100300700 Garbett et al. Dec 2010 A1
20110192609 Tan et al. Aug 2011 A1
20120273214 Donald et al. Nov 2012 A1
Foreign Referenced Citations (48)
Number Date Country
498216 Apr 1999 AU
10415841 Mar 2007 BR
2428165 May 2002 CA
638019 Aug 1983 CH
2541715 Apr 1976 DE
3738424 May 1989 DE
0036213 Sep 1981 EP
0568742 Nov 1993 EP
0572732 Dec 1993 EP
0719905 Mar 1996 EP
0952300 Mar 1998 EP
0841464 May 1998 EP
1990505 Sep 2002 EP
1639230 Jan 2009 EP
1918509 Oct 2009 EP
2710946 Apr 1995 FR
242913 Nov 1925 GB
1022352 Mar 1966 GB
2197675 May 1998 GB
2319795 Jun 1998 GB
2346630 Aug 2000 GB
2347183 Aug 2000 GB
2361726 Oct 2001 GB
0312543.2 May 2003 GB
0405454.0 Mar 2004 GB
0405471.4 Mar 2004 GB
2445493 Jul 2008 GB
20061778 May 2006 NO
9008897 Aug 1990 WO
9630625 Oct 1996 WO
9815712 Apr 1998 WO
9906731 Feb 1999 WO
9928593 Jun 1999 WO
9949173 Sep 1999 WO
0047864 Aug 2000 WO
0053937 Sep 2000 WO
0070185 Nov 2000 WO
0238912 May 2002 WO
02088519 Nov 2002 WO
03033868 Apr 2003 WO
03078793 Sep 2003 WO
2005040545 May 2005 WO
2005047646 May 2005 WO
2005083228 Sep 2005 WO
2006041811 Apr 2006 WO
2007075860 Jul 2007 WO
2007079137 Jul 2007 WO
2008034024 Mar 2008 WO
Non-Patent Literature Citations (289)
Entry
European Decision to Grant dated Sep. 5, 2013; European Application No. 10167183.2 (2 p.).
European Office Action dated Sep. 6, 2013; European Application No. 10167182.4 (1 p.).
U.S. Response to Final Office Action Dated Sep. 12, 2013; U.S. Appl. No. 13/415,635; Response Filed Nov. 12, 2013 (14 p.).
European Office Action dated Sep. 10, 2013; European Application No. 10013192.9 (1 p.).
U.S. Response to Final Office Action Dated Sep. 16, 2013; U.S. Appl. No. 13/267,039; Response Filed Nov. 18, 2013 (11 p.).
U.S. Response to Office Action Dated Jul. 19, 2013; U.S. Appl. No. 13/687,290; Response Filed Nov. 19, 2013 (17 p.).
U.S. Response to Final Office Action Dated Sep. 12, 2013 and Advisory Action Dated Nov. 25, 2013; U.S. Appl. No. 13/415,635; Response Filed Dec. 13, 2013 (12 p.).
U.S. Response to Final Office Action Dated Sep. 16, 2013 and Advisory Action Dated Dec. 11, 2013; U.S. Appl. No. 13/267,039; Response Filed Dec. 16, 2013 (8 p.).
U.S. Response to Final Office Action Dated Sep. 27, 2013; U.S. Appl. No. 13/591,443; Response Dated Dec. 27, 2013 (12 p.).
U.S. Notice of Allowance Dated Jan. 14, 2014; U.S. Appl. No. 13/687,290 (8 p.).
U.S. Advisory Action Dated Jan. 24, 2014; U.S. Appl. No. 13/591,443 (3 p.).
U.S. Notice of Allowance Dated Jan. 27, 2014; U.S. Appl. No. 13/267,039 (5 p.).
U.S. Notice of Allowance Dated Jan. 31, 2014; U.S. Appl. No. 13/415,635 (38 p.).
U.S. Notice of Allowance Dated Mar. 12, 2014; U.S. Appl. No. 13/591,443 (29 p.).
European Response to Office Action Filed Mar. 13, 2014; European Application No. 10161116.8 (17 p.).
European Response to Office Action Filed Mar. 13, 2014; European Application No. 101671824 (10 p.).
European Response to Office Action Filed Mar. 13, 2014; European Application No. 10013192.9 (13 p.).
Australian Examination Report dated Jul. 3, 2014; Australian Application No. 2012238329 (6 p.).
U.S. Office Action dated Oct. 16, 2014; U.S. Appl. No. 14/282,937 (11 p.).
