Field
The present disclosure relates generally to an apparatus and method for the processing of molten glass, and more particularly an apparatus and method for conveying molten glass from a delivery vessel to a forming body.
Technical Background
The fusion glass making process is known for producing high quality glass sheets of extraordinary thinness without grinding or polishing to further thin the as-drawn glass. The process in its simplest form comprises flowing molten glass over two opposing and converging sides of a forming body, wherein the separate flows of glass meet at a bottom edge of the forming body to form a glass ribbon. The glass ribbon cools to an elastic state, after which the ribbon can be cut into individual glass sheets.
Recently, strengthened glass has become popular as cover glass to protect electronic devices such as cell phones and tablet computers. Such glass is typically chemically strengthened by ion-exchanging the surfaces of the glass. However, ion-exchanging does not readily lend itself to an in-line process, and therefore becomes an expensive batch process requiring multiple steps. Moreover, the chemicals used in the ion exchange process must be properly handled to comply with environmental constraints, further adding to the expense. Applications that would otherwise benefit from strengthened glass, such as glass cover plates for household appliances, e.g. refrigerators, may not warrant the expense of ion-exchanged glass. Thus, a process for producing low-cost strengthened glass in thin sheets and in a continuous process addresses a beneficial need. To that end, in-line lamination processes have been developed wherein multiple flows of glass are combined to form a laminated glass ribbon. Preferably, the laminated glass ribbon comprises two different glasses with two different coefficients of thermal expansion such that when the glasses cool, the outer layer of the glass ribbon is in compression and subsequent glass sheets cut from the ribbon are capable of resisting damage better than a glass sheet originating with a single-layer ribbon.
To meet the space requirements for a glass forming apparatus comprising one or more forming bodies a delivery vessel that delivers molten glass to a trough of the one or more forming bodies may need to be located a significant distance from the forming body. This can results in a delivery conduit that may impede the flow of molten glass to the respective forming body, placing restrictions on the maximum flow rate of molten glass through the conduit and hence to the forming body. On the other hand, simply increasing the diameter of the conduit to reduce the flow impedance can create a sump region within the conduit, where the conduit bottom is lower than the trough of the forming body, creating the potential for molten glass to cease flowing and become stagnant. Accordingly, embodiments disclosed herein described composite delivery conduits comprising non-circular cross sections that enable an enlarged cross sectional flow area but wherein an inside bottom surface of the delivery conduit does not extend below a bottom surface of the forming body conduit and an upper inside surface of the delivery conduit does not extend above a top of the trough inlet.
In one aspect an apparatus for forming molten glass is disclosed comprising a forming body comprising a trough positioned in a top of the forming body, a delivery vessel comprising a delivery vessel outlet conduit, the delivery vessel configured to supply molten glass to the forming body trough through a delivery conduit configured to deliver the flow of molten glass to the forming body trough, the delivery conduit comprising a first portion having a straight longitudinal axis and a circular cross section, wherein at least a portion of the delivery vessel outlet conduit extends within but does not contact at least a length of the first portion, there being an annular gap separating the at least a portion of the delivery vessel outlet conduit from the first portion of the delivery conduit. The delivery conduit may further comprise a second portion configured to direct the flow of molten glass from a first direction to a second direction different from the first direction. The delivery conduit may still further comprise a third portion having a straight longitudinal axis and an inside bottom surface, and wherein a cross sectional shape of the third portion is non-circular. Additionally, the delivery conduit can include a first transition portion that connects the second portion to the third portion, a second transition portion that couples the third portion to the forming body trough, the second transition portion having an inside bottom surface, and wherein the bottom surfaces of the third portion and the second transition portion are no lower than a bottom surface of the trough.
In another aspect, an apparatus for forming molten glass is described comprising: a first forming body, a first delivery vessel configured to supply molten glass to the first forming body through a first precious metal delivery conduit, a second forming body positioned vertically below the first forming body and comprising a trough, a second delivery vessel configured to supply molten glass to the second forming body, the second delivery vessel comprising an outlet conduit extending from a bottom thereof, a second precious metal conduit configured to receive a flow of molten glass from the second delivery vessel outlet conduit and deliver the flow of molten glass to the second forming body trough. The second precious metal conduit may comprise a first portion having a straight longitudinal axis and a circular cross section, wherein at least a portion of the outlet conduit extends within but does not contact at least a length of the first portion, there being an annular gap separating the at least a portion of the outlet conduit from the first portion of the second precious metal conduit. The second precious metal conduit may further comprise a second portion configured to direct the flow of molten glass from a first direction to a second direction. The second precious metal conduit may still further comprise a third portion having a straight longitudinal axis and an inside bottom surface, and wherein a cross sectional shape of the third portion is non-circular. Additionally, the second precious metal conduit can include a first transition portion that connects the second portion to the third portion, a second transition portion that couples the third portion to the second forming body trough, the second transition portion having an inside bottom surface, and wherein a bottom surfaces of the third portion and the second transition portions are no lower than a bottom surface of the trough.
