The present invention relates generally to electronic devices configured to wirelessly communicate with other electronic devices, and more specifically to processing wirelessly communicated data and clock information within either or both of the electronic devices.
It is generally known to provide for wireless communications between two electronic devices such as a medical device, e.g., an ambulatory medical device, and a remote electronic device. It is desirable with such arrangements to separate the control of telemetry operations from device function operations within either or both of the wirelessly communicating devices.
The present invention may comprise one or more of the features recited in the attached claims, and/or one or more of the following features and combinations thereof. An electronic device for processing information that includes data and clock information and that is wirelessly received from another electronic device may comprise a first processor that controls only wireless communications with the another electronic device and excluding operations associated only with the electronic device, a second processor that controls the operations associated only with the electronic device and excluding the wireless communications with the another device, and means for extracting the clock information and the data from the wirelessly received information and providing a corresponding clock signal and the data to the second processor for synchronous receipt of the data by the second processor using the clock signal.
In one embodiment, the means for extracting the clock information and the data from the wirelessly received information may comprise a phase lock loop circuit having an input connected to the first processor, a first output connected to the second processor and a second output, and a decoder circuit having a first input connected to the first processor, a second input connected to the second output of the phase lock loop circuit and an output connected to the second processor. The first processor may provide the wirelessly received information to the inputs of the phase lock loop circuit and the decoder circuit. The phase lock loop circuit may extract the clock information from the wirelessly received information and produce the clock signal. The decoder circuit may decode the data from the wirelessly received information.
The wirelessly received information may further comprise a preamble. The phase lock loop circuit may be configured to be responsive to the preamble to lock and run with a phase lock loop clock that operates at a phase lock loop clock rate. The decoder circuit may receive the phase lock loop clock via the second input thereof. The decoder circuit may be configured to decode the data from the wirelessly received information by removing the clock information from the wirelessly received information as a function of the phase lock loop clock. The phase lock loop circuit may be configured to be responsive to the transitions of the data contained in the wirelessly received information to update operation of the phase lock loop circuit.
In an alternative embodiment, the means for extracting the clock information and the data from the wirelessly received information may comprise a phase lock loop circuit having an input connected to the first processor and an output connected to the second processor. The first processor may provide the wirelessly received information to the input of the phase lock loop circuit. The phase lock loop circuit may extract the clock information from the wirelessly received information and produces the clock signal. The second processor may include a memory having instructions stored therein that are executable by the second control circuit to decode the data from the wirelessly received information at a decode rate defined by the clock signal. The wirelessly received information may further comprise a preamble. The phase lock loop circuit may be configured to be responsive to the preamble to lock and run with a phase lock loop clock that operates at a phase lock loop clock rate. Operation of the phase lock loop circuit may be updated by transitions of the data contained in the wirelessly received information.
In another alternate embodiment, the second processor may include a memory and the means for extracting the clock information and the data from the wirelessly received information may comprise instructions stored in the memory that are executable by the second processor to extract the clock information from the wirelessly received information to produce the clock signal and to decode the data from the wirelessly received information at a decode rate defined by the clock signal.
In a further alternative embodiment, the wirelessly received information may be received by the first processor in two separate channels in which a first channel contains the data and a second channel contains the clock information. In this embodiment, the means for extracting the clock information and the data from the wirelessly received information may comprise means for processing the first channel to extract the data and means for processing the second channel to extract the clock signal from the clock information. The first processor may be configured to wirelessly receive information from the another electronic device according to a predefined communication protocol in which the first channel is an audio channel and in which the second channel is a data channel.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to a number of illustrative embodiments shown in the attached drawings and specific language will be used to describe the same.
Referring now to
The electronic device 14 may or may not be configured identically to the electronic device 12, and in any case the electronic devices 12 and 14 are configured to communicate wirelessly with each other via a conventional communication medium 13. Examples of the communication medium 13 may include, but should not be limited to, radio frequency (RF), infrared (IR), microwave, inductive coupling, or the like. In one specific example, which should not be considered limiting in any way, the electronic devices 12 and 14 are each configured to communicate via RF according to a conventional BlueTooth® radio frequency communications protocol.
In the illustrated embodiment, the electronic device 12 includes a device function processor 16 that is configured to control all functional operations of the device 12 but not including telemetry operations, i.e., wireless communications with the electronic device 14. A clock circuit, 20 is electrically connected to the device function processor 16, and the timing of operation of the device function processor 16 is controlled by the clock circuit 20. The electronic device 12 further includes a telemetry processor 18 that is electrically coupled to the device function processor 16. The telemetry processor 18 is configured to control wireless communication with the electronic device 14, but not device functions, i.e., non-telemetry operations of the electronic device 12. Another clock circuit 22 is electrically connected to the telemetry processor 18, and the timing of operation of the telemetry processor 18 is controlled by the clock circuit 22.