SG Examination Report dated Jul. 28, 2010; Singapore Application No. SG 200901449-9 (4 p.).
Notice of Litigation for U.S. Appl. No. 10/558,593 (77 p.).
Observations dated May 10, 2011; GB Application No. 0821072.6 (19 p.).
Statement Accompanying Information Disclosure Statement; U.S. Appl. No. 13/536,433, filed Dec. 28, 2012 (3 p.).
Canadian Office Action dated Dec. 22, 2014; Canadian Application No. 2,826,503 (5 p.).
Norwegian Office Action dated Mar. 15, 2015; Norwegian Application No. 20063911 (4 p.).
Singapore Search Report and Written Opinion dated May 28, 2015; Singapore Application No. 2013024286 (17 pp.).
European Decision to Grant dated Mar. 15, 2012; European Application No. 01980737.9 (1 p.).
European Response to Office Action Dated Nov. 14, 2011; European Application No. 05781685.2; Response filed May 22, 2012 (3 p.).
U.S. Corrected Notice of Allowability dated Jun. 8, 2012; U.S. Appl. No. 12/768,324 (10 p.).
Australian Response to Office Action; Australian Application No. 2011200165I Response Filed Jun. 20, 2012 (124 p.).
European Office Action dated Feb. 7, 2012; European Application No. 07864482.0 (8 p.).
U.S. Office Action dated Jul. 20, 2012; U.S. Appl. No. 13/164,291 (71 p.).
European Response to Office Action Dated Feb. 7, 2012; Application No. 07864482.0; Response Filed Aug. 9, 2012 (10 p.).
European Search Report and Opinion Dated Aug. 6, 2012; Application No. 12003132.3 (7 p.).
Canadian Office Action Dated Aug. 8, 2012; Canadian Application No. 2,526,714 (2 p.).
U.S. Office Action dated Sep. 4, 2012; U.S. Appl. No. 13/415,635 (5 p.).
U.S. Office Action dated Oct. 3, 2012; U.S. Appl. No. 13/536,433 (9 p.).
U.S. Office Action dated Oct. 12, 2012; U.S. Appl. No. 13/205,284 (9 p.).
U.S. Office Action dated Nov. 6, 2012; U.S. Appl. No. 13/405,997 (12 p.).
U.S. Response to Office Action Dated Jul. 20, 2012; U.S. Appl. No. 13/167,291; Response Filed Nov. 15, 2012 (13 p.).
U.S. Response to Office Action Dated Sep. 4, 2012; U.S. Appl. No. 13/415,635; Response Filed Dec. 4, 2012 (7 p.).
Lafitte, J.L., et al., “Dalia Subsea Production System: Presentation and Challenges,” (OTC 18541) 2007 Offshore Technology Conference, Houston, Texas Apr. 30-May 3, 2007 (10 p.).
Dalia Brochure, Total S.A., Feb. 2007, France (98 p.).
U.S. Final Office Action dated Dec. 24, 2012; U.S. Appl. No. 13/164,291 (6p.).
U.S. Response to Office Action Dated Oct. 12, 2012; U.S. Appl. No. 13/205,284; Response Filed Jan. 14, 2013 (8 p.).
U.S. Response to Office Action Dated Nov. 6, 2012; U.S. Appl. No. 13/405,997; Response Filed Feb. 5, 2013 (13 p.).
U.S. Response to Final Office Action Dated Dec. 24, 2012; U.S. Appl. No. 13/164,291; Response Filed Feb. 25, 2013 (7 p.).
U.S. Final Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/205,284 (11 p.).
U.S. Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/415,635 (18 p.).
U.S. Final Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/536,433 (15 p.).
Notice of Allowance Dated Mar. 7, 2013; U.S. Appl. No. 13/164,291 (9 p.).
U.S. Office Action Dated Mar. 18, 2013; U.S. Appl. No. 13/591,443 (10 p.).
U.S. Final Office Action Dated Apr. 8, 2013; U.S. Appl. No. 13/405,997 (15 p.).
U.S. Response to Final Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/205,284; Response Dated May 6, 2013 (11 p.).
U.S. Response to Final Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/536,433; Response Dated May 6, 2013 (26 p.).
U.S. Response to Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/415,635; Response Dated Jun. 6, 2013 (14p.).
U.S. Response to Final Office Action Dated Mar. 6, 2013; U.S. Appl. No. 13/536,433; Response Dated Jun. 6, 2013 (11 p.).
