Apparatus and method for programmable power management in a programmable analog circuit block

Information

  • Patent Grant
  • 8149048
  • Patent Number
    8,149,048
  • Date Filed
    Wednesday, August 29, 2001
    22 years ago
  • Date Issued
    Tuesday, April 3, 2012
    12 years ago
Abstract
An apparatus and method for programmable power management in a programmable analog circuit block. Specifically, the present invention describes an operational amplifier circuit that includes current sources that are coupled in parallel. Configuration bits are asserted to selectively enable or selectively disable one or more of the current sources in order to modulate the performance of the operational amplifier circuit block. Selective addition or removal of current sources increases or decreases the amount of current within the operational amplifier and, correspondingly, the speed and power consumption of the operational amplifier. Combinations of asserted configuration bits pass a bias voltage in order enable selected current sources. In one embodiment, the bias voltage can be increased in order to increase the current output of one of the current sources which, correspondingly, increases the speed of the operational amplifier circuit block.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to the field of power management. More specifically, the present invention relates to the field of programmable power management in a programmable analog circuit containing an operational amplifier.


2. Related Art


A microcontroller is a highly integrated chip having all or most of the necessary components to control some process or aspect in a circuit. For example, the microcontroller typically includes a central processing unit (CPU), random access memory (RAM), read only memory (ROM), input/output (I/O) interfaces, timers, and interrupt controller. The typical microcontroller has bit manipulation instructions, easy and direct access to I/O interfaces, and quick and efficient interrupt processing. By including only features specific to the task of the microcontroller and integrating the functionality onto a single chip, the cost to produce the microcontroller can be drastically reduced.


Programmable analog circuit designs for microcontrollers allow a user limited programmability to vary circuit parameters or the underlying topology of the programmable analog circuit. For example, a programmable analog circuit may be comprised of interconnected analog blocks set in a fixed topology that has programmable parameters, such as filter bandwidth or roll-off, that can be set and changed according to application needs. While the signal processing path and basic functionality of the analog circuit remains unchanged, some programmable functionality is introduced by letting parameters vary in the programmable analog circuit.


A particular functionality important to programmable analog circuit designs is power management. Power management is particularly important in light of the movement towards higher levels of integration, and higher circuit densities. Programmable analog circuit blocks include basic programmable operational amplifier circuits used for many functionalities including gain amplifiers, switch capacitor integrators, analog to digital (A/D) converters, digital to analog (D/A) converters, filters, etc. In addition, a switched capacitor integrator forms the basis for an analog processing unit that can support A/D and D/A digital converters, comparators, programmable gain amplifiers, and filters.


As end products become more lightweight, smaller, and more portable, the microcontrollers operating at three volts and lower allow for less power consumption and longer battery life. However, in the past, designing the proper analog circuitry for lower power consumption was difficult to achieve without sacrificing operating performance. As a result, microcontrollers previously offered nonexistent or limited power management functionality.



FIG. 1 is a circuit diagram of the prior art illustrating a typical operational amplifier circuit used in analog circuits. Current sources 110 are biased with a bias voltage (not shown) in order to provide current to the operational amplifier circuit 100 that drives the output voltage and corresponding power coming out of the node 120. A compensation capacitor may be coupled between the nodes 120 and 130, and forms part of the load being driven by the operational amplifier circuit 100.


The current sources 110 are non-adjustable or not programmable. In the design illustrated in FIG. 1, the current sources are an unchangeable element in the output voltage and power shown at the node 120. As a result, there is no programmable power management in the current sources 110 for the operational amplifier circuit 100. For instance, the operational amplifier circuit 100 would consume the same amount of power irrespective of the load being driven.


One method implemented in the past for controlling power management throughout a programmable analog circuit included increasing or decreasing the bias voltage (not shown in FIG. 1). The bias voltage drives the operational amplifier circuit 100 in an programmable analog block. Increasing the bias voltage does increase the speed of the operational amplifier circuit 100 and the overall circuit; however, the improvement comes at a cost of performance.


Increasing the bias voltage increases the current through the operational amplifier in the programmable analog circuit. More current increases the slew rate of the programmable analog block and increases the operational amplifiers ability to drive the capacitor representative of the load. This allows the operational amplifier to run faster resulting in better performance.


However, there is a tradeoff. By increasing the bias voltage, the dynamic range of the operational amplifier is reduced. Basically, the dynamic range of output voltage at node 120 is clipped or reduced for the programmable analog block containing the operational amplifier. As a result, increasing the bias voltage negatively decreases the dynamic range of the block containing the operational amplifier.


Conversely, to maintain the dynamic range of the programmable analog block, the bias voltage (not shown) must be reduced. However, at the lower bias levels (and hence lower bias voltages, such as, three volts), the circuit containing the operational amplifier operates at much slower speeds.


Thus, a need exists to provide a degree of programmability to power management in a programmable analog circuit. Another need exists to provide increased speeds in a programmable analog circuit without sacrificing performance.


SUMMARY OF THE INVENTION

The present invention discloses a method and system for power management in a programmable analog circuit. The present invention provides for a degree of programmability in the management of power in a programmable analog circuit. Also, the present invention meets the above need and provides for increased speeds in a programmable analog circuit without sacrificing performance.


These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments which are illustrated in the various drawing figures.


Specifically, one embodiment of the present invention describes a programmable analog block containing an operational amplifier circuit that includes a plurality of current mirrors or sources that are coupled in parallel. Configuration bits are asserted to selectively enable or selectively disable one or more of the current sources in order to modulate the performance of the operational amplifier circuit block. Selective addition or removal of current mirrors increases or decreases the amount of current within the operational amplifier and, correspondingly, the amount of power consumed for the operational amplifier and the speed of the operational amplifier.


Various combinations of asserted configuration bits pass a bias voltage in order to enable different groups of selected current mirrors. The selected current mirrors come from the plurality of available current sources in the operational amplifier.


Selectively enabling and disabling various current mirrors in the plurality of current sources allow for power adjustment of the programmable analog block containing an operational amplifier. Enabling a current source increases the current through the operational amplifier in order to increase the operating speed of the operational amplifier. As a result, this increases the power consumed by the operational amplifier. Correspondingly, disabling a current source decreases the current through the operational amplifier, decreases the operating speed of the operational amplifier, and decreases the power consumed by the operational amplifier. Enabling or disabling the current mirrors within the programmable analog block does not deleteriously affect the dynamic swing of the operational amplifier contained within the programmable analog block as the external bias voltage is not changed.


In one embodiment, the bias voltage can be further increased in order to further increase the current output of one of the current sources in a selected group of current sources. This increased current increases the operating speed of the operational amplifier circuit block. In another embodiment, the bias voltage is successively increased to successive current sources in a scaleable ratio in order to provide scaleable increases in the operating speed of the operational amplifier.


In another embodiment of the present invention, a microcontroller controls the programmable management of power through the programmable analog circuit.





BRIEF DESCRIPTION OF THE DRAWINGS

PRIOR ART FIG. 1 is a block diagram of an exemplary operational amplifier circuit without any programmable power management capabilities.



FIG. 2 is a logical block diagram of an exemplary microcontroller computer system, in accordance with an embodiment of the present invention.



FIG. 3 illustrates a block diagram of an exemplary operational amplifier programmable analog circuit block with programmable power management, in accordance with one embodiment of the present invention.



FIG. 4A illustrates a circuit diagram of an exemplary logic decoder from an operational amplifier programmable analog circuit with programmable power management, in accordance with one embodiment of the present invention.



FIG. 4B illustrates a circuit diagram of an exemplary multiplexor from an operational amplifier programmable analog circuit with programmable power management, in accordance with one embodiment of the present invention.



FIG. 4C illustrates a circuit diagram of an exemplary operational amplifier from an operational amplifier programmable analog circuit with programmable power management, in accordance with one embodiment of the present invention.



FIG. 5 illustrates a truth table of the programmable analog circuit block with programmable power management, in accordance with one embodiment of the present invention.



FIG. 6 is a flow diagram illustrating steps in a computer implemented method for programmable power management in a programmable analog circuit block, in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the preferred embodiments of the present invention, a method and system for programmable power management in a programmable analog circuit block, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.


Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.


Notation and Nomenclature


Some portions of the detailed descriptions which follow are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “accessing,” or “processing,” or “computing,” or “translating,” or “calculating,” or “determining,” or “scrolling,” or “displaying,” or “recognizing,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


Referring now to FIG. 2, portions of the present invention are comprised of computer-readable and computer-executable instructions which reside, for example, in computer-readable media of an electronic system, such as a microcontroller. FIG. 2 is a block diagram of exemplary interior components of an exemplary electronic system 200, which includes a microcontroller 210, upon which embodiments of the present invention may be implemented. It is appreciated that the exemplary microcontroller 210 of FIG. 2 is only exemplary and that the present invention can implement a number of different electronic systems including modems, digital to analog (D/A) converters, analog to digital (A/D) converters, power gain amplifiers, comparators, switched capacitor filters, and the like.



FIG. 2 illustrates circuitry of an exemplary computer system 200 which includes a microcontroller 200. Exemplary microcontroller 200 includes an internal address/data bus 220 for communicating information, a central processor 201 coupled with the bus 220 for processing information and instructions, a volatile memory 202 (e.g., random access memory (RAM), static RAM dynamic RAM, etc.) coupled with the bus 220 for storing information and instructions for the central processor 201, and a non-volatile memory 203 (e.g., read only memory (ROM), programmable ROM, flash memory, EPROM, EEPROM, etc.) coupled to the bus 220 for storing static information and instructions for the processor 201.


With reference still to FIG. 2, an optional signal Input/Output device 208 which is coupled to bus 220 for providing a communication link between microcontroller 210 and a network environment is described. As such signal Input/Output (I/O) device 208 enables the central processor unit 201 to communicate with or monitor other electronic systems or analog circuit blocks that are coupled to the microcontroller 210.


The input/output device 208 could be a I/O interface such as a serial or USB port that is associated with the bus 220. Data from the microcontroller 210 travels through the port and onto an external bus 230 that provides for data transfer between components of the electronic system 200, including microcontroller 210. In one embodiment of the present invention, external bus 230 can be a serial communication bus, such as the serial peripheral interface (hereinafter referred to as “SPI”) communication bus.


For example, components of electronic device 200 could include a display device 205 coupled to the bus 230 for displaying digital images to the user. The display device 205 utilized with electronic device 200 may be a liquid crystal display (LCD) device, a cathode ray tube (CRT), a field emission display device (also called a flat panel CRT), or other display device suitable for generating graphic images and alphanumeric characters recognizable to the user.


Also included in electronic device 200 is an optional alphanumeric input device 206, in another embodiment of the present invention. Alphanumeric input device 206 can communicate information and command selections to processor 201 via bus 230 and bus 220. In one implementation, alphanumeric input device 206 is a touch screen device. Alphanumeric input device 206 is capable of registering a position where contact is made.


