Certain passenger vehicles are equipped with door latches that are capable of being manipulated between a locked state and unlocked state via a mechanical actuator. In some applications, the mechanical actuator is operated via an electrical system or motor. Still further, it may be desirable to allow a manual release mechanism of the latch to be bypassed when the latch is in a locked state or a lock function of the latch is activated. Thus, operation of the manual release mechanism does not transition the latch from a closed position to an open position when it is in a locked state. One example of such a latch is a rear occupant vehicle door latch.
In order to provide this feature or bypass feature numerous components are provided within the latch.
Accordingly, it is desirable to provide a latch or method of operating the latch in an efficient manner that allows for such a bypass feature to be provided in an efficient and durable configuration without adding to the complexity of the latch configuration.
In one non-limiting embodiment, a vehicle latch is provided. The latch having: a fork bolt movably mounted to the latch for movement between an open position and a closed position; a detent lever movably mounted to the latch for movement between a latched position and a released position, wherein the detent lever prevents the fork bolt from moving from the closed position to the open position when the detent lever is in the latched position; a bell crank lever movably mounted to the latch for movement between a first position and a second position, wherein the bell crank lever moves the detent lever from the latched position to the released position as the bell crank lever moves from the first position to the second position; a release lever movably mounted to the latch for movement between a first position and a second position; and an intermittent pin operatively coupled to bell crank lever and the release lever, wherein the intermittent pin is movably mounted to the bell crank lever and the release lever for movement between a first position and a second position, wherein movement of the release lever is not transferred to the bell crank lever when the intermittent pin is in the second position.
In another embodiment, a vehicle door latch is provided. The vehicle door latch having: a fork bolt movably mounted to the latch for movement between an open position and a closed position; a detent lever movably mounted to the latch for movement between a latched position and a released position, wherein the detent lever prevents the fork bolt from moving from the closed position to the open position when the detent lever is in the latched position; a bell crank lever movably mounted to the latch for movement between a first position and a second position, wherein the bell crank lever moves the detent lever from the latched position to the released position as the bell crank lever moves from the first position to the second position; a release lever movably mounted to the latch for movement between a first position and a second position; an intermittent pin operatively coupled to bell crank lever and the release lever, wherein the intermittent pin is movably mounted to the bell crank lever and the release lever for movement between a first position and a second position, wherein movement of the release lever is not transferred to the bell crank lever when the intermittent pin is in the second position and wherein the second position of the intermittent pin corresponds to a locked state of the latch; and a motor for moving the intermittent pin from its first position to its second position.
In another non-limiting embodiment, a method of disengaging a release lever from a bell crank lever of a vehicle door latch is provided. The method including the steps of: pivotally mounting a fork bolt to the latch for movement between an open position and a closed position; pivotally mounting the detent lever to the latch for movement between a latched position and a released position, wherein the detent lever engages the fork bolt and prevents the fork bolt from moving from the closed position to the open position when the detent lever is in the latched position; movably mounting a bell crank lever to the latch for movement between a first position and a second position, wherein the bell crank lever is configured to move the detent lever from the latched position to the released position as it moves from the first position to the second position; movably mounting a release lever to the latch for movement between a first position and a second position; operatively coupling the bell crank lever to the release lever by an intermittent pin, wherein the intermittent pin is movably mounted to the bell crank lever and the release lever for movement between a first position and a second position, wherein movement of the release lever is not transferred to the bell crank lever when the intermittent pin is in the second position.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
As mentioned above, it is desirable to provide certain latches with a means for bypassing a manual release mechanism or release lever of the latch when the latch is in a locked state or a lock function of the latch is activated. In one embodiment, this feature may be incorporated into a rear occupant latch of a vehicle.
Reference is made to the following U.S. Pat. Nos. 3,969,789; 6,568,741; 6,679,531; 8,348,310 and U.S. Patent Publication Nos. US 2010/0127512; US 2011/0204659; US 2012/0292927 and provisional Patent Application Ser. No. 61/806,530 filed Mar. 29, 2013, the entire contents each of which are incorporated herein by reference thereto.