U.S. Response to Final Office Action Dated Apr. 8, 2013; U.S. Appl. No. 13/405,997; Response Filed Jun. 12, 2013 (18 p.).
U.S. Response to Office Action Dated Mar. 18, 2013; U.S. Appl. No. 13/591,443; Response Filed Jun. 18, 2013 (10 p.).
Canadian Notice of Allowance dated May 30, 2013; Canadian Application No. 2,526,714 (1 p.).
U.S. Notice of Allowance dated Jun. 20, 2013; U.S. Appl. No. 13/536,433 (1600-19443) (11 p.).
U.S. Office Action Dated Jul. 17, 2013; U.S. Appl. No. 13/687,290 (6 p.).
European Response to Office Action dated Sep. 10, 2012; Response Dated Jun. 14, 2013; European Application No. 12003132.3 (13 p.).
European Decision to Grant dated Jul. 15, 2013; European Application No. 10161117.6 (5 p.).
European Decision to Grant dated Jul. 15, 2013; European Application No. 101611200 (5 p.).
U.S. Supplemental Notice of Allowability dated Aug. 27, 2013; U.S. Appl. No. 13/536,433 (6 p.).
U.S. Notice of Allowance dated Sep. 5, 2013; U.S. Appl. No. 13/205,284 (10 p.).
European Office Action dated Aug. 21, 2013; European Application No. 07864486.1 (5 p.).
Norwegian Office Action dated Aug. 5, 2013; Norwegian Application No. 20110509 (3 p.).
U.S. Final Office Action dated Sep. 12, 2013; U.S. Appl. No. 13/415,635 (17 p.).
U.S. Final Office Action dated Sep. 16, 2013; U.S. Appl. No. 13/267,039 (11 p.).
U.S. Final Office Action dated Sep. 27, 2013; U.S. Appl. No. 13/591,443 (7 p.).
European Decision to Grant dated Sep. 26, 2013; European Application No. 10167181.6 (2 p.).
U.S. Supplemental Notice of Allowability dated Oct. 8, 2013; U.S. Appl. No. 13/205,284 (6 p.).
U.S. Supplemental Notice of Allowability dated Oct. 11, 2013; U.S. Appl. No. 13/405,997 (6 p.).
European Decision to Grant dated Sep. 19, 2013; European Application No. 10185612.8 (2 p.).
Provisional Application filed Feb. 26, 2004; U.S. Appl. No. 60/548,727 (36 p.).
U.S. Office Action dated Mar. 25, 2004; U.S. Appl. No. 10/415,156 (6 p.).
Response to Office Action dated Mar. 25, 2004; U.S. Appl. No. 10/415,156 (9 p.).
Notice of Allowance dated Jul. 26, 2004; U.S. Appl. No. 10/415,156 (4 p.).
U.S. Office Action dated Dec. 20, 2005; U.S. Appl. No. 10/651,703 (8 p.).
Response to Office Action dated Dec. 20, 2005; U.S. Appl. No. 10/651,703 (13 p.).
Notice of Allowance dated Apr. 26, 2006; U.S. Appl. No. 10/651,703 (7 p.).
Response to Notice of Allowance dated Apr. 26, 2006; U.S. Appl. No. 10/51,703 (7 p.).
Provisional Application filed Nov. 19, 2007; U.S. Appl. No. 61/190,048 (24 p.).
U.S. Office Action (Restriction Requirement) dated Feb. 11, 2008; U.S. Appl. No. 10/558,593 (7 p.).
Response to Office Action (Restriction Requirement) dated Feb. 11, 2008; U.S. Appl. No. 10/558,593 (12 p.).
U.S. Office Action (Restriction Requirement) dated Jul. 10, 2008; U.S. Appl. No. 10/558,593 (6 p.).
Response to Office Action (Restriction Requirement) dated Jul. 10, 2008; U.S. Appl. No. 10/558,593 (12 p.).
U.S. Office Action dated Jan. 8, 2009; U.S. Appl. No. 10/558,593 (8 p.).
Response to Office Action dated Jan. 8, 2009; U.S. Appl. No. 10/558,593 (31 p.).
Final Office Action dated Jul. 7, 2009; U.S. Appl. No. 10/558,593 (6 p.).
Response to Final Office Action dated Jul. 7, 2009; U.S. Appl. No. 10/558,593 (26 p.).