In still another embodiment of the present invention, electronic device 200 also includes an optional cursor control or directing device (on-screen cursor control 207) coupled to bus 230 for communicating user input information and command selections to processor 201. In one implementation, on-screen cursor control device 207 is a touch screen device incorporated with display device 205.


Programmable Power Management of a Programmable Analog Circuit


This disclosure describes an apparatus and method for programmable power management in a programmable analog circuit block. Referring now to FIG. 3, a programmable analog circuit block 300 is shown that acts as an operational amplifier, in accordance with one embodiment of the present invention. Operational amplifier circuits can be used to implement numerous functionalities, such as D/A converters, A/D converters, power gain amplifiers, comparators, switch capacitor filters, etc. A plurality of current sources are contained within circuit block 300.


The plurality of current sources provide a scaleable and incremental source of current for the operational amplifier contained within the circuit block 300. Each additional current source provides additional current to the operational amplifier in circuit block 300. The increase in current to the operational amplifier correspondingly increases the speed of the operational amplifier, the output voltage and output power exhibited at node 340, and the power consumed by the operational amplifier in circuit block 300.


Furthermore, selective enablement of different combinations of current sources allows for the adjustment of power consumption and performance capability of the operational amplifier contained within the analog circuit block 300. This, in turn, allows for programmable power management of the analog circuit block 300 by a microcontroller, such as microcontroller 200.


Additionally, the increase in performance of the operational amplifier is not accomplished by increasing the bias voltage (not shown). Instead, the addition of parallel current sources (e.g., sources 310, 315, 320, 325, 330, and 335) provides increased current through the operational amplifier and increases the speed and power output of the operational amplifier at the node 340. As a result, the increased performance comes without any of the deleterious effects on the dynamic range of the operational amplifier contained within the analog circuit block 300. This allows for increased performance, namely speed of the operational amplifier, of the programmable analog block 300 at lower bias dad voltages and lower bias voltages.


The parallel current sources allow the programmable analog block 300 to operate at faster speeds at low bias voltages, and at lower power levels. Since the programmable analog block 300 is driven by a lower bias voltage, the dynamic range of the block 300 is higher. Also, the addition of parallel current sources increases the speed through the operational amplifier contained in block 300 thereby increasing the slew rate for overcoming the load capacitance, and increasing the operating speed of the operational amplifier.


Although embodiments of the present invention are described using current mirrors or current sources, the present invention is well suited to other embodiments where other types of power sources or mirrors are utilized.


In one embodiment of the present invention, the current sources are paired together, as paired current mirrors. One of each pair of current mirrors is coupled to the transistors coupled to the input voltages at node 350 (−Vin) and node 355 (+Vout), and the other of each pair is coupled to the output voltage at node 340. The current mirrors coupled to the transistors at the input voltages at nodes 350 and 355 are coupled in parallel. In addition, the current mirrors coupled to the output voltage at node 340 are coupled in parallel fashion.


For example, FIG. 3 shows three pairs of current mirrors in analog circuit block 300. The first pair of current mirrors contains current source PB1310 and current source PB1A 315. The second pair of current mirrors contains current source PB2320 and current source PB2A 325. The third pair of current mirrors contains current source PB3330 and current source PB3A 335. The current mirrors in each pair are enabled and disabled in similar fashion.


In one embodiment of the present invention, for each pair of current mirrors, the current source coupled to the output voltage at node 340 outputs an integer multiple (e.g., two times) of the amount of current for its corresponding current source in the pair that is coupled to the transistors at the input voltages at nodes 350 and 355. For example, in the first pair of current sources, current source PB1A 315 outputs twice the amount of current as current source PB1310.


In addition, a source voltage (VCC) is coupled to node 360 for the operational amplifier in circuit block 300. Another source voltage (VSS) is coupled to node 370 for the operational amplifier in circuit block 300.


The operational amplifier circuit 300 as shown in FIG. 3 is exemplary only. Although three pairs of current sources are shown in FIG. 3, the present invention is also well suited to an embodiment which can accommodate less or more pairs of current sources to provide further incremental programmable control over the analog circuit block 300.


In another embodiment of the present invention, the paired current mirrors provide further incremental increases in the current through the operational amplifier contained within the circuit block 300. This is accomplished by turning on selected current mirrors.


Each of the current mirrors supply varying amounts of current depending on the number of devices contained within the current mirror. For example, a scaleable current ratio of one to four to twelve (1:4:12) is envisioned in one embodiment of the present invention. The same bias voltage is presented to each of the current mirrors; however, each of the current mirrors contain a certain number of identical devices that are in ratio to the other current mirrors. For example, the third pair of current mirrors (e.g., sources PB3330 and PB3A 335) has 12 identical devices and supplies twelve times the current supplied by the first pair of current mirrors. The second pair of current mirrors (e.g., sources PB2320 and PB2A 325) has four identical devices and supplies four times the current supplied by the first pair of current mirrors. Correspondingly, the first pair of current mirrors (e.g., sources PB1310 and PB1A 315) has one device.


For example, a scaleable ratio or multiple of one to four to twelve (1:4:12) is envisioned in one embodiment. In this case, the third pair of current mirrors (e.g., sources PB3330 and PB3A 335) would see twelve times the bias voltage (VPB as illustrated in FIG. 4A), and correspondingly provide approximately twelve times the current as from the first pair of current mirrors. The second pair of current mirrors (e.g., sources PB2320 and PB2A 325) would see four times the bias voltage (VPB as illustrated in FIG. 4A) and correspondingly provide approximately four times the current to the operational amplifier in circuit block 300 as from the first pair of current mirrors. No boosting of the bias voltage (VPB in FIG. 4A) is presented to the first pair of current mirrors (e.g., sources PB1310 and PB1A 215).


Implementation of the programmable power management in the analog circuit block 300 that acts as an operational amplifier is achieved by selectively removing or including each of the paired current mirrors. At full power, or the maximum speed of the operational amplifier in block 300, all the paired current mirrors (e.g., sources 310, 315, 320, 325, 330, and 335) are coupled to the operational amplifier in the circuit block 300. At minimum power, or the minimum speed of the operational amplifier 310, only the first pair of current mirrors (e.g., sources 310 and 315) are provided without boosting the bias voltage (VPB as shown in FIG. 4A). The rest of the current mirrors are decoupled from operational amplifier in the analog circuit block 300.


As such, incremental increases in speed and power consumption through the analog circuit block 300 is achieved by selecting one or more of pairs of current mirrors in FIG. 3, in accordance with one embodiment of the present invention.


Although a ratio of one to four to twelve (1:4:12) is recited in the present embodiment, the present invention is also well suited to an embodiment in which other ratios or integer multiples are used, and/or a varying number of current mirrors are used to give incremental local power management of the operational amplifier in circuit block 300.



FIG. 4A illustrates a circuit diagram of an exemplary circuit with programmable power management capabilities. Selection of the current sources driving the operational amplifier in the programmable analog circuit block as shown in FIGS. 4A, 4B, and 4C, is accomplished by asserting configuration bits, in accordance with one embodiment of the present invention. FIG. 4A shows two configuration bits that can be asserted in combination, the S0 configuration bit 410 and the S1 configuration bit 420. The various combinations allowed in selecting between the two configuration bits controls three pairs of current sources for the programmable analog block. A truth table 500 of FIG. 5 illustrates the various combinations of the configuration bits 410 and 420.


The programmable analog circuit block as illustrated in FIGS. 4A, 4B, and 4C can be comprised of three elements: a logic decoder, a multiplexor, and an operational amplifier. FIG. 4A is a circuit diagram of the logic decoder 400. FIG. 4B is a circuit diagram of the multiplexor 402. FIG. 4c is a circuit diagram of the operational amplifier 404.


Returning to FIG. 4A, the two configuration bits (e.g., S0410 and S1420) are inputs into the logic decoder 400. The function of the logic decoder 400 is to generate various signal outputs according to the assertion of configuration bits (e.g., S0410 and S1420). The various output signals generated from the logic decoder 400 include, but are not limited to the following output voltage signals: S0b at node 450, S1b at node 452, S2 at node 454, and S2b at node 456.


Depending on the various configuration bits asserted, the various output voltage signals (e.g., S0b, S1b, S2, and S2b) from the logic decoder 400 are inputted into the multiplexor 402 of the programmable analog circuit block. In accordance with the present embodiment, the four to one (4 to 1) multiplexor 400 is implemented to select between the various output signals. The function of the multiplexor 402 is either to pass the bias voltage (VPB) 460 on to the pairs of current sources, or to isolate the bias voltage (VPB) 460 and shut down the pairs of current sources.


As shown in FIG. 4B, the multiplexor 402 has three voltage output signals: VPB-1 at node 470, VPB-2 at node 480, and VPB-3 at node 490. The three voltage output signals (e.g., VPB-1, VPB-2, and VPB-3) each provide a bias voltage that is taken from the bias voltage (VPB 460) to one of the three pairs of current sources driving the operational amplifier circuit 404 as shown in FIG. 4C. In one embodiment, each of the voltage output signals (e.g., VPB-1, VPB-2, and VPB-3) are identical to the bias voltage (VPB 460).


For example, the bias voltage VPB-1 at node 470 drives the pair of current sources 472 and 474. The bias voltage VPB-2 at node 480 drives the pair of current sources 482 and 484. Finally, the bias voltage VPB-3 at node 490 drives the pair of current sources 492 and 494. As discussed previously, each of the pairs of current sources contain varying numbers of identical devices that affect the current output for that pair of current sources.


As illustrated in FIG. 4C, each of the bias voltages (e.g., VPB-1, VPB-2, and VPB-3) control both current sources in each of the pairs of current sources. As such, if VPB-1 is presented at node 470, then both current sources 472 and 474 of the pair of current sources are enabled and provide current to the operational amplifier circuit 404.


The operational amplifier circuit 404 as shown in FIG. 4C also has an input voltage at nodes 495 and 496. The output voltage for the operational amplifier circuit 404 and the programmable analog circuit block is taken at node 497.


As discussed previously, the bias voltages (e.g., VPB-1, VPB-2, and VPB-3) can be incremented to provide a scaleable increase of speed or power consumption in the operational amplifier 404. For example, the input bias line VPB 460 can be set to another voltage. Combined with the programming bits (e.g., S0 and S1), six levels of bias can be achieved, in contrast to only three levels of bias when the bias voltage VPB 460 stays constant.


In addition, selection of the pairs of current mirrors can provide a scaleable increase of speed or power consumption in the operational amplifier 404. For example, a ratio of supplied currents from each of the current mirrors is dependent on the number of devices contained within the current mirrors that are controlled by the bias voltages (e.g., VPB-1, VPB-2 and VPB-3). Bias voltage VPB-1 controls the pair of current mirrors 472 and 474. Bias voltage VPB-2 controls the pair of current mirrors 482 and 484. Bias voltage VPB-3 controls the pair of current mirrors 492 and 494. In one embodiment, the ratio of currents can be one to four to twelve (1:4:12).