In still another aspect, a method is disclosed comprising flowing a first molten glass to a first forming body from a first delivery vessel through a first delivery vessel outlet conduit, flowing a second molten glass from a second delivery vessel to a trough of a second forming body from a second delivery vessel through a second delivery vessel outlet conduit, the first molten glass free-flowing from the first forming body and intersecting the second molten glass, the first molten glass forming a cladding layer on the second molten glass, and drawing the first molten glass and the second molten glass from the second forming body as a laminated glass ribbon. A composition of the second molten glass may different than the first molten glass. Flowing the second molten glass from the second delivery vessel to the second forming body can comprise flowing the second molten glass through a delivery conduit un-coupled from the second delivery vessel outlet conduit, the second delivery conduit comprising: a first portion having a straight longitudinal axis and a circular cross section, wherein at least a portion of the delivery vessel outlet conduit extends within but does not contact at least a length of the first portion, there being an annular gap separating the at least a portion of the delivery vessel outlet conduit from the first portion of the delivery conduit.
The second delivery conduit may further comprise a second portion configured to direct the flow of the second molten glass from a first direction to a second direction different from the first direction.
The second delivery conduit may further comprise a third portion having a straight longitudinal axis and an inside bottom surface, and wherein a cross sectional shape of the third portion is non-circular.
The second delivery conduit may further comprise a first transition portion that connects the second portion to the third portion, a second transition portion that couples the third portion to the second forming body trough, the second transition portion having an inside bottom surface, and wherein the bottom surfaces of the third portion and the second transition portion are no lower than a bottom surface of the trough.
The first forming body may produce multiple flows of the first molten glass that separately intersect the second molten glass.
Additional features and advantages of the embodiments disclosed herein will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are intended to provide an overview or framework for understanding the nature and character of embodiments disclosed herein. The accompanying drawings are included to provide a further understanding of the embodiments, and are incorporated into and constitute a part of this specification. The drawings, together with the description, serve to explain the principles and operations of the disclosed embodiments.
Reference will now be made in detail to embodiments disclosed herein, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
In accordance with the embodiment of
First forming body 12 comprises a first trough 28 configured to receive molten glass 16 from first delivery conduit 24 that is coupled to inlet 30 of first forming body 12. First forming body 12 further comprises forming surfaces 32 opposing each other on opposite sides of the forming body, and may further include a recessed bottom surface 34 opposite first trough 28. In some embodiments, forming surfaces 32 are parallel to each other but are not necessarily so. First forming body 12 receives molten glass 16 into first trough 28, wherein the molten glass overflows walls 36 and flows downward over forming surfaces 32. The molten glass leaves first forming body 12 as two free-flowing, separate streams 38a and 38b of molten glass from two respective bottom edges 39a and 39b of first forming body 12. The first forming body may be formed of a refractory ceramic material, such as alumina or zirconia.
First delivery vessel 18 comprises an outlet conduit 40 extending from a bottom thereof. First delivery vessel 18 and outlet conduit 40 can be metallic, and may be formed from a high temperature precious metal such as a platinum group metal (i.e. platinum, rhodium, iridium, ruthenium, palladium or osmium), or an alloy thereof. For example first delivery vessel 18 and outlet conduit 40 may be formed from platinum or a platinum-rhodium alloy. Suitable platinum-rhodium alloys may have a rhodium concentration from about 10% by weight rhodium to about 30% by weight rhodium.
First delivery conduit 24 is configured to receive the flow of molten glass 16 from first delivery vessel outlet conduit 40 and deliver the flow of molten glass to first forming body trough 28 via first forming body inlet 30. First delivery conduit 24 can be metallic, and, like first delivery vessel 18 and outlet conduit 40, may be formed from a high temperature metal, such as a precious metal, such as a platinum group metal (i.e. platinum, rhodium, iridium, ruthenium, palladium or osmium), or an alloy thereof. For example, first delivery conduit 24 may be platinum or a platinum-rhodium alloy. Suitable platinum-rhodium alloys may have a rhodium concentration from about 10% by weight rhodium to about 30% by weight rhodium.