Office Action (Restriction Requirement) dated Jan. 7, 2010; U.S. Appl. No. 12/541,934 (5 p.).
Response to Office Action dated Jan. 7, 2010; U.S. Appl. No. 12/541,934 (6 p.).
U.S. Office Action dated Jul. 21, 2010; U.S. Appl. No. 10/558,593 (10 p.).
Response to Office Action dated Jul. 21, 2010; U.S. Appl. No. 10/558,593 (9 p.).
Office Action dated Aug. 12, 2010; U.S. Appl. No. 12/441,119 (14 p.).
Response to Office Action dated Aug. 12, 2010; U.S. Appl. No. 12/441,119; Response filed Nov. 8, 2010 (12 p.).
U.S. Office Action dated Aug. 31, 2010; U.S. Appl. No. 10/590,563 (13 p.).
Response to Office Action dated Aug. 31, 2010; U.S. Appl. No. 10/590,563; Response filed Nov. 29, 2010 (8 p.).
U.S. Office Action dated Oct. 6, 2010; U.S. Appl. No. 12/541,938 (7 p.).
Response to Office Action dated Oct. 6, 2010; U.S. Appl. No. 12/541,938; Response filed Jan. 11, 2011 (8 p.).
Office Action dated Dec. 7, 2010; U.S. Appl. No. 12/541,936 (12 p.).
Response to Office Action dated Dec. 7, 2010; U.S. Appl. No. 12/541,936; Response filed Jan. 20, 2011 (9 p.).
Notice of Allowance dated Jan. 6, 2011; U.S. Appl. No. 10/558,593 (26 p.).
Final Office Action dated Feb. 3, 2011; U.S. Appl. No. 12/441,119 (12 p.).
Office Action dated Feb. 16, 2011; U.S. Appl. No. 12/541,937 (7 p.).
Final Office Action dated Mar. 2, 2011; U.S. Appl. No. 10/590,563 (7 p.).
Response to Final Office Action dated Mar. 2, 2011; U.S. Appl No. 10/590,563; Response filed Apr. 26, 2011 (8 p.).
Norwegian Office Action dated Mar. 28, 2011; Application No. 20015431 (3 p.).
Response to Final Office Action dated Feb. 3, 2011; U.S. Appl. No. 12/441,119; Response filed Mar. 30, 2011 (11 p.).
Final Office Action dated Mar. 30, 2011; U.S. Appl. No. 12/541,938 (5 p.).
Response to Final Office Action dated Mar. 30, 2011; U.S. Appl. No. 12/541,938; Response filed Apr. 18, 2011 (10 p.).
Notice of Allowance dated Apr. 1, 2011; U.S. Appl. No. 12/541,936 (5 p.).
Notice of Allowance dated Apr. 4, 2011; U.S. Appl. No. 10/558,593 (5 p.).
U.S. Office Action dated Apr. 13, 2011; U.S. Appl. No. 12/441,119 (10 p.).
Office Action Dated Apr. 14, 2011; U.S. Appl. No. 12/768,324 (7 p.).
Office Action Dated Apr. 28, 2011; U.S. Appl. No. 12/768,332 (6 p.).
Notice of Allowance Dated May 6, 2011; U.S. Appl. No. 12/541,938 (5 p.).
U.S. Office Action/Advisory Action dated May 6, 2011; U.S. Appl. No. 10/590,563 (3p.).
U.S. Office Action dated May 25, 2011; U.S. Appl. No. 12/515,534 (7p.).
Supplemental Notice of Allowance dated Jun. 8, 2011; U.S. Appl. No. 12/541,936 (2p.).
Notice of Allowance dated Jun. 28, 2011; U.S. Appl. No. 10/590,563 (14p.).
Response to Office Action dated Dec. 6, 2010; Canadian Application No. 2,526,714; Response filed Jun. 6, 2011 (16p.).
Response to Search Opinion; European Application No. 10185612.8; Response filed Jun. 29, 2011 (13p.).
Examination Report dated Jun. 30, 2011; European Application No. 10161116.8 (2p.).
Examination Report dated Jun. 30, 2011; European Application No. 10161117.6 (2p.).
Examination Report dated Jun. 30, 2011; European Application No. 10161120.0 (2p.).
Examination Report dated Jun. 30, 2011; European Application No. 10167181.6 (2p.).
Examination Report dated Jun. 30, 2011; European Application No. 10167182.4 (2p.).
Examination Report dated Jun. 30, 2011; European Application No. 10167183.2 (2p.).