The truth table 500 of FIG. 5 describes the performance modulation of the analog circuit block illustrated in FIGS. 4A, 4B, and 4C. Selection of the configuration bits S0 and S1 in various combinations selectively enable and disable the pairs of current mirrors available to the operational amplifier circuit 404 of FIG. 4C.


For example, as exhibited in line 510, if both configuration bits S0 and S1 were not asserted, then all the pairs of current mirrors would be disabled. This would effectively shut off the operational amplifier 404 controlled by truth table 500. Additionally, as exhibited in line 520, if only the S1 bit were asserted at node 420, then the bias voltage VPB-1 would be presented at node 470 for the pair of current mirrors 472 and 474.


Further, as exhibited in line 530 of Table 500, if only configuration bit S0 were asserted at node 410, then two pairs of current sources would be enabled. The bias voltage VPB-1 at node 470 would be presented, thus turning on the pair of current mirrors 472 and 474. Also, the bias voltage VPB-2 at node 480 would be presented, thus turning on the pair of current mirrors 482 and 484.


Lastly, as exhibited in line 540 of Table 500, both configuration bits S0 and S1 were asserted at nodes 410 and 420, respectively, then all pairs of current mirrors would be enabled. For instance, the bias voltage VPB-1 at node 470 would be presented, thus turning on the pair of current mirrors 472 and 474. Also, the bias voltage VPB-2 at node 480 would be presented, thus turning on the pair of current mirrors 482 and 484. Additionally, the bias voltage VPB-3 at node 490 would be presented, thus turning on the pair of current mirrors 492 and 494.


It is appreciated that Table 500 is exemplary only. The present invention is well suited to embodiments in which varying numbers of configuration bits are available driving a varying number of current sources to provide additional power adjustment of the operational amplifier 404 of the analog circuit block as illustrated in FIGS. 4A, 4B, and 4C.


A microcontroller, such as microcontroller 200 of FIG. 2, could control the power management functionality over the programmable analog circuit illustrated in FIGS. 4A, 4B, and 4C, in accordance with one embodiment of the present invention. The microcontroller 200 could implement the truth table 500 for providing programmable power management.



FIG. 6 illustrates a flow chart 600 of steps for process 600 showing the programmable power management of a programmable analog circuit, in accordance with an embodiment of the present invention. It is appreciated that process 600 incorporates the previous apparatus description in method form.


The present embodiment begins with step 610 where a first combination of configuration bits is asserted. The first combination is selected from a plurality of configuration bits. For example, two configuration bits, as shown in FIGS. 4A, 4B, and 4C, can control three pairs of current sources.


In step 620, the present embodiment sends a bias signal in response to the first combination of configuration bits. The bias signal is a bias voltage supplied to the operational amplifier in the programmable analog circuit. The bias signal is sent to a selected group of current sources in the operational amplifier, as dictated by the first combination of configuration bits. The current sources are coupled in parallel.


In step 630, the present embodiment enables the selected group of current sources in order to adjust the power consumption and performance of the operational amplifier in the programmable analog circuit block. Selectively enabling or disabling the various current sources driving the operational amplifier provides selection between various speeds and power consumption in relation to the performance of the operational amplifier. The various combinations of asserting configuration bits select between the various speeds and power consumption that relate to the performance of the operational amplifier in the programmable analog circuit block.


While the methods of embodiments illustrated in process 600 show specific sequences and quantity of steps, the present invention is suitable to alternative embodiments. For example, not all the steps provided for in the method are required for the present invention. Furthermore, additional steps can be added to the steps presented in the present embodiment. Likewise, the sequences of steps can be modified depending upon the application.


The preferred embodiment of the present invention, programmable power management in a programmable analog circuit, is thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the below claims.

Claims
  • 1. A programmable analog circuit block having programmable power management comprising: an operational amplifier circuit for driving a load;a plurality of paired current sources located within said operational amplifier circuit, wherein a first current source in each pair is coupled in a first parallel configuration to a first node that is coupled to transistors receiving input voltages to said operational amplifier circuit, and a second current source in each pair is coupled in a second parallel configuration to an output of said operational amplifier circuit, wherein a ratio of the amount of current between said current sources of each pair of current sources is proportionally equal;a bias supply signal for generating a given bias voltage; anda plurality of configuration bits for selectively applying said given bias voltage to an associated pair of current sources in order to modulate the performance of said operational amplifier circuit.
  • 2. The programmable analog circuit block as described in claim 1, wherein said plurality of paired current sources comprises a first and a second pair of current sources.
  • 3. The programmable analog circuit block as described in claim 2, wherein said second pair of current sources provides twice the amount of current in said operational amplifier as said first pair of current sources.
  • 4. The programmable analog circuit block as described in claim 1, further comprising: a logic decoder for generating a plurality of select signals from said plurality of configuration bits; anda multiplexor for selectively applying said given bias voltage to said associated pair of current sources based on said plurality of select signals.
  • 5. The programmable analog circuit block as described in claim 4, wherein a voltage level for said bias voltage is increased in order to increase current output from said plurality of current sources.
  • 6. The programmable analog circuit block as described in claim 1, wherein current provided from each pair of current sources is increased by a scaleable ratio to provide scaleable increases in speed of said operational amplifier.
  • 7. The programmable analog circuit block as described in claim 1, wherein a voltage for said bias supply signal is increased for each of said plurality of current sources to increase speed of said operational amplifier.
  • 8. A programmable analog circuit block having programmable power management comprising: an operational amplifier circuit for driving a load;a plurality of paired current sources contained within said operational amplifier circuit for increasing current within said operational amplifier circuit, wherein a ratio of the amount of current between current sources of each pair of current sources is proportionally equal;a bias supply signal for biasing said plurality of paired current sources; anda plurality of configuration bits for selectively applying said bias supply voltage to one or more of said plurality of paired current sources, based upon a current state of the configuration bits, in order to modulate performance of said operational amplifier circuit.
  • 9. The programmable analog circuit block as described in claim 8, wherein each of said plurality of paired current sources further comprise: a first current source coupled to a first node that is coupled to transistors receiving an input voltage to said operational amplifier circuit, wherein all first current sources in said plurality of paired current sources are coupled in parallel; anda second current source coupled to a second node associated with an output voltage to said operational amplifier circuit, wherein all second current sources in said plurality of paired current sources are coupled in parallel.
  • 10. The programmable analog circuit block as described in claim 8, wherein each of said plurality of paired current sources increase current within said operational amplifier in order to increase the speed of said operational amplifier circuit.
  • 11. The programmable analog circuit block as described in claim 8, further comprising: a logic decoder for generating a plurality of select signals based on said current combination of configuration bits; anda multiplexor for selectively applying said bias supply voltage to said one or more pairs of current sources based on said plurality of select signals.
  • 12. A method of performing programmable power management in a programmable analog block comprising the steps of: a) asserting a first group of configuration bits from a plurality of configuration bits; andb) sending a bias voltage signal, in response to said first group of configuration bits, to a selected group of paired current sources from a plurality of paired current sources in an operational amplifier wherein each configuration bit enables an associated pair of current sources from said plurality of paired current sources and wherein a ration of the amount of current between current sources coupled to an input stage and output stage of said operational amplifier respectively of each pair of current sources is proportionally equal.
  • 13. The method as described in claim 12, wherein said selected group of paired current sources is enabled to increase current in said operational amplifier to increase the operating speed of said operational amplifier.
  • 14. The method as described in claim 12, wherein said method further comprises: increasing said bias voltage to further increase the operating speed of said operational amplifier.
  • 15. The method as described in claim 12, wherein said plurality of paired current sources are selectable to provide scaleable increases in operating speed for said operational amplifier.
  • 16. The method as described in claim 12, wherein a first current source in each pair is coupled to a first node that is coupled to transistors receiving input voltages to said operational amplifier, and a second current source in each pair is coupled with an output voltage to said operational amplifier, wherein each first current source coupled to said input voltage is coupled in parallel, and wherein each second current source coupled to said output voltage is coupled in parallel.
  • 17. The method as described in claim 16, further comprising the step of: doubling current output in said second current source in comparison to said first current source of each of said plurality of paired current sources.
  • 18. The method as described in claim 12, comprising the further step of: disabling a remaining group of paired current sources to deny current to said operational amplifier in order to modulate performance of said operational amplifier, said selected group of paired current sources and said remaining group of paired current sources combined forming said plurality of paired current sources.
RELATED U.S. APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 60/243,708, filed Oct. 26, 2000.