First delivery conduit 24 comprises a first cylindrical portion 42, a second portion 44 that redirects the flow of molten glass 16 from a first direction to a second direction different than the first direction, and a third portion 46. For example, second portion 44 may redirect the flow of molten glass 16 from a vertical direction to a horizontal direction. Third portion 46 can have a circular cross sectional shape. That is, third portion 24 can be a cylinder. First delivery conduit 24 may further comprise a first transition portion 48 that couples third portion 46 to the generally rectangular shaped inlet of first trough 28. Third portion 46 extends between second portion 44 and first transition portion 48. At least a portion of first delivery vessel outlet conduit 40 extends into and within first cylindrical portion 42 and may be concentric therewith, but does not contact first portion 42 and is therefore uncoupled from first delivery vessel outlet conduit 40. Accordingly, an annular gap 50 is formed between outlet conduit 40 and first portion 42 that exposes a surface of the molten glass 16 within first portion 42 to an atmosphere within the annular gap. That is, the molten glass 16 comprises a free surface 52 within annular gap 50.
It should be understood that in a manufacturing environment a myriad of other equipment may also be involved in the production of high-quality commercial glass products and positioned in the vicinity of first forming body 12, including various metal and refractory support members for supporting the forming body and associated piping and conduits, cooling equipment, heating equipment and insulating members, to name a few. For example, force devices 54a for applying longitudinal compression forces against the ends of first forming body 12 may be employed to prevent sagging of the forming body when operated at high temperature for long periods of time. Such force devices are illustrated in
As best seen in
As with first forming body 12, force devices may be included to apply a longitudinal force against the ends of second forming body 14 to prevent sagging of the forming body from extended exposure to high temperature. As shown in
Second delivery vessel 22 can be formed from a high temperature precious metal such as a platinum group metal (i.e. platinum, rhodium, iridium, ruthenium, palladium or osmium), or an alloy thereof. For example, second delivery vessel 22 may be platinum or a platinum-rhodium alloy. Suitable platinum-rhodium alloys may have a rhodium concentration from about 10% by weight rhodium to about 30% by weight rhodium. Similar to first delivery vessel 18, second delivery vessel 22 comprises an outlet conduit 74 extending from a bottom thereof. Second delivery conduit 26 is configured to receive the flow of molten glass 20 from second delivery vessel outlet conduit 74 and deliver the flow of molten glass to second forming body trough 60 via second delivery conduit 26 and second forming body inlet 64.
It should be recognized that the ancillary equipment associated with first forming body 12 and located in close proximity to first forming body 12, such as force devices 54a, complicate placement of second delivery vessel 22 and second delivery conduit 26. Thus, it may be necessary to locate second delivery vessel 22 a considerably farther distance from second forming body 14 than the distance first delivery vessel 18 is located from first forming body 12. As a result, the length of second delivery conduit 26 may be significantly longer than first delivery conduit 24. The length of second delivery conduit 26 may impose flow restrictions on the delivery of molten glass 20 to second forming body 14, most notably an impedance to flow (head loss) imposed on molten glass 20 by the inner surfaces of the second delivery conduit. As the length of second delivery conduit 26 increases, the impedance to flow also increases. It is known that a cylindrical conduit, having the least amount of inside surface area compared to other geometric shapes, imposes the least head loss to a flowing fluid for a given flow rate. However, to meet a desired flow (flow rate) a diameter of a cylindrical delivery conduit may exceed the height h1 of second trough 60. This can be more easily visualized with the aid of
As shown in
Second delivery vessel outlet conduit 74 comprises a longitudinal axis 84 parallel to and co-located with longitudinal axis 82, such that second delivery vessel outlet conduit 74 is concentric with but does not contact first portion 80 of second delivery conduit 26, and is therefore uncoupled therefrom. An annular gap 86 separates the at least a portion of the second delivery vessel outlet conduit 74 from first portion 80 of the second delivery conduit 26, and a surface of molten glass 20 within first portion 80 is exposed to an atmosphere in the annular gap, thereby forming free glass surface 88. A width of annular gap 86 can be, for example, in a range from about 35 mm to about 60 mm.
Second delivery conduit 26 further comprises a second portion 90 configured to receive the flow of molten glass from first portion 80 and redirect the flow of molten glass 20 from a first direction 92 to a second direction 94, and a third portion 96 having a straight longitudinal axis 98. Second portion 90 may, for example, redirect the flow of molten glass 20 from a substantially vertical downward flow to a substantially horizontal flow. Second portion 90 may, in some embodiments, be formed from a series of cylindrical sections 100 as shown in
As seen in
The cross sectional shape of the third portion can be an oval, ellipse, polygon, or any cross section in which the width is greater than the height. In the example of
H1=(F*(7926*ρ*2))*(σ)*L/D4) (1)
where F is the flow rate of the molten glass, ρ is the density of the molten glass, σ is the viscosity of the molten glass L is the length of the section of conduit and D is the hydraulic diameter of the section of conduit, wherein D is calculated as D≅4A/P where A is the cross sectional area of the conduit and P is the length of the perimeter contacted by the molten glass. It should be noted that during extended production, the top wall of the delivery conduit can sag due to the prolonged exposure to high temperature. Thus, the actual shape of the conduit can deviate from the ideal shape (e.g. the shape as formed, before operation with molten glass).