Examination Report dated Jun. 30, 2011; European Application No. 10167184.0 (2p.).
Supplemental Notice of Allowance dated Jul. 7, 2011; U.S. Appl. No. 10/558,593 (7p.).
Response to Office Action dated Apr. 14, 2011; U.S. Appl. No. 12/768,324; Response filed Jul. 14, 2011 (7p.).
Response to Office Action dated Apr. 28, 2011; U.S. Appl. No. 12/768,332 (7 p.).
Notice of Allowance dated Jul. 22, 2011; U.S. Appl. No. 12/441,119 (15 p.).
European Search Report dated Dec. 2, 2010; European Application No. 10185612.8 (4 p.).
Norwegian Response to Office Action dated Jun. 22, 2011; Application No. 20015431 (19p.).
European Response to Search Opinion; Application No. 10185795.1; Response filed Aug. 31, 2011 (12 p.).
U.S. Office Action dated Jul. 21, 2011; U.S. Appl. No. 12/515,729 (53 p.).
Supplemental Notice of Allowance dated Aug. 8, 2011; U.S. Appl. No. 12/441,119 (9 p.).
Summons to Oral Proceedings dated Aug. 3, 2011; European Application No. 01980737.9 (3 p.).
European Response to Search Opinion; European Application No. 10013192.9; Response filed Aug. 10, 2011 (10 p.).
Notice of Allowability dated Aug. 26, 2011; U.S. Appl. No. 10/590,563 (11 p.).
European Office Action dated Aug. 22, 2011; Application No. 10185612.8 (2 p.).
U.S. Final Office Action dated Sep. 7, 2011; U.S. Appl. No. 12/541,937 (13 p.).
European Response to Oral Summons dated Sep. 22, 2011; EP Application No. 01980737.9 (42 p.).
Supplemental Notice of Allowance dated Oct. 11, 2011; U.S. Appl. No. 12/441,119 (8 p.).
Office Action dated Oct. 17, 2011; U.S. Appl. No. 12/768,337 (64 p.).
Notice of Allowance dated Oct. 17, 2011; U.S. Appl. No. 12/768,332 (56 p.).
Office Action dated Oct. 17, 2011; U.S. Appl. No. 12/768,324 (18 p.).
Canadian Office Action dated Oct. 14, 2011; Canadian Application No. 2,526,714 (3 p.).
Notice of Allowance dated Oct. 24, 2011; U.S. Appl. No. 12/515,534 (7 p.).
Corrected Notice of Allowance dated Oct. 26, 2011; U.S. Appl. No. 12/541,938 (8 p.).
European Exam Report dated Nov. 14, 2011; European Application No. 05781685.2 (3 p.).
European Decision to Grant dated Nov. 4, 2011; European Application No. 01980737.9 (4 p.).
Supplemental Notice of Allowability dated Dec. 6, 2011; U.S. Appl. No. 12/768,332 (10 p.).
Notice of Allowance dated Dec. 16, 2011; U.S. Appl. No. 13/116,889 (7 p.).
Response to Office Action dated Aug. 22, 2011; Response dated Dec. 22, 2011; European Application No. 10185612.8 (2 p.).
Office Action dated Dec. 22, 2011; U.S. Appl. No. 12/515,729 (31 p.).
Notice of Allowance dated Dec. 23, 2011; U.S. Appl. No. 12/768,337 (5 p.).
Examination Report dated Dec. 20, 2011; GB Application No. 0821072.6 (2 p.).
European Response to Exam Report; European Application No. 10167184.0; Response filed Jan. 4, 2012 (142 p.).
Supplemental Notice of Allowability dated Jan. 9, 2012; U.S. Appl. No. 13/116,889 (10 p.).
European Response to Office Action; European Application No. 10185795.1; Response filed Jan. 23, 2012 (2 p.).
European Response to Office Action; European Application No. 10013192.9; Response filed Jan. 23, 2012 (2 p.).
Supplemental Notice of Allowance; U.S. Appl. No. 12/768,337 (10 p.).
Notice of Allowance dated Feb. 22, 2012; No Application No. 20015431 (2 p.).
Response to Office Action dated Oct. 17, 2011 U.S. Appl. No. 12/768,324 (5 p.).
Canadian Notice of Allowance dated Feb. 23, 2012; Canadian Application No. 2,555,403 (1 p.).
U.S. Notice of Allowance dated Mar. 29, 2012; U.S. Appl. No. 12/768,324 (18p.).