US Referenced Citations (1157)
Number Name Date Kind
3600690 White Aug 1971 A
3725804 Langan Apr 1973 A
3740588 Stratton et al. Jun 1973 A
3805245 Brooks et al. Apr 1974 A
3810036 Bloedorn May 1974 A
3831113 Ahmed Aug 1974 A
3845328 Hollingsworth Oct 1974 A
3940760 Brokaw Feb 1976 A
4061987 Nagahama Dec 1977 A
4134073 MacGregor Jan 1979 A
4138671 Comer et al. Feb 1979 A
4176258 Jackson Nov 1979 A
4250464 Schade, Jr. Feb 1981 A
4272760 Prazak et al. Jun 1981 A
4283713 Philipp Aug 1981 A
4326135 Jarrett et al. Apr 1982 A
4344067 Lee Aug 1982 A
4380083 Andersson et al. Apr 1983 A
4438404 Philipp Mar 1984 A
4475151 Philipp Oct 1984 A
4497575 Philipp Feb 1985 A
4604363 Newhouse et al. Aug 1986 A
4608502 Dijkmans et al. Aug 1986 A
4656603 Dunn Apr 1987 A
4670838 Kawata Jun 1987 A
4689740 Moelands et al. Aug 1987 A
4692718 Roza et al. Sep 1987 A
4701907 Collins Oct 1987 A
4727541 Mori et al. Feb 1988 A
4736097 Philipp Apr 1988 A
4740966 Goad Apr 1988 A
4755766 Metz Jul 1988 A
4773024 Faggin et al. Sep 1988 A
4794558 Thompson Dec 1988 A
4802103 Faggin et al. Jan 1989 A
4802119 Heene et al. Jan 1989 A
4807183 Kung et al. Feb 1989 A
4809345 Tabata et al. Feb 1989 A
4812684 Yamagiwa et al. Mar 1989 A
4813013 Dunn Mar 1989 A
4827401 Hrustich et al. May 1989 A
4831546 Mitsuta et al. May 1989 A
4833418 Quintus et al. May 1989 A
4868525 Dias Sep 1989 A
4876466 Kondou et al. Oct 1989 A
4876534 Mead et al. Oct 1989 A
4878200 Asghar et al. Oct 1989 A
4879461 Philipp Nov 1989 A
4879688 Turner et al. Nov 1989 A
4885484 Gray Dec 1989 A
4907121 Hrassky Mar 1990 A
4935702 Mead et al. Jun 1990 A
4939637 Pawloski Jul 1990 A
4942540 Black et al. Jul 1990 A
4947169 Smith et al. Aug 1990 A
4953928 Anderson et al. Sep 1990 A
4962342 Mead et al. Oct 1990 A
4964074 Suzuki et al. Oct 1990 A
4969087 Tanagawa et al. Nov 1990 A
4970408 Hanke et al. Nov 1990 A
4972372 Ueno Nov 1990 A
4977381 Main Dec 1990 A
4980652 Tarusawa et al. Dec 1990 A
4999519 Kitsukawa et al. Mar 1991 A
5043674 Bonaccio et al. Aug 1991 A
5049758 Mead et al. Sep 1991 A
5050168 Paterson Sep 1991 A
5053949 Allison et al. Oct 1991 A
5055827 Philipp Oct 1991 A
5059920 Anderson et al. Oct 1991 A
5068622 Mead et al. Nov 1991 A
5073759 Mead et al. Dec 1991 A
5083044 Mead et al. Jan 1992 A
5088822 Kanda Feb 1992 A
5095284 Mead Mar 1992 A
5097305 Mead et al. Mar 1992 A
5099191 Galler et al. Mar 1992 A
5107146 El-Ayat Apr 1992 A
5107149 Platt et al. Apr 1992 A
5109261 Mead et al. Apr 1992 A
5119038 Anderson et al. Jun 1992 A
5120996 Mead et al. Jun 1992 A
5122800 Philipp Jun 1992 A
5126685 Platt et al. Jun 1992 A
5127103 Hill et al. Jun 1992 A
5128871 Schmitz Jul 1992 A
5136188 Ha et al. Aug 1992 A
5140197 Grider Aug 1992 A
5142247 Lada et al. Aug 1992 A
5144582 Steele Sep 1992 A
5146106 Anderson et al. Sep 1992 A
5150079 Williams et al. Sep 1992 A
5155836 Jordan et al. Oct 1992 A
5159292 Canfield et al. Oct 1992 A
5159335 Veneruso Oct 1992 A
5160899 Anderson et al. Nov 1992 A
5161124 Love Nov 1992 A
5165054 Platt et al. Nov 1992 A
5166562 Allen et al. Nov 1992 A
5175884 Suarez Dec 1992 A
5179531 Yamaki Jan 1993 A
5184061 Lee et al. Feb 1993 A
5196740 Austin Mar 1993 A
5198817 Walden et al. Mar 1993 A
5200751 Smith Apr 1993 A
5202687 Distinti Apr 1993 A
5204549 Platt et al. Apr 1993 A
5206582 Ekstedt et al. Apr 1993 A
5220512 Watkins et al. Jun 1993 A
5225991 Dougherty Jul 1993 A
5230000 Mozingo et al. Jul 1993 A
5235617 Mallard, Jr. Aug 1993 A
5241492 Girardeau, Jr. Aug 1993 A
5243554 Allen et al. Sep 1993 A
5245262 Moody et al. Sep 1993 A
5248843 Billings Sep 1993 A
5248873 Allen et al. Sep 1993 A
5258760 Moody et al. Nov 1993 A
5260592 Mead et al. Nov 1993 A
5260979 Parker et al. Nov 1993 A
5270963 Allen et al. Dec 1993 A
5276407 Mead et al. Jan 1994 A
5276890 Arai Jan 1994 A
5280199 Itakura Jan 1994 A
5280202 Chan et al. Jan 1994 A
5289023 Mead Feb 1994 A
5303329 Mead et al. Apr 1994 A
5304955 Atriss et al. Apr 1994 A
5305017 Gerpheide Apr 1994 A
5305312 Fornek et al. Apr 1994 A
5307381 Ahuja Apr 1994 A
5313618 Pawloski May 1994 A
5317202 Waizman May 1994 A
5319370 Signore et al. Jun 1994 A
5319771 Takeda Jun 1994 A
5321828 Phillips et al. Jun 1994 A
5324958 Mead et al. Jun 1994 A
5325512 Takahashi Jun 1994 A
5329471 Swoboda et al. Jul 1994 A
5331215 Allen et al. Jul 1994 A
5331315 Crosette Jul 1994 A
5331571 Aronoff et al. Jul 1994 A
5334952 Maddy et al. Aug 1994 A
5335342 Pope et al. Aug 1994 A
5336936 Allen et al. Aug 1994 A
5339213 O'Callaghan Aug 1994 A
5339262 Rostoker et al. Aug 1994 A
5341044 Ahanin et al. Aug 1994 A
5341267 Whitten et al. Aug 1994 A
5345195 Cordoba et al. Sep 1994 A
5349303 Gerpheide Sep 1994 A
5355097 Scott et al. Oct 1994 A
5357626 Johnson et al. Oct 1994 A
5361290 Akiyama Nov 1994 A
5371524 Herczeg et al. Dec 1994 A
5371860 Mura et al. Dec 1994 A
5371878 Coker Dec 1994 A
5371883 Gross et al. Dec 1994 A
5374787 Miller et al. Dec 1994 A
5377333 Nakagoshi et al. Dec 1994 A
5378935 Korhonen et al. Jan 1995 A
5381515 Platt et al. Jan 1995 A
5384467 Plimon et al. Jan 1995 A
5384745 Konishi et al. Jan 1995 A
5384910 Torres Jan 1995 A
5388064 Khan Feb 1995 A
5389829 Milazzo Feb 1995 A
5390173 Spinney et al. Feb 1995 A
5392784 Gudaitis Feb 1995 A
5394522 Sanchez-Frank et al. Feb 1995 A
5396245 Rempfer Mar 1995 A
5398261 Marbot Mar 1995 A
5399922 Kiani et al. Mar 1995 A
5408194 Steinbach et al. Apr 1995 A
5414308 Lee et al. May 1995 A
5414380 Floyd et al. May 1995 A
5416895 Anderson et al. May 1995 A
5422823 Agrawal et al. Jun 1995 A
5424689 Gillig et al. Jun 1995 A
5426378 Ong Jun 1995 A
5426384 May Jun 1995 A
5428319 Marvin et al. Jun 1995 A
5430395 Ichimaru Jul 1995 A
5430687 Hung et al. Jul 1995 A
5430734 Gilson Jul 1995 A
5432476 Tran Jul 1995 A
5438672 Dey Aug 1995 A
5440305 Signore et al. Aug 1995 A
5451887 El-Avat et al. Sep 1995 A
5453904 Higashiyama et al. Sep 1995 A
5455525 Ho et al. Oct 1995 A
5455731 Parkinson Oct 1995 A
5455927 Huang Oct 1995 A
5457410 Ting Oct 1995 A
5457479 Cheng Oct 1995 A
5463591 Aimoto et al. Oct 1995 A
5479603 Stone et al. Dec 1995 A
5479643 Bhaskar et al. Dec 1995 A
5479652 Dreyer et al. Dec 1995 A
5481471 Naglestad Jan 1996 A
5488204 Mead et al. Jan 1996 A
5491458 McCune Feb 1996 A
5493246 Anderson Feb 1996 A
5493723 Beck et al. Feb 1996 A
5495077 Miller et al. Feb 1996 A
5495593 Elmer et al. Feb 1996 A
5495594 MacKenna et al. Feb 1996 A
5497119 Tedrow et al. Mar 1996 A
5499192 Knapp et al. Mar 1996 A
5500823 Martin et al. Mar 1996 A
5517198 McEwan May 1996 A
5519854 Watt May 1996 A
5521529 Agrawal et al. May 1996 A
5530444 Tice et al. Jun 1996 A
5530673 Tobita et al. Jun 1996 A
5530813 Paulsen et al. Jun 1996 A
5537057 Leong et al. Jul 1996 A
5541878 LeMoncheck et al. Jul 1996 A
5542055 Amini et al. Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5543590 Gillespie et al. Aug 1996 A
5543591 Gillespie et al. Aug 1996 A
5544067 Rostoker et al. Aug 1996 A
5544311 Harenberg et al. Aug 1996 A
5546433 Tran et al. Aug 1996 A
5546562 Patel Aug 1996 A
5552725 Ray et al. Sep 1996 A
5552748 O'Shaughnessy Sep 1996 A
5554951 Gough Sep 1996 A
5555452 Callaway, Jr. et al. Sep 1996 A
5555907 Philipp Sep 1996 A
5557762 Okuaki et al. Sep 1996 A
5559502 Schutte Sep 1996 A
5559996 Fujioka et al. Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563529 Seltzer et al. Oct 1996 A
5564010 Henry et al. Oct 1996 A
5564108 Hunsaker et al. Oct 1996 A
5565658 Gerpheide et al. Oct 1996 A
5566702 Philipp Oct 1996 A
5572665 Nakabayashi et al. Nov 1996 A