A clock and data decoding circuit 30 is illustratively connected between the device function processor 16 and the telemetry processor 18. The clock and data decoding circuit 30 is shown in
The electronic device 12 further includes a user interface 24 that is electrically connected to the device function processor 16. The user interface 24 illustrated in
Referring now to
The device function processor 16 further includes a supervisor processor 46 that is electrically connected to the main processor 40 and also to a clock circuit 48. The clock circuits 48 and 50 illustratively comprise the clock circuit 20 illustrated in
In the illustrated embodiment, the telemetry processor 18 is electrically connected to the clock circuit 22, and includes a conventional base band and logic section 52 and a conventional radio frequency (RF) transceiver circuit 54. In one embodiment, the telemetry processor 18 includes a main processor and a separate wireless communication processor. In one example of this embodiment in which the wireless communication protocol is a BlueTooth® RF communications protocol, the wireless communication processor may, for example, be a BlueCore 4-ROM Plug-N-Go, single chip radio and baseband circuit that is commercially available from a number of suppliers such as CSR, and the main processor may be, for example, a model MSP430F2471 16-bit microcontroller as described above. In this example embodiment, the wireless communication processor handles the BlueTooth® communications, i.e., the lower layer of the BlueTooth® protocol stack, and the main processor handles the upper layer of the BlueTooth® protocol stack and, in some embodiments, an additional security layer. In alternative embodiments, the main processor and the wireless communication processor may be substituted by a single telemetry processor, e.g., a single BlueCore 4-ROM Plug-N-Go, single chip radio and baseband circuit.
The electronic device 14 controls all communication on the electronic device 12 between the device function processor 16 and the telemetry processor 18. In particular, the electronic device 14 generates a clock signal which is passed wirelessly along with data in the form of messages to the electronic device 12 via the wireless communication medium 13. The electronic device 12 demodulates the clock signal from the wireless messages, and the clock signal is then employed within the electronic device 12 to control the timing of communication of the data between the device function processor 16 and the telemetry processor 18. All communication between the device function processor 16 and the telemetry processor 18 is thus controlled by messages wirelessly transmitted by the electronic device 14 and received by the electronic device 12. The electronic device 14 may send polling requests, interrupts, triggers, synchronization and the like to the device function processor 16 via the telemetry processor 18.
During communications between the device function processor 16 and the telemetry processor 18 as just described, the device function processor 16 and the telemetry processor 18 operate separately and independently of each other. The device function processor 16 controls only the functions and operations of the electronic device 12 that are not telemetry related, and the telemetry processor 18 controls only the telemetry operations. No signals related to polling requests, interrupts, triggers, synchronization or the like are originated by and sent from the device function processor 16 to the telemetry processor 18 or vice versa. Moreover, the device function processor 16 does not control any aspect of when or how the telemetry processor 18 transmits or receives messages or information packets, and the telemetry processor 18 does not control any aspect of when or how the device function processor 16 processes messages or information packets. Any message or information packet that is wirelessly transmitted by the electronic device 14 to the electronic device 12 is forwarded unchanged by the telemetry processor 18 to the device function processor 16.
In one embodiment, the electronic device 14 wirelessly transmits data and clock signals to the electronic device 12 using self-clocking codes. Generally, self-clocking codes combine data and a clock signal into one signal such that the coded signal can be decoded to determine the data and clock signal without a separate clock or other source of synchronization. This is typically accomplished by including synchronization information within the data portion of the message. For example, the clock signal may typically be included as some type of run length limited code (e.g., one that limits the number of back-to-back ones or zeros), and the run length limit is generally selected to limit the run length of ones or zeros in such a way that the receiver of the message can maintain synchronization for the duration of the message. It will be understood, however, that the inclusion of clock signal information in wireless messages transmitted from the electronic device 14 to the electronic device 12 will generally increase the signal bandwidth over messages transmitted without embedded clock signals.