U.S. Response to Office Action Dated Dec. 22, 2011; Response filed Mar. 22, 2012; U.S. Appl. No. 12/515,729 (14p.).
U.S. Corrected Notice of Allowability dated Mar. 29, 2012; U.S. Appl. No. 13/116,889 (11p.).
Canadian Response to Office Action dated Oct. 7, 2011; Response filed Mar. 22, 2012; Canadian Application No. 2,526,714 (18 p.).
European International Search Report dated Mar. 4, 2002; PCT/GB01/04940 (3 p.).
European Official Communication dated Mar. 5, 2003; Application No. 00929690.6 (2 p.).
European Response to Official Communication; Application No. 00929690.6; Response filed Jun. 27, 2003 (5 p.).
European Official Communication dated Aug. 29, 2003; Application No. 00929690.6 (3 p.).
European Examination Report dated Apr. 28, 2004; Application No. 00929690.6 (3 p.).
European Response to Examination Report; Application No. 00929690.6; Response filed Aug. 30, 2004 (20 p.).
European Communication dated Sep. 19, 2006; Application No. 01980737.9 (1 p.).
European Response to EPO Communication; Application No. 01980737.9; Response filed Oct. 6, 2006 (5 p.).
European Article 96(2) Communication dated Feb. 5, 2007; Application No. 04735596.1 (6 p.).
European Response to Examination Report; Application No. 047355961; Response filed Aug. 14, 2007 (15 p.).
European Search Report dated Apr. 16, 2007; Application No. 06024001.7 (2 p.).
European Article 96(2) Communication dated Jun. 12, 2007; Application No. 05717806.3 (3 p.).
European Response to Article 96(2) Communication dated Jun. 12, 2007; Application No. 05717806.3; Response filed Sep. 19, 2007 (17 p.).
European Examination Report dated Jun. 15, 2007; Application No. 01980737.9 (5 p.).
Response to European Examination Report dated Jun. 15, 2007; Application No. 01980737.9; Response filed Oct. 9, 2007 (12 p.).
European Examination Report dated Nov. 22, 2007; Application No. 04735596.1 (3 p.).
European Response to Examination Report dated Nov. 22, 2007; Application No. 04735596.1; Response filed Feb. 19, 2008 (101 p.).
European Examination Report dated Dec. 13, 2007; Application No. 06024001.7 (1 p.).
Response to European Examination Report dated Dec. 13, 2007; Application No. 06024001.7; Response filed Mar. 10, 2008 (6 p.).
European Search Report dated Mar. 28, 2008; Application No. 08000994.7 (4 p.).
European Response to Written Opinion dated Aug. 8, 2008; Application No. 08000994.7 (10 p.).
European Examination Report dated Oct. 30, 2008; Application No. 08000994.7 (2 p.).
European Response to Examination Report dated Oct. 30, 2008 w/amended specification; Application No. 08000994.7; Response filed Dec. 11, 2008 (94 p.).
European Examination Report dated May 18, 2009; Application No. 08162149.2 (8 p.).
European Response to Examination Report dated May 18, 2009; Application No. 08162149.2; Response filed Nov. 18, 2009 (132 p.).
Response to Article 94(3) and Rule 71(1) dated May 18, 2009; Application No. 08162149.2 (3 p.).
European Examination Report dated May 4, 2010; Application No. 07864486.1 (3 p.).
European Response to Examination Report dated May 4, 2010; Application No. 07864486.1; Response filed Nov. 12, 2010 (10 p.).
European Examination Report dated May 4, 2010; Application No. 07864482.0 (3 p.).
European Search Report dated Jun. 25, 2010; Application No. 10161116 (2 p.).
European Search Report dated Jun. 25, 2010; Application No. 10161117 (2 p.).
European Search Report dated Jun. 25, 2010; Application No. 10161120 (2 p.).
European Search Report dated Aug. 2, 2010; Application No. 10161117.6 (1 p.).
European Response to Examination Report dated Aug. 2, 2010; Application No. 10161117.6; Response filed Dec. 2, 2010 (6 p.).
European Examination Report dated Aug. 2, 2010; Application No. 10161116.8 (1 p.).
European Response to Examination Report dated Aug. 2, 2010; Application No. 10161116..8; Response filed Dec. 2, 2010 (13 p.).
European Examination Report dated Aug. 4, 2010; Application No. 10161120.0 (1 p.).