5572719 Biesterfeldt Nov 1996 A
5574678 Gorecki Nov 1996 A
5574852 Bakker et al. Nov 1996 A
5574892 Christensen Nov 1996 A
5579353 Parmenter et al. Nov 1996 A
5587945 Lin et al. Dec 1996 A
5587957 Kowalczyk et al. Dec 1996 A
5590354 Klapproth et al. Dec 1996 A
5594388 O'Shaughnessy et al. Jan 1997 A
5594734 Worsley et al. Jan 1997 A
5594876 Getzlaff et al. Jan 1997 A
5594890 Yamaura et al. Jan 1997 A
5600262 Kolze Feb 1997 A
5604466 Dreps et al. Feb 1997 A
5608892 Wakerly Mar 1997 A
5614861 Harada Mar 1997 A
5625316 Chambers et al. Apr 1997 A
5629857 Brennan May 1997 A
5629891 LeMoncheck et al. May 1997 A
5630052 Shah May 1997 A
5630057 Hait May 1997 A
5630102 Johnson et al. May 1997 A
5631577 Freidin et al. May 1997 A
5633766 Hase et al. May 1997 A
5642295 Smayling Jun 1997 A
5646544 Iadanza Jul 1997 A
5646901 Sharpe-Geisler et al. Jul 1997 A
5648642 Miller et al. Jul 1997 A
5651035 Tozun Jul 1997 A
5652893 Ben-Meir et al. Jul 1997 A
5663900 Bhandari et al. Sep 1997 A
5663965 Seymour Sep 1997 A
5664199 Kuwahara Sep 1997 A
5666480 Leung et al. Sep 1997 A
5670915 Cooper et al. Sep 1997 A
5673198 Lawman et al. Sep 1997 A
5675825 Dreyer et al. Oct 1997 A
5677691 Hosticka et al. Oct 1997 A
5680070 Anderson et al. Oct 1997 A
5682032 Philipp Oct 1997 A
5684434 Mann et al. Nov 1997 A
5684952 Stein Nov 1997 A
5686844 Hull et al. Nov 1997 A
5687325 Chang Nov 1997 A
5689195 Cliff et al. Nov 1997 A
5689196 Schutte Nov 1997 A
5691664 Anderson et al. Nov 1997 A
5691898 Rosenberg et al. Nov 1997 A
5694063 Burilson et al. Dec 1997 A
5696952 Pontarelli Dec 1997 A
5699024 Manlove et al. Dec 1997 A
5703871 Pope et al. Dec 1997 A
5706453 Cheng et al. Jan 1998 A
5708589 Beauvais Jan 1998 A
5708798 Lynch et al. Jan 1998 A
5710906 Ghosh et al. Jan 1998 A
5712969 Zimmermann et al. Jan 1998 A
5721931 Gephardt et al. Feb 1998 A
5724009 Collins et al. Mar 1998 A
5727170 Mitchell et al. Mar 1998 A
5729704 Stone et al. Mar 1998 A
5730165 Philipp Mar 1998 A
5732277 Kodosky et al. Mar 1998 A
5734272 Belot et al. Mar 1998 A
5734334 Hsieh et al. Mar 1998 A
5737557 Sullivan Apr 1998 A
5737760 Grimmer et al. Apr 1998 A
5745011 Scott Apr 1998 A
5748048 Moyal May 1998 A
5748875 Tzori May 1998 A
5752013 Christensen et al. May 1998 A
5754552 Allmond et al. May 1998 A
5754826 Gamal et al. May 1998 A
5757368 Gerpheide et al. May 1998 A
5758058 Milburn May 1998 A
5761128 Watanabe Jun 1998 A
5763909 Mead et al. Jun 1998 A
5764714 Stansell et al. Jun 1998 A
5767457 Gerpheide et al. Jun 1998 A
5774704 Williams Jun 1998 A
5777399 Shibuya Jul 1998 A
5781030 Agrawal et al. Jul 1998 A
5781747 Smith et al. Jul 1998 A
5784545 Anderson et al. Jul 1998 A
5790957 Heidari Aug 1998 A
5796183 Hourmand Aug 1998 A
5799176 Kapusta et al. Aug 1998 A
5802073 Platt Sep 1998 A
5802290 Casselman Sep 1998 A
5805792 Swoboda et al. Sep 1998 A
5805897 Glowny Sep 1998 A
5808883 Hawkes Sep 1998 A
5811987 Ashmore, Jr. et al. Sep 1998 A
5812698 Platt et al. Sep 1998 A
5818254 Agrawal et al. Oct 1998 A
5818444 Alimpich et al. Oct 1998 A
5819028 Manghirmalani et al. Oct 1998 A
5822387 Mar Oct 1998 A
5822531 Gorczyca et al. Oct 1998 A
5828693 Mays et al. Oct 1998 A
5838583 Varadarajan et al. Nov 1998 A
5841078 Miller et al. Nov 1998 A
5841996 Nolan et al. Nov 1998 A
5844265 Mead et al. Dec 1998 A
5844404 Caser et al. Dec 1998 A
5848285 Kapusta et al. Dec 1998 A
5850156 Wittman Dec 1998 A
5852733 Chien et al. Dec 1998 A
5854625 Frisch et al. Dec 1998 A
5857109 Taylor Jan 1999 A
5861583 Schediwy et al. Jan 1999 A
5861875 Gerpheide Jan 1999 A
5864242 Allen et al. Jan 1999 A
5864392 Winklhofer et al. Jan 1999 A
5867046 Sugasawa Feb 1999 A
5867399 Rostoker et al. Feb 1999 A
5869979 Bocchino Feb 1999 A
5870004 Lu Feb 1999 A
5870309 Lawman Feb 1999 A
5870345 Stecker Feb 1999 A
5872464 Gradinariu Feb 1999 A
5874958 Ludolph Feb 1999 A
5875293 Bell et al. Feb 1999 A
5877656 Mann et al. Mar 1999 A
5878425 Redpath Mar 1999 A
5880411 Gillespie et al. Mar 1999 A
5880598 Duong Mar 1999 A
5883623 Cseri Mar 1999 A
5886582 Stansell Mar 1999 A
5887189 Birns et al. Mar 1999 A
5889236 Gillespie et al. Mar 1999 A
5889723 Pascucci Mar 1999 A
5889936 Chan Mar 1999 A
5889988 Held Mar 1999 A
5894226 Koyama Apr 1999 A
5894243 Hwang Apr 1999 A
5894565 Furtek et al. Apr 1999 A
5895494 Scalzi et al. Apr 1999 A
5896068 Moyal Apr 1999 A
5896330 Gibson Apr 1999 A
5898345 Namura et al. Apr 1999 A
5900780 Hirose et al. May 1999 A
5901062 Burch et al. May 1999 A
5903718 Marik May 1999 A
5905398 Todsen et al. May 1999 A
5909544 Anderson, II et al. Jun 1999 A
5911059 Profit, Jr. Jun 1999 A
5914465 Allen et al. Jun 1999 A
5914633 Comino et al. Jun 1999 A
5914708 LaGrange et al. Jun 1999 A
5917356 Casal et al. Jun 1999 A
5920310 Faggin et al. Jul 1999 A
5923264 Lavelle et al. Jul 1999 A
5926566 Wang et al. Jul 1999 A
5929710 Bien Jul 1999 A
5930148 Bjorksten et al. Jul 1999 A
5930150 Cohen et al. Jul 1999 A
5931959 Kwiat Aug 1999 A
5933023 Young Aug 1999 A
5933356 Rostoker et al. Aug 1999 A
5933816 Zeanah et al. Aug 1999 A
5935233 Jeddeloh Aug 1999 A
5935266 Thurnhofer et al. Aug 1999 A
5939904 Fetterman et al. Aug 1999 A
5939949 Olgaard et al. Aug 1999 A
5941991 Kageshima Aug 1999 A
5942733 Allen et al. Aug 1999 A
5943052 Allen et al. Aug 1999 A
5945822 Shiotsuka Aug 1999 A
5945878 Westwick et al. Aug 1999 A
5949632 Barreras, Sr. et al. Sep 1999 A
5952888 Scott Sep 1999 A
5956279 Mo et al. Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5963075 Hiiragizawa Oct 1999 A
5963105 Nguyen Oct 1999 A
5963503 Lee Oct 1999 A
5964893 Circello et al. Oct 1999 A
5966027 Kapusta et al. Oct 1999 A
5966532 McDonald et al. Oct 1999 A
5968135 Teramoto et al. Oct 1999 A
5969513 Clark Oct 1999 A
5969632 Diamant et al. Oct 1999 A
5973368 Pearce et al. Oct 1999 A
5974235 Nunally et al. Oct 1999 A
5977791 Veenstra Nov 1999 A
5978584 Nishibata et al. Nov 1999 A
5978937 Miyamori et al. Nov 1999 A
5982105 Masters Nov 1999 A
5982229 Wong et al. Nov 1999 A
5982241 Nguyen et al. Nov 1999 A
5983277 Heile et al. Nov 1999 A
5986479 Mohan Nov 1999 A
5987246 Thomsen et al. Nov 1999 A
5988902 Holehan Nov 1999 A
5994939 Johnson et al. Nov 1999 A
5996032 Baker Nov 1999 A
5999725 Barbier et al. Dec 1999 A
6002268 Sasaki et al. Dec 1999 A
6002398 Wilson Dec 1999 A
6003054 Oshima et al. Dec 1999 A
6003107 Ranson et al. Dec 1999 A
6003133 Moughanni et al. Dec 1999 A
6005814 Mulholland et al. Dec 1999 A
6005904 Knapp et al. Dec 1999 A
6008685 Kunst Dec 1999 A
6008703 Perrott et al. Dec 1999 A
6009270 Mann Dec 1999 A
6009496 Tsai Dec 1999 A
6011407 New Jan 2000 A
6012835 Thompson et al. Jan 2000 A
6014135 Fernandes Jan 2000 A
6014509 Furtek et al. Jan 2000 A
6014723 Tremblay et al. Jan 2000 A
6016554 Skrovan et al. Jan 2000 A
6016563 Fleisher Jan 2000 A
6018559 Azegami et al. Jan 2000 A
6023422 Allen et al. Feb 2000 A
6023565 Lawman et al. Feb 2000 A
6026134 Duffy et al. Feb 2000 A
6026501 Hohl et al. Feb 2000 A
6028271 Gillespie et al. Feb 2000 A
6028959 Wang et al. Feb 2000 A
6031365 Sharpe-Geisler Feb 2000 A
6032268 Swoboda et al. Feb 2000 A
6034538 Abramovici Mar 2000 A
6037807 Wu et al. Mar 2000 A
6038551 Barlow et al. Mar 2000 A
6041406 Mann Mar 2000 A
6043695 O'Sullivan Mar 2000 A
6043719 Lin et al. Mar 2000 A
6049223 Lytle et al. Apr 2000 A
6049225 Huang et al. Apr 2000 A
6051772 Cameron et al. Apr 2000 A
6052035 Nolan et al. Apr 2000 A
6052524 Pauna Apr 2000 A
6055584 Bridges et al. Apr 2000 A
6057705 Wojewoda et al. May 2000 A