Second delivery conduit 26 further comprises a first transition portion 110 that connects second portion 90 to third portion 96, and a second transition portion 112 that couples third portion 96 to second forming body inlet 64. Second transition portion 112 includes an inside bottom surface 114. First transition portion 110 is configured to mate the circular cross sectional shape of second portion 90 to the non-circular cross sectional shape of third portion 96. First transition portion 110 may, for example, be welded to second portion 90 and third portion 96.
Second transition portion 112 is configured to mate the non-circular cross sectional shape of third portion 96 to the rectangular cross sectional shape of inlet 64 (e.g. trough 60). A line extending along the inside bottom surface 106 of third portion 96 and inside bottom surface 114 of second transition portion 112 may be a straight line, but in any case, the bottom surfaces of third portion 96 and second transition portion 112 are no lower than a bottom surface of trough 60 so that no sump is formed.
To ensure controlled cooling of second delivery conduit 26, heating elements may be positioned adjacent at least portions of the conduit. For example,
It should be understood that while the foregoing description was presented in in the context of a two-forming body apparatus for the production of laminated glass articles, the design and principals of operation can be applied to a single forming body apparatus for the production of a single layer glass ribbon. For example, a traditional fusion apparatus wherein only a single forming body having converging forming surfaces and from which only a single flow of molten glass flows therefrom may nevertheless benefit from an extended delivery conduit design as described herein when space constraints demand the delivery vessel be placed remotely from the forming body.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments disclosed herein without departing from the spirit and scope of the disclosure. Thus it is intended that the present disclosure cover the modifications and variations of such embodiments provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 61/868,835 filed on Aug. 22, 2013, the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/051638 | 8/19/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/026789 | 2/26/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1888039 | Huff | Nov 1932 | A |
4204027 | Simon | May 1980 | A |
4214886 | Shay et al. | Jul 1980 | A |
4344785 | Jensen | Aug 1982 | A |
5851258 | Ando et al. | Dec 1998 | A |
7150165 | Pitbladdo | Dec 2006 | B2 |
7490487 | Singer et al. | Feb 2009 | B2 |
7818980 | Burdette et al. | Oct 2010 | B2 |
8001856 | Knevels et al. | Aug 2011 | B2 |
8065892 | Kano | Nov 2011 | B2 |
8196434 | Pitbladdo | Jun 2012 | B2 |
8408029 | De Angelis et al. | Apr 2013 | B2 |
20040067369 | Ott et al. | Apr 2004 | A1 |
20040134235 | Pitbladdo | Jul 2004 | A1 |
20050076677 | Pitbladdo | Apr 2005 | A1 |
20050132823 | Knevels et al. | Jun 2005 | A1 |
20050160769 | Sakai et al. | Jul 2005 | A1 |
20050229637 | Hamashima et al. | Oct 2005 | A1 |
20050268659 | Rhoads | Dec 2005 | A1 |
20060096322 | Singer et al. | May 2006 | A1 |
20070068197 | Pitbladdo | Mar 2007 | A1 |
20070084247 | Pitbladdo | Apr 2007 | A1 |
20070190340 | Coppola | Aug 2007 | A1 |
20080034798 | Bergman et al. | Feb 2008 | A1 |
20080148779 | Takeshita et al. | Jun 2008 | A1 |
20090013725 | Kano | Jan 2009 | A1 |
20100269545 | Boratav | Oct 2010 | A1 |
20110277504 | Pitbladdo | Nov 2011 | A1 |
20120103019 | Milillo | May 2012 | A1 |
20150158753 | Milillo et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
201704191 | Jan 2011 | CN |
202576206 | Dec 2012 | CN |
2000128548 | May 2000 | JP |
2007284299 | Nov 2007 | JP |
2007020773 | Feb 2007 | WO |
2009011792 | Jan 2009 | WO |
Entry |
---|
EP14838266 Supplementay Search Report dated Mar. 3, 2017, European Patent Office. |
Korean Intellectual Property Office; International Preliminary Report on Patentability for International Application No. PCT/US2014/051638; dated Mar. 3, 2016; pp. 1-8. |
Korean Intellectual Property Office; International Search Report and Written Opinion; dated Nov. 25, 2014; pp. 1-10. |
English Translation of TW103128845 Search Report Dated Apr. 16, 2018, Taiwan Patent Office, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20160185643 A1 | Jun 2016 | US |
Number | Date | Country | |
---|---|---|---|
61868835 | Aug 2013 | US |