European Response to Examination Report dated Aug. 4, 2010; Application No. 10161120.0; Response filed Dec. 2, 2010 (6 p.).
European Examination Report dated Oct. 14, 2010; Application No. 10167181.6 (3 p.).
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167181.6; Response filed Feb. 9, 2011 (6 p.).
European Examination Report dated Oct. 14, 2010; Application No. 10167183.2 (3 p.).
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167183.2; Response filed Feb. 14, 2011 (4 p.).
European Examination Report dated Oct. 14, 2010; Application No. 10167182.4 (3 p.).
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167182.4; Response filed Feb. 10, 2011 (6 p.).
European Examination Report dated Oct. 14, 2010; Application No. 10167184.0 (3 p.).
Response to European Examination Report dated Oct. 14, 2010; Application No. 10167184.0; Response filed Feb. 10, 2011 (8 p.).
European Examination Report dated Nov. 10, 2010; Application No. 07842464.5 (3 p.).
Response to European Examination Report dated Nov. 10, 2010; Application No. 07842464.5; Response filed Mar. 18, 2011 (11 p.).
European Search Report and Opinion dated Dec. 3, 2010; Application No. 10185795.1 (4 p.).
European Search Report dated Dec. 9, 2010; Application No. 10013192 (3 p.).
Australian Examination Report dated Jul. 3, 2003; Application No. 47694/00 (2 p.).
Australian Response to Examination Report; Application No. 47694/00; Response filed Jul. 5, 2004 (20 p.).
Australian Examination Report dated Jul. 21, 2006; Application No. 2002212525 (2 p.).
Australian Response to Examination Report; Application No. 2002212525; Response filed Jun. 22, 2007 (33 p.).
Australian Examiner's Report dated Sep. 14, 2010; Application No. 2004289864 (2 p.).
Australian Response to Examiner's Report; Application No. 2004289864; Response filed Dec. 7, 2010 (23 p.).
Australian Examiner's Report No. 3 dated Dec. 13, 2010; Application No. 2004289864 (1 p.).
Brazilian Examination Report dated Apr. 3, 2008; Application No. PI0115157-6 (3 p.).
Response to Brazilian Examination Report; Application No. PI0115157-6; Response filed Jul. 21, 2008 (7 p.).
Canadian Office Action dated Jan. 10, 2007; Application No. 2,373,164 (2 p.).
Response to Canadian Office Action; Application No. 2,373,164; Response filed Jul. 10, 2007 (16 p.).
Canadian Office Action dated Oct. 12, 2007; Application No. 2,428,165 (2 p.).
Response to Canadian Office Action; Application No. 2,428,165; Response filed Jan. 3, 2008 (16 p.).
Canadian Office Action dated Dec. 6, 2010; Application No. 2,526,714 (3 p.).
EP Preliminary Examination Report & Written Opinion dated Sep. 4, 2001; PCT/GB00/01785 (17 p.).
European Office Action Pursuant to Article 94(3) dated Dec. 29, 2010; Application No. 06024001.7 (4 p.).
Norwegian Examination Report dated Aug. 19, 2005; Application No. 20015431 (6 p.).
Response to Norwegian Examination Report dated Aug. 19, 2005; Application No. 20015431 (19 p.).
Norwegian Examination Report dated Mar. 22, 2010; Application No. 20032037 (8 p.).
Norwegian Office Action dated Oct. 20, 2010; Application No. 20032037 (4 p.).
International Search Report dated Mar. 4, 2002; PCT/GB01/04940 (3 p.).
International Search Report and Written Opinion dated Sep. 22, 2004; PCT/GB2004/002329 (13 p.).
International Search Report and Written Opinion dated Jun. 7, 2005; PCT/GB2005/000725 (8 p.).
International Search Report and Written Opinion dated Jan. 27, 2006; PCT/GB2005/003422 (8 p.).
International Search Report and Written Opinion dated Apr. 16, 2007; PCT/GB2004/002329 (10 p.).
International Search Report and Written Opinion dated Jun. 13, 2008; PCT/US2007/084884 (8 p.).
International Search Report and Written Opinion dated Jun. 13, 2008; PCT/US2007/084879 (9 p.).
International Search Report and Written Opinion dated Aug. 12, 2008; PCT/US2007/078346 (9 p.).
www.subsea7.com; “Multiple Application Re-Injection System” (undated) (2 p.).
Baker Hughes; “Intelligent Well System;Complete Range of Intelligent Well Systems,” (undated) (4 p.).