6058263 Voth May 2000 A
6058452 Rangasayee et al. May 2000 A
6061511 Marantz et al. May 2000 A
6066961 Lee et al. May 2000 A
6070003 Gove et al. May 2000 A
6072803 Allmond et al. Jun 2000 A
6075941 Itoh et al. Jun 2000 A
6079985 Wohl et al. Jun 2000 A
6081140 King Jun 2000 A
6094730 Lopez et al. Jul 2000 A
6097211 Couts-Martin et al. Aug 2000 A
6097432 Mead et al. Aug 2000 A
6101457 Barch et al. Aug 2000 A
6101617 Burckhartt et al. Aug 2000 A
6104217 Magana Aug 2000 A
6104325 Liaw et al. Aug 2000 A
6107769 Saylor et al. Aug 2000 A
6107826 Young et al. Aug 2000 A
6107882 Gabara et al. Aug 2000 A
6110223 Southgate et al. Aug 2000 A
6111431 Estrada Aug 2000 A
6112264 Beasley et al. Aug 2000 A
6121791 Abbott Sep 2000 A
6121805 Thamsirianunt et al. Sep 2000 A
6121965 Kenney et al. Sep 2000 A
6125416 Warren Sep 2000 A
6130548 Koifman Oct 2000 A
6130551 Agrawal et al. Oct 2000 A
6130552 Jefferson et al. Oct 2000 A
6133773 Garlepp et al. Oct 2000 A
6134181 Landry Oct 2000 A
6134516 Wang et al. Oct 2000 A
6137308 Nayak Oct 2000 A
6140853 Lo Oct 2000 A
6141376 Shaw Oct 2000 A
6141764 Ezell Oct 2000 A
6144327 Distinti et al. Nov 2000 A
6148104 Wang et al. Nov 2000 A
6148441 Woodward Nov 2000 A
6149299 Aslan et al. Nov 2000 A
6150866 Eto et al. Nov 2000 A
6154064 Proebsting Nov 2000 A
6157024 Chapdelaine et al. Dec 2000 A
6157270 Tso Dec 2000 A
6161199 Szeto et al. Dec 2000 A
6166367 Cho Dec 2000 A
6166960 Marneweck et al. Dec 2000 A
6167077 Ducaroir et al. Dec 2000 A
6167559 Furtek et al. Dec 2000 A
6169383 Johnson Jan 2001 B1
6172428 Jordan Jan 2001 B1
6172571 Moyal et al. Jan 2001 B1
6173419 Barnett Jan 2001 B1
6175914 Mann Jan 2001 B1
6175949 Gristede et al. Jan 2001 B1
6181163 Agrawal et al. Jan 2001 B1
6183131 Holloway et al. Feb 2001 B1
6185127 Myers et al. Feb 2001 B1
6185450 Seguine et al. Feb 2001 B1
6185522 Bakker Feb 2001 B1
6185703 Guddat et al. Feb 2001 B1
6185732 Mann et al. Feb 2001 B1
6188228 Philipp Feb 2001 B1
6188241 Gauthier et al. Feb 2001 B1
6188381 van der Wal et al. Feb 2001 B1
6188391 Seely et al. Feb 2001 B1
6188975 Gay Feb 2001 B1
6191603 Muradali et al. Feb 2001 B1
6191660 Mar et al. Feb 2001 B1
6191998 Reddy et al. Feb 2001 B1
6192431 Dabral et al. Feb 2001 B1
6198303 Rangasayee Mar 2001 B1
6201407 Kapusta et al. Mar 2001 B1
6201829 Schneider Mar 2001 B1
6202044 Tzori Mar 2001 B1
6204687 Schultz et al. Mar 2001 B1
6205574 Dellinger et al. Mar 2001 B1
6208572 Adams et al. Mar 2001 B1
6211708 Klemmer Apr 2001 B1
6211715 Terauchi Apr 2001 B1
6211741 Dalmia Apr 2001 B1
6215352 Sudo Apr 2001 B1
6219729 Keats et al. Apr 2001 B1
6222528 Gerpheide et al. Apr 2001 B1
6223144 Barnett et al. Apr 2001 B1
6223147 Bowers Apr 2001 B1
6223272 Coehlo et al. Apr 2001 B1
RE37195 Kean May 2001 E
6225866 Kubota et al. May 2001 B1
6236242 Hedberg May 2001 B1
6236275 Dent May 2001 B1
6236278 Olgaard May 2001 B1
6236593 Hong et al. May 2001 B1
6239389 Allen et al. May 2001 B1
6239798 Ludolph et al. May 2001 B1
6240375 Sonoda May 2001 B1
6246258 Lesea Jun 2001 B1
6246410 Bergeron et al. Jun 2001 B1
6249167 Oguchi et al. Jun 2001 B1
6249447 Boylan et al. Jun 2001 B1
6253250 Evans et al. Jun 2001 B1
6256754 Roohparvar Jul 2001 B1
6262717 Donohue et al. Jul 2001 B1
6263302 Hellestrand et al. Jul 2001 B1
6263339 Hirsch Jul 2001 B1
6263484 Yang Jul 2001 B1
6271679 McClintock et al. Aug 2001 B1
6272646 Rangasayee Aug 2001 B1
6275117 Abugharbieh et al. Aug 2001 B1
6278568 Cloke et al. Aug 2001 B1
6280391 Olson et al. Aug 2001 B1
6281753 Corsi et al. Aug 2001 B1
6282547 Hirsch Aug 2001 B1
6282551 Anderson et al. Aug 2001 B1
6286127 King et al. Sep 2001 B1
6288707 Philipp Sep 2001 B1
6289300 Brannick et al. Sep 2001 B1
6289478 Kitagaki Sep 2001 B1
6289489 Bold et al. Sep 2001 B1
6292028 Tomita Sep 2001 B1
6294932 Watarai Sep 2001 B1
6294962 Mar Sep 2001 B1
6298320 Buckmaster et al. Oct 2001 B1
6304014 England et al. Oct 2001 B1
6304101 Nishihara Oct 2001 B1
6304790 Nakamura et al. Oct 2001 B1
6307413 Dalmia et al. Oct 2001 B1
6310521 Dalmia Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6311149 Ryan et al. Oct 2001 B1
6314530 Mann Nov 2001 B1
6320184 Winklhofer et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6321369 Heile et al. Nov 2001 B1
6323846 Westerman et al. Nov 2001 B1
6324628 Chan Nov 2001 B1
6326859 Goldman et al. Dec 2001 B1
6332137 Hori et al. Dec 2001 B1
6332201 Chin et al. Dec 2001 B1
6337579 Mochida Jan 2002 B1
6338109 Snyder et al. Jan 2002 B1
6339815 Feng et al. Jan 2002 B1
6342907 Petty et al. Jan 2002 B1
6345383 Ueki Feb 2002 B1
6347395 Payne et al. Feb 2002 B1
6351789 Green Feb 2002 B1
6353452 Hamada et al. Mar 2002 B1
6355980 Callahan Mar 2002 B1
6356862 Bailey Mar 2002 B2
6356958 Lin Mar 2002 B1
6356960 Jones et al. Mar 2002 B1
6359950 Gossmann et al. Mar 2002 B2
6362697 Pulvirenti Mar 2002 B1
6366174 Berry et al. Apr 2002 B1
6366300 Ohara et al. Apr 2002 B1
6366874 Lee et al. Apr 2002 B1
6366878 Grunert Apr 2002 B1
6369660 Wei Apr 2002 B1
6371878 Bowen Apr 2002 B1
6373954 Malcolm et al. Apr 2002 B1
6374370 Bockhaus et al. Apr 2002 B1
6377009 Philipp Apr 2002 B1
6377575 Mullaney et al. Apr 2002 B1
6377646 Sha Apr 2002 B1
6380811 Zarubinsky et al. Apr 2002 B1
6380929 Platt Apr 2002 B1
6380931 Gillespie et al. Apr 2002 B1
6384947 Ackerman et al. May 2002 B1
6385742 Kirsch et al. May 2002 B1
6388109 Schwarz et al. May 2002 B1
6388464 Lacey et al. May 2002 B1
6396302 New et al. May 2002 B2
6396657 Sun et al. May 2002 B1
6397232 Cheng-Hung et al. May 2002 B1
6404204 Farruggia et al. Jun 2002 B1
6404445 Galea et al. Jun 2002 B1
6407953 Cleeves Jun 2002 B1
6408432 Herrmann et al. Jun 2002 B1
6411665 Chan et al. Jun 2002 B1
6411974 Graham et al. Jun 2002 B1
6414671 Gillespie et al. Jul 2002 B1
6421698 Hong Jul 2002 B1
6425109 Choukalos et al. Jul 2002 B1
6429882 Abdelnur et al. Aug 2002 B1
6430305 Decker Aug 2002 B1
6433645 Mann et al. Aug 2002 B1
6434187 Beard Aug 2002 B1
6437805 Sojoodi et al. Aug 2002 B1
6438565 Ammirato et al. Aug 2002 B1
6438735 McElvain et al. Aug 2002 B1
6438738 Elayda Aug 2002 B1
6441073 Tanaka et al. Aug 2002 B1
6445211 Saripella Sep 2002 B1
6449628 Wasson Sep 2002 B1
6449755 Beausang et al. Sep 2002 B1
6449761 Greidinger et al. Sep 2002 B1
6452437 Takeuchi et al. Sep 2002 B1
6452514 Philipp Sep 2002 B1
6453175 Mizell et al. Sep 2002 B2
6453461 Chaiken Sep 2002 B1
6456304 Angiulo et al. Sep 2002 B1
6457355 Philipp Oct 2002 B1
6457479 Zhuang et al. Oct 2002 B1
6460172 Insenser Farre et al. Oct 2002 B1
6463488 San Juan Oct 2002 B1
6466036 Philipp Oct 2002 B1
6466078 Stiff Oct 2002 B1
6466898 Chan Oct 2002 B1
6473069 Gerpheide Oct 2002 B1
6473825 Worley et al. Oct 2002 B1
6477691 Bergamashi/Rab et al. Nov 2002 B1
6480921 Mansoorian et al. Nov 2002 B1
6483343 Faith et al. Nov 2002 B1
6487700 Fukushima Nov 2002 B1
6489899 Ely et al. Dec 2002 B1
6490213 Mu et al. Dec 2002 B1
6492834 Lytle et al. Dec 2002 B1
6496971 Lesea et al. Dec 2002 B1
6498720 Glad Dec 2002 B2
6499134 Buffet et al. Dec 2002 B1
6499359 Washeleski et al. Dec 2002 B1
6504403 Bangs et al. Jan 2003 B2
6507214 Snyder Jan 2003 B1
6507215 Piasecki et al. Jan 2003 B1
6507857 Yalcinalp Jan 2003 B1
6509758 Piasecki et al. Jan 2003 B2
6512395 Lacey et al. Jan 2003 B1
6516428 Wenzel et al. Feb 2003 B2
6522128 Ely et al. Feb 2003 B1
6523416 Takagi et al. Feb 2003 B2
6525593 Mar Feb 2003 B1
6526556 Stoica et al. Feb 2003 B1
6529791 Takagi Mar 2003 B1
6530065 McDonald et al. Mar 2003 B1
6534970 Ely et al. Mar 2003 B1