Generally, including self-clocking codes in the wireless signals transmitted by the electronic device 14 to the electronic device 12 requires suitable circuitry or software for decoding the clock and data signals from the wireless messages. In the embodiment illustrated in
Referring now to
After sending the start command, the electronic device 14 is operable to wirelessly transmit a first information packet with embedded self-clocking codes at step 761. The telemetry processor 18 is thereafter operable at step 781 to unpack the first information packet from the wireless communication protocol structure, and to provide the unpacked first information packet to the clock and data decoding circuit 30′. Thereafter at step 801, the decoder circuit 58 decodes the unpacked information packet by removing the self-clocking codes from the unpacked first information packet using the PLL clock provided by the PLL 56. The resulting decoded first information packet is then sent to the device function processor 16 at step 821. While the decoded first information packet is being sent to the device function processor 16, operation of the PLL 56 is updated at each high to low or low to high transition of the data transmission, e.g., by updating the PLL clock. When the decoded information packet is received by the device function processor 16, the device function processor 16 is acts upon the information contained in the first information packet as appropriate. This process is repeated for N information packets as illustrated in
Referring now to
Referring now to
Referring now to
Referring now to
In one embodiment in which BlueTooth®) communication protocol is used, information may be wirelessly transferred between the electronic device 12 and the electronic device 14 in the form of information packets or on a dedicated audio format (e.g., pulse code modulated) via a synchronous connection-oriented link (SCO) or an asynchronous connectionless link (ACL). Illustratively, clock and data decoding circuit 30′″ in this embodiment includes a microcontroller connected to the BlueTooth® processor to extract bit streams of data from the information packets in the data channel. The audio channel may then be used to transmit a modulated audio signal, e.g., via phase or frequency modulation, to be used as the clock signal. In an alternative embodiment, a conventional transceiver may be included in the telemetry processor 18 to implement a radio frequency (RF) link which directly outputs received data bits on a dedicated pin. The transceiver may be, for example, a nRF2401A transceiver that is commercially available from Nordic Semiconductor, although other transceiver circuits may alternatively be used. The RF link does not follow the BlueTooth® standard, however, and therefore does not support two simultaneous communication channels. Additional circuitry is thus required to convert the audio signal into a suitable clock signal. Those skilled in the art will be aware of conventional circuitry that can be used to convert the audio signal into a suitable clock signal and to synchronize the clock signal with the data bits on the RF link.
Referring to
In the illustrated embodiment, the electronic device 12 may be identical to the electronic device 12 illustrated and described with respect to
It should be understood that the embodiment illustrated in
In the embodiment of the system 100 illustrated in
While the invention has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as illustrative and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
Number | Name | Date | Kind |
---|---|---|---|
3654492 | Clark | Apr 1972 | A |
4493021 | Agrawal et al. | Jan 1985 | A |
5582593 | Hultman | Dec 1996 | A |
5665065 | Colman et al. | Sep 1997 | A |
5925021 | Castellano et al. | Jul 1999 | A |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6551276 | Mann et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6571128 | Lebel et al. | May 2003 | B2 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6634014 | Lindberg et al. | Oct 2003 | B1 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650951 | Jones et al. | Nov 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6738670 | Almendinger et al. | May 2004 | B1 |
6740075 | Lebel et al. | May 2004 | B2 |
6744350 | Blomquist | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6950708 | Bowman IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6979326 | Mann et al. | Dec 2005 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7204823 | Estes et al. | Apr 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7369635 | Spital et al. | May 2008 | B2 |
7454644 | Giovinazzi et al. | Nov 2008 | B2 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030065536 | Hansen et al. | Apr 2003 | A1 |
20030163088 | Blomquist | Aug 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030212441 | Starkweather et al. | Nov 2003 | A1 |
20040044272 | Moerman et al. | Mar 2004 | A1 |
20040068230 | Estes et al. | Apr 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050009126 | Andrews et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050090808 | Malave et al. | Apr 2005 | A1 |
20050171513 | Mann et al. | Aug 2005 | A1 |
20050215982 | Malave et al. | Sep 2005 | A1 |
20050255843 | Hilpisch et al. | Nov 2005 | A1 |
20060132292 | Blomquist | Jun 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060198364 | Fujii | Sep 2006 | A1 |
20060281454 | Gray | Dec 2006 | A1 |
20070006181 | Zimman et al. | Jan 2007 | A1 |
20070014374 | Hershbarger | Jan 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060870 | Tolle et al. | Mar 2007 | A1 |
20070060871 | Istoc et al. | Mar 2007 | A1 |
20070153705 | Rosar et al. | Jul 2007 | A1 |
20080033357 | Mann et al. | Feb 2008 | A1 |
20080175344 | Menolfi et al. | Jul 2008 | A1 |
20100068998 | Zyambo et al. | Mar 2010 | A1 |
20100134158 | Pignol et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
1109586 | Jun 2001 | EP |
1347705 | Jan 2003 | EP |
0830160 | Mar 2003 | EP |
1423046 | Jun 2004 | EP |
1473050 | Nov 2004 | EP |
1611834 | Jan 2006 | EP |
1135056 | Aug 2006 | EP |
1759726 | Mar 2007 | EP |
2389419 | Jun 2002 | GB |
WO0228454 | Apr 2002 | WO |
WO03005278 | Jan 2003 | WO |
WO03009207 | Jan 2003 | WO |
WO03009208 | Jan 2003 | WO |
WO03015838 | Feb 2003 | WO |
WO-2004008956 | Jan 2004 | WO |
WO2004098390 | Nov 2004 | WO |
WO2007021892 | Feb 2007 | WO |
WO2007021894 | Feb 2007 | WO |
WO-2008097316 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090307517 A1 | Dec 2009 | US |