Patent Search Report INPADOC Patent Family (3 p.) (undated).
Venture Training Manual Part 1 (undated) (48 p.).
Venture Training Manual Part 2 (undated) (25 p.).
ABB Retrievable Choke Insert pp. 3, 8 (undated) (2 p.).
Kvaerner Pump Photo “G” (undated) (1 p.).
Aker Kvaerner; Multibooster System “H” (undated) (4 p.).
Progressing Cavity and Piston Pumps; National Oilwell “K” (undated) (2 p.).
Weatherford Artificial Lift Systems “M” (2 p.).
“Under Water Pump for Sea Bed Well” by A. Nordgren, “I” Dec. 14, 1987 (2 p.).
Petroleum Abstracts Oct. 25, 2001 (48 p.).
Petroleum Abstracts Oct. 30, 2001 (79 p.).
Derwent Abstracts Nov. 2, 2001 (16 p.).
www.subsea7.com “New Technology to Increase Oil Production Introduce to Subsea Market,” Jun. 13, 2002 (2 p.).
ABB Brochure entitled “Subsea Chokes and Actuators” dated Oct. 2002 (12 p.).
Kvaerner Oilfield Products A.S. Memo-Multiphase Pumping Technical Issues, dated May 19, 2004 “D” (10 p.).
Offshore Article “Multiphase Pump,” Jul. 2004 “C” (1 p.).
Jetech DA-4D & DA-8D Ultra-High Pressure Increases “L” (3 p.).
Force Pump, Double-Acting, Internet, Glossary “J” dated Sep. 7, 2004 (2 p.).
Online Publication: Weatherford Ram Pump dated Aug. 10, 2005 “B” (2 p.).
Framo Multiphase Booster Pumps dated Aug. 10, 2005 “F” (1 p.).
A750/09, In the Court of Session, Intellectual Property Action, Closed Record, In the Cause DES Operations et al. vs. Vetco Gray, Inc., et al., Updated record to include adjusted Answers to Minute of Amendment Oct. 21, 2010 (90p.).
A750/09, In the Court of Session, Intellectual Property Action, Note of Arguments for the First to Fifth Defenders Dec. 30, 2010 (18 p.).
A750/09, In the Court of Session, Intellectual Property Cause; Response to the Pursuers to the Note of Argument for the Defenders Mar. 3, 2011 (12 p.).
A750/09, In the Court of Session, Intellectual Property Action, Open Record, D.E.S. Operations Limited, Cameron Systems Ireland Limited (Pursuers) against Vetco Gray, Inc., Paul White, Paul Milne, and Norma Brammer (Defenders) Adjusted for the Pursuers Feb. 9, 2010 as further adjusted for the Pursuers Apr. 6, 2010 (53pp).
Initiation of Proceedings Before the Comptroller, Oct. 22, 2009; In the Matter of DES Operations Limited and Cameron Systems Ireland Limited and Vetco Gray Inc., and in the Matter of an Application Under Sections 133, 91A, 121A, and 371 of the Patent Act 1977, Statement of Grounds, Oct. 22, 2009 (21pp).
Singapore Examination Report dated Jan. 10, 2007; Application No. 200507390-3 (5 p.).
Singapore Written Opinion dated May 3, 2010; Application No. 200903220-2 (5 p.).
Singapore Written Opinion dated Dec. 12, 2010; Application No. 200903221-0 (11 p.).
Response to Singapore Written Opinion Dated Oct. 12, 2010; Application No. 200903221-0; Response filed Mar. 8, 2011 (11 p.).
U.S. Office Action dated Feb. 26, 2003; U.S. Appl. No. 10/009,991 (5 p.).
Response to Office Action dated Feb. 26, 2003; U.S. Appl. No. 10/009,991; Response filed May 12, 2003 (7 p.).
Notice of Allowance dated May 28, 2003; U.S. Appl. No. 10/009,991 (5 p.).
Provisional Application filed Oct. 22, 2003; U.S. Appl. No. 60/513,294 (15 p.).
Provisional Application filed Feb. 26, 2004; U.S. Appl. No. 60/548,630 (23 p.).
Related Publications (1)
Number Date Country
20150027718 A1 Jan 2015 US
Divisions (1)
Number Date Country
Parent 12515729 US
Child 13591443 US
Continuations (1)
Number Date Country
Parent 13591443 Aug 2012 US
Child 14330643 US