6535061 Darmawaskita et al. Mar 2003 B2
6535200 Philipp Mar 2003 B2
6535946 Bryant et al. Mar 2003 B1
6536028 Katsioulas et al. Mar 2003 B1
6539534 Bennett Mar 2003 B1
6542025 Kutz et al. Apr 2003 B1
6542844 Hanna Apr 2003 B1
6542845 Grucci et al. Apr 2003 B1
6546297 Gaston et al. Apr 2003 B1
6552933 Roohparvar Apr 2003 B2
6553057 Sha Apr 2003 B1
6554469 Thomson et al. Apr 2003 B1
6557164 Faustini Apr 2003 B1
6559685 Green May 2003 B2
6560306 Duffy May 2003 B1
6560699 Konkle May 2003 B1
6563391 Mar May 2003 B1
6564179 Belhaj May 2003 B1
6566961 Dasgupta et al. May 2003 B2
6567426 van Hook et al. May 2003 B1
6567932 Edwards et al. May 2003 B2
6570557 Westerman et al. May 2003 B1
6571331 Henry et al. May 2003 B2
6571373 Devins et al. May 2003 B1
6574590 Kershaw et al. Jun 2003 B1
6574739 Kung et al. Jun 2003 B1
6575373 Nakano Jun 2003 B1
6577258 Ruha et al. Jun 2003 B2
6578174 Zizzo Jun 2003 B2
6580329 Sander Jun 2003 B2
6581191 Schubert et al. Jun 2003 B1
6587093 Shaw et al. Jul 2003 B1
6587995 Duboc et al. Jul 2003 B1
6588004 Southgate et al. Jul 2003 B1
6590422 Dillon Jul 2003 B1
6590517 Swanson Jul 2003 B1
6590589 Sluiman et al. Jul 2003 B1
6591369 Edwards et al. Jul 2003 B1
6592626 Bauchot et al. Jul 2003 B1
6594799 Robertson et al. Jul 2003 B1
6597212 Wang et al. Jul 2003 B1
6597824 Newberg et al. Jul 2003 B2
6598178 Yee et al. Jul 2003 B1
6600346 Macaluso Jul 2003 B1
6600351 Bisanti et al. Jul 2003 B2
6600575 Kohara Jul 2003 B1
6601189 Edwards et al. Jul 2003 B1
6601236 Curtis Jul 2003 B1
6603330 Snyder Aug 2003 B1
6603348 Preuss et al. Aug 2003 B1
6604179 Volk et al. Aug 2003 B2
6606731 Baum et al. Aug 2003 B1
6608472 Kutz et al. Aug 2003 B1
6610936 Gillespie et al. Aug 2003 B2
6611220 Snyder Aug 2003 B1
6611276 Muratori et al. Aug 2003 B1
6611856 Liao et al. Aug 2003 B1
6611952 Prakash et al. Aug 2003 B1
6613098 Sorge et al. Sep 2003 B1
6614260 Welch et al. Sep 2003 B1
6614320 Sullam et al. Sep 2003 B1
6614374 Gustavsson et al. Sep 2003 B1
6614458 Lambert et al. Sep 2003 B1
6615167 Herzl et al. Sep 2003 B1
6617888 Volk Sep 2003 B2
6618854 Mann Sep 2003 B1
6621356 Gotz et al. Sep 2003 B2
6624640 Lund et al. Sep 2003 B2
6625765 Krishnan Sep 2003 B1
6628163 Dathe et al. Sep 2003 B2
6628311 Fang Sep 2003 B1
6631508 Williams Oct 2003 B1
6634008 Dole Oct 2003 B1
6636096 Schaffer et al. Oct 2003 B2
6637015 Ogami et al. Oct 2003 B1
6639586 Gerpheide Oct 2003 B2
6642857 Schediwy et al. Nov 2003 B1
6643151 Nebrigic et al. Nov 2003 B1
6643810 Whetsel Nov 2003 B2
6649924 Philipp et al. Nov 2003 B1
6650581 Hong et al. Nov 2003 B2
6658498 Carney et al. Dec 2003 B1
6658633 Devins et al. Dec 2003 B2
6661288 Morgan et al. Dec 2003 B2
6661410 Casebolt et al. Dec 2003 B2
6661724 Snyder et al. Dec 2003 B1
6664978 Kekic et al. Dec 2003 B1
6664991 Chew et al. Dec 2003 B1
6667642 Moyal Dec 2003 B1
6667740 Ely et al. Dec 2003 B2
6670852 Hauck Dec 2003 B1
6671869 Davidson et al. Dec 2003 B2
6673308 Hino et al. Jan 2004 B2
6677814 Low et al. Jan 2004 B2
6677932 Westerman Jan 2004 B1
6678645 Rajsuman et al. Jan 2004 B1
6678877 Perry et al. Jan 2004 B1
6680632 Meyers et al. Jan 2004 B1
6680731 Gerpheide et al. Jan 2004 B2
6681280 Miyake et al. Jan 2004 B1
6681359 Au et al. Jan 2004 B1
6683462 Shimizu Jan 2004 B2
6683930 Dalmia Jan 2004 B1
6686787 Ling Feb 2004 B2
6686860 Gulati et al. Feb 2004 B2
6690224 Moore Feb 2004 B1
6691193 Wang et al. Feb 2004 B1
6691301 Bowen Feb 2004 B2
6697754 Alexander Feb 2004 B1
6701340 Gorecki Mar 2004 B1
6701487 Ogami et al. Mar 2004 B1
6701508 Bartz et al. Mar 2004 B1
6704381 Moyal et al. Mar 2004 B1
6704879 Parrish Mar 2004 B1
6704889 Veenstra et al. Mar 2004 B2
6704893 Bauwens et al. Mar 2004 B1
6705511 Dames et al. Mar 2004 B1
6711226 Williams et al. Mar 2004 B1
6711731 Weiss Mar 2004 B2
6713897 Caldwell Mar 2004 B2
6714066 Gorecki et al. Mar 2004 B2
6714817 Daynes et al. Mar 2004 B2
6715132 Bartz et al. Mar 2004 B1
6717474 Chen et al. Apr 2004 B2
6718294 Bortfeld Apr 2004 B1
6718520 Merryman et al. Apr 2004 B1
6718533 Schneider et al. Apr 2004 B1
6724220 Snyder et al. Apr 2004 B1
6728900 Meli Apr 2004 B1
6728902 Kaiser et al. Apr 2004 B2
6730863 Gerpheide May 2004 B1
6731552 Perner May 2004 B2
6732068 Sample et al. May 2004 B2
6732347 Bixler et al. May 2004 B1
6738858 Fernald et al. May 2004 B1
6744323 Moyal et al. Jun 2004 B1
6745369 May et al. Jun 2004 B1
6748569 Brooke et al. Jun 2004 B1
6750852 Gillespie Jun 2004 B2
6750889 Livingston Jun 2004 B1
6754101 Terzioglu et al. Jun 2004 B2
6754723 Kato Jun 2004 B2
6754765 Chang et al. Jun 2004 B1
6754849 Tamura Jun 2004 B2
6757882 Chen et al. Jun 2004 B2
6765407 Snyder Jul 2004 B1
6768337 Kohno et al. Jul 2004 B2
6768352 Maher et al. Jul 2004 B1
6769622 Tournemille et al. Aug 2004 B1
6771552 Fujisawa Aug 2004 B2
6774644 Eberlein Aug 2004 B2
6781456 Pradhan Aug 2004 B2
6782068 Wilson et al. Aug 2004 B1
6784821 Lee Aug 2004 B1
6785881 Bartz et al. Aug 2004 B1
6788116 Cook et al. Sep 2004 B1
6788221 Ely et al. Sep 2004 B1
6788521 Nishi Sep 2004 B2
6791377 Ilchmann et al. Sep 2004 B2
6792584 Eneboe et al. Sep 2004 B1
6798218 Kasperkovitz Sep 2004 B2
6798299 Mar et al. Sep 2004 B1
6799198 Huboi et al. Sep 2004 B1
6806771 Hildebrant et al. Oct 2004 B1
6806782 Motoyoshi et al. Oct 2004 B2
6809275 Cheng et al. Oct 2004 B1
6809566 Xin-LeBlanc Oct 2004 B1
6810442 Lin et al. Oct 2004 B1
6815979 Ooshita Nov 2004 B2
6816544 Bailey et al. Nov 2004 B1
6817005 Mason et al. Nov 2004 B2
6819142 Viehmann et al. Nov 2004 B2
6823282 Snyder Nov 2004 B1
6823497 Schubert et al. Nov 2004 B2
6825689 Snyder Nov 2004 B1
6825869 Bang Nov 2004 B2
6828824 Betz et al. Dec 2004 B2
6829727 Pawloski Dec 2004 B1
6834384 Fiorella, II et al. Dec 2004 B2
6836169 Richmond et al. Dec 2004 B2
6839774 Ahn et al. Jan 2005 B1
6842710 Gehring et al. Jan 2005 B1
6847203 Conti et al. Jan 2005 B1
6850117 Weber et al. Feb 2005 B2
6850554 Sha et al. Feb 2005 B1
6853598 Chevallier Feb 2005 B2
6854067 Kutz et al. Feb 2005 B1
6856433 Hatano et al. Feb 2005 B2
6859884 Sullam Feb 2005 B1
6862240 Burgan Mar 2005 B2
6864710 Lacey et al. Mar 2005 B1
6865429 Schneider et al. Mar 2005 B1
6865504 Larson et al. Mar 2005 B2
6868500 Kutz et al. Mar 2005 B1
6871253 Greeff et al. Mar 2005 B2
6871331 Bloom et al. Mar 2005 B1
6873203 Latham, II et al. Mar 2005 B1
6873210 Mulder et al. Mar 2005 B2
6876941 Nightingale Apr 2005 B2
6880086 Kidder et al. Apr 2005 B2
6888453 Lutz et al. May 2005 B2
6888538 Ely et al. May 2005 B2
6892310 Kutz et al. May 2005 B1
6892322 Snyder May 2005 B1
6893724 Lin et al. May 2005 B2
6894928 Owen May 2005 B2
6897390 Caldwell et al. May 2005 B2
6898703 Ogami et al. May 2005 B1
6900663 Roper et al. May 2005 B1
6901014 Son et al. May 2005 B2
6901563 Ogami et al. May 2005 B1
6903402 Miyazawa Jun 2005 B2
6903613 Mitchell et al. Jun 2005 B1
6904570 Foote et al. Jun 2005 B2
6910126 Mar et al. Jun 2005 B1
6911857 Stiff Jun 2005 B1
6917661 Scott et al. Jul 2005 B1
6922821 Nemecek Jul 2005 B1
6924668 Muller et al. Aug 2005 B2
6934674 Douezy et al. Aug 2005 B1
6937075 Lim et al. Aug 2005 B2
6940356 McDonald et al. Sep 2005 B2
6941336 Mar Sep 2005 B1
6941538 Hwang et al. Sep 2005 B2
6944018 Caldwell Sep 2005 B2
6949811 Miyazawa Sep 2005 B2
6949984 Siniscalchi Sep 2005 B2
6950954 Sullam et al. Sep 2005 B1
6950990 Rajarajan et al. Sep 2005 B2
6952778 Snyder Oct 2005 B1
6954511 Tachimori Oct 2005 B2
6954904 White Oct 2005 B2
6956419 Mann et al. Oct 2005 B1
6957180 Nemecek Oct 2005 B1
6957242 Snyder Oct 2005 B1
6961686 Kodosky et al. Nov 2005 B2
6963233 Puccio et al. Nov 2005 B2
6963908 Lynch et al. Nov 2005 B1
6966039 Bartz et al. Nov 2005 B1
6967511 Sullam Nov 2005 B1
6967960 Bross et al. Nov 2005 B1
6968346 Hekmatpour Nov 2005 B2
6969978 Dening Nov 2005 B2
6970844 Bierenbaum Nov 2005 B1
6971004 Pleis et al. Nov 2005 B1
6973400 Cahill-O'Brien et al. Dec 2005 B2
6975123 Malang et al. Dec 2005 B1
6980060 Boerstler et al. Dec 2005 B2
6981090 Kutz et al. Dec 2005 B1
6988192 Snider Jan 2006 B2
6996799 Cismas et al. Feb 2006 B1
7005933 Shutt Feb 2006 B1
7009444 Scott Mar 2006 B1
7010773 Bartz et al. Mar 2006 B1
7015735 Kimura et al. Mar 2006 B2
7017145 Taylor Mar 2006 B2
7017409 Zielinski et al. Mar 2006 B2
7020854 Killian et al. Mar 2006 B2
7023215 Steenwyk Apr 2006 B2
7023257 Sullam Apr 2006 B1
7024636 Weed Apr 2006 B2
7024654 Bersch et al. Apr 2006 B2
7026861 Steenwyk Apr 2006 B2
7030513 Caldwell Apr 2006 B2
7030656 Lo et al. Apr 2006 B2
7030688 Dosho et al. Apr 2006 B2
7030782 Ely et al. Apr 2006 B2
7034603 Brady et al. Apr 2006 B2
7042301 Sutardja May 2006 B2
7047166 Dancea May 2006 B2
7055035 Allison et al. May 2006 B2
7058921 Hwang et al. Jun 2006 B1
7073158 McCubbrey Jul 2006 B2
7076420 Snyder et al. Jul 2006 B1
7079166 Hong Jul 2006 B1
7086014 Bartz et al. Aug 2006 B1
7088166 Reinschmidt et al. Aug 2006 B1
7089175 Nemecek et al. Aug 2006 B1
7091713 Erdelyi et al. Aug 2006 B2
7092980 Mar et al. Aug 2006 B1
7098414 Caldwell Aug 2006 B2
7099818 Nemecek Aug 2006 B1
7100133 Meiyappan et al. Aug 2006 B1
7103108 Beard Sep 2006 B1
7109978 Gillespie et al. Sep 2006 B2
7117485 Wilkinson et al. Oct 2006 B2
7119550 Kitano et al. Oct 2006 B2
7119602 Davis Oct 2006 B2
7124376 Zaidi et al. Oct 2006 B2
7127630 Snyder Oct 2006 B1
7129793 Gramegna Oct 2006 B2
7129873 Kawamura Oct 2006 B2
7132835 Arcus Nov 2006 B1
7133140 Lukacs et al. Nov 2006 B2
7133793 Ely et al. Nov 2006 B2
7138841 Li et al. Nov 2006 B1
7138868 Sanchez et al. Nov 2006 B2
7139530 Kusbel Nov 2006 B2
7141968 Hibbs et al. Nov 2006 B2
7141987 Hibbs et al. Nov 2006 B2
7149316 Kutz et al. Dec 2006 B1
7150002 Anderson et al. Dec 2006 B1
7151528 Taylor et al. Dec 2006 B2
7152027 Andrade et al. Dec 2006 B2
7154294 Liu et al. Dec 2006 B2
7161936 Barrass et al. Jan 2007 B1
7162410 Nemecek et al. Jan 2007 B1
7171455 Gupta et al. Jan 2007 B1
7176701 Wachi et al. Feb 2007 B2
7178096 Rangan et al. Feb 2007 B2
7180342 Shutt et al. Feb 2007 B1
7185162 Snyder Feb 2007 B1
7185321 Roe et al. Feb 2007 B1
7188063 Snyder Mar 2007 B1
7193901 Ruby et al. Mar 2007 B2
7199783 Wenstrand et al. Apr 2007 B2
7200507 Chen et al. Apr 2007 B2
7206733 Nemecek Apr 2007 B1
7212189 Shaw et al May 2007 B2
7221187 Snyder et al. May 2007 B1
7227389 Gong et al. Jun 2007 B2
7236921 Nemecek et al. Jun 2007 B1
7250825 Wilson et al. Jul 2007 B2
7256588 Howard et al. Aug 2007 B2
7265633 Stiff Sep 2007 B1
7266768 Ferlitsch et al. Sep 2007 B2
7281846 McLeod Oct 2007 B2
7282905 Chen et al. Oct 2007 B2
7283151 Nihei et al. Oct 2007 B2
7283410 Hsu et al. Oct 2007 B2
7287112 Pleis et al. Oct 2007 B1
7288977 Stanley Oct 2007 B2
7290244 Peck et al. Oct 2007 B2
7295049 Moyal et al. Nov 2007 B1
7298124 Kan et al. Nov 2007 B2
7301835 Joshi et al. Nov 2007 B2
7305510 Miller Dec 2007 B2
7307485 Snyder et al. Dec 2007 B1
7308608 Pleis et al. Dec 2007 B1
7312616 Snyder Dec 2007 B2
7323879 Kuo et al. Jan 2008 B2
7324380 Negut et al. Jan 2008 B2
7332976 Brennan Feb 2008 B1
7342405 Eldridge et al. Mar 2008 B2
7358714 Watanabe et al. Apr 2008 B2
7367017 Maddocks et al. Apr 2008 B2
7373437 Seigneret et al. May 2008 B2
7376001 Joshi et al. May 2008 B2
7376904 Cifra et al. May 2008 B2
7386740 Kutz et al. Jun 2008 B2
7392011 Jacomb-Hood Jun 2008 B1
7400183 Sivadasan et al. Jul 2008 B1
7406674 Ogami et al. Jul 2008 B1
7421251 Westwick et al. Sep 2008 B2
7461274 Merkin Dec 2008 B2
7466307 Trent, Jr. et al. Dec 2008 B2
7542533 Jasa et al. Jun 2009 B2
7554847 Lee Jun 2009 B2
7616509 Qureshi et al. Nov 2009 B2
7809545 Ciolfi et al. Oct 2010 B2
20010002129 Zimmerman et al. May 2001 A1
20010010083 Satoh Jul 2001 A1
20010038392 Humpleman et al. Nov 2001 A1
20010043081 Rees Nov 2001 A1
20010044927 Karniewicz Nov 2001 A1
20010045861 Bloodworth et al. Nov 2001 A1
20010047509 Mason et al. Nov 2001 A1
20020010716 McCartney et al. Jan 2002 A1
20020016706 Cooke et al. Feb 2002 A1
20020023110 Fortin et al. Feb 2002 A1
20020042696 Garcia et al. Apr 2002 A1
20020052729 Kyung et al. May 2002 A1
20020059543 Cheng et al. May 2002 A1
20020063688 Shaw et al. May 2002 A1
20020065646 Waldie et al. May 2002 A1
20020068989 Ebisawa et al. Jun 2002 A1
20020073119 Richard Jun 2002 A1
20020073380 Cooke Jun 2002 A1
20020080186 Frederiksen Jun 2002 A1
20020085020 Carroll, Jr. Jul 2002 A1
20020099863 Comeau et al. Jul 2002 A1
20020109722 Rogers et al. Aug 2002 A1
20020116168 Kim Aug 2002 A1
20020121679 Bazarjani et al. Sep 2002 A1
20020122060 Markel Sep 2002 A1
20020129334 Dane et al. Sep 2002 A1
20020133771 Barnett Sep 2002 A1
20020133794 Kanapathippillai et al. Sep 2002 A1
20020138516 Igra Sep 2002 A1
20020144099 Muro, Jr. et al. Oct 2002 A1
20020145433 Morrise et al. Oct 2002 A1
20020152234 Estrada et al. Oct 2002 A1
20020152449 Lin Oct 2002 A1
20020156885 Thakkar Oct 2002 A1
20020156998 Casselman Oct 2002 A1
20020161802 Gabrick et al. Oct 2002 A1
20020166100 Meding Nov 2002 A1
20020174134 Goykhman Nov 2002 A1
20020174411 Feng et al. Nov 2002 A1
20020191029 Gillespie et al. Dec 2002 A1
20030011639 Webb Jan 2003 A1
20030014447 White Jan 2003 A1
20030025734 Boose et al. Feb 2003 A1
20030033588 Alexander Feb 2003 A1
20030041235 Meyer Feb 2003 A1
20030056071 Triece et al. Mar 2003 A1
20030058469 Buis et al. Mar 2003 A1
20030061572 McClannahan et al. Mar 2003 A1
20030062889 Ely et al. Apr 2003 A1
20030066057 RuDusky Apr 2003 A1
20030080755 Kobayashi May 2003 A1
20030097640 Abrams et al. May 2003 A1
20030105620 Bowen Jun 2003 A1
20030126947 Margaria Jul 2003 A1
20030135842 Frey et al. Jul 2003 A1
20030149961 Kawai et al. Aug 2003 A1
20030229482 Cook et al. Dec 2003 A1
20040018711 Madurawe Jan 2004 A1
20040054821 Warren et al. Mar 2004 A1
20040153802 Kudo et al. Aug 2004 A1
20040205553 Hall et al. Oct 2004 A1
20040205617 Light Oct 2004 A1
20040205695 Fletcher Oct 2004 A1
20050024341 Gillespie et al. Feb 2005 A1
20050066152 Garey Mar 2005 A1
20050143968 Odom et al. Jun 2005 A9
20050240917 Wu Oct 2005 A1
20050248534 Kehlstadt Nov 2005 A1
20050280453 Hsieh Dec 2005 A1
20060015862 Odom et al. Jan 2006 A1
20060031768 Shah et al. Feb 2006 A1
20060032680 Elias et al. Feb 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060273804 Delorme et al. Dec 2006 A1
20070139074 Reblewski Jun 2007 A1
20070258458 Kapoor Nov 2007 A1
20080086668 Jefferson et al. Apr 2008 A1
20080095213 Lin et al. Apr 2008 A1
20080186052 Needham et al. Aug 2008 A1
20080259998 Venkataraman et al. Oct 2008 A1
20080294806 Swindle et al. Nov 2008 A1
20090066427 Brennan Mar 2009 A1
20090322305 De Cremoux Dec 2009 A1
Foreign Referenced Citations (18)
Number Date Country
19710829 Sep 1998 DE
0308583 Mar 1989 EP
368398 May 1990 EP
0450863 Oct 1991 EP
0499383 Aug 1992 EP
0639816 Feb 1995 EP
1170671 Jan 2002 EP
1205848 May 2002 EP
1191423A2 Feb 2003 EP
04083405 Mar 1992 JP
04095408 Mar 1992 JP
05055842 Mar 1993 JP
06021732 Jan 1994 JP
9532478 Nov 1995 WO
9532481 Nov 1995 WO
PCTUS9617305 Jun 1996 WO
PCTUS9834376 Aug 1998 WO
PCTUS9909713 Feb 1999 WO
Provisional Applications (1)
Number Date Country
60243708 Oct 2000 US