Referring now to the FIGS. various embodiments of the invention will be described with reference to specific embodiments, without limiting same, the attached FIGS. shows portions of a latch or latch assembly 10.
In one embodiment, latch 10 is a vehicle door latch. A latch 10 of the type illustrated in the FIGS. is useful for the rear doors of the vehicle. Still further the latch 10 can be used with any vehicle door.
However, the latch 10 is applicable to any environment where the features of various embodiments of the invention are desired. For example, the latch assembly can be attached to a vehicle structure such that the fork bolt is moved between the open position and the closed position when a hood, door, window, lift gate, etc. is opened and closed and the fork bolt engages a striker that is attached to the hood, door, window, lift gate, etc.
Alternatively, the latch or latch assembly 10 can be secured to the hood, door, window, lift gate, etc. and the striker is secured to the vehicle body at an opening into which the hood, door, window, lift gate, etc. is received.
Latch 10 is located on a first element or first vehicle component which is either a frame (e.g., body member surrounding or proximate to an opening the movable member covers) or movable member (e.g., door, window, lift gate, hood, etc.) and includes a fork bolt or claw 12 and a detent lever or pawl 14. Each of which may be pivotally or movably mounted to a housing 16 or another portion or housing of the latch 10. In one non-limiting embodiment, the fork bolt 12 is capable of rotation about first stud or pin 18, while detent lever is a capable of rotation about a second stud or pin 20. During operation, a striker (not shown) is attached to a second element or second vehicle component, which is either the frame or movable member depending on which one has the latch 10 secured thereto.
In accordance with an exemplary embodiment, the fork bolt 12 is capable of movement between a first or latched position or closed position (see at least
Alternatively or in addition to the spring biasing force applied to the fork bolt 12, the movable member may also be spring biased or biased into an open position such that when the latch 10 is released fork bolt 12 will rotate and release striker. One non-limiting example of an item providing such a force is the compressed weather stripping or sealing member located around the periphery of the opening that is covered by the movable member. In other words, when the door is closed, the sealing member is compressed and the latch 10 engages the striker. Thereafter and when the latch 10 is released, the sealing member may provide an urging force to open the door or gate, etc.
During operation and in order to retain the latch 10 or fork bolt 12 in the latched position, the detent lever or pawl 14 is pivotally secured to the latch 10 for movement between an engaged position or latched position (see at least
The latch 10 further comprises a motor 30 configured to drive a worm gear 32. The worm gear 32 is configured to mesh with a sector gear or worm sector gear 34 that is rotatably mounted to the latch 10. The sector gear 34 is configured for movement in the direction of arrows 36 between a first position or unlocked position (See at least
An intermittent lever 38 is operatively coupled to the sector gear 34 such that as the sector gear 34 moves between the first position and the second position, the intermittent lever 38 moves between a first position (See at least
The latch 10 also comprises a release lever or unlatching lever or manual release 40 that is movably, pivotally or rotatably mounted to the latch for movement between a first position (See at least
When the latch 10 is in the locked position (See at least
The release lever 40 is operatively coupled to the detent lever 14 via a bell crank lever 42. An intermittent pin 44 operatively couples the release lever 40 to the bell crank lever 42 in order to transmit, when applicable, the desired movement to the detent lever 14.
The intermittent pin 44 is slidably received within a slot or opening 46 in the bell crank lever 42 as well as a slot or opening 48 in the release lever 40. The intermittent pin 44 is also movable between a first position (See at least
When the latch 10 is in the first position or unlocked position and accordingly the intermittent pin 44 is in the first position, movement of the release lever 40 is transferred to the bell crank lever 42 via intermittent pin 44 and the movement of the bell crank lever 42 caused by the release lever 40 is also transferred to the detent lever 14 due to the position of the intermittent pin 44. In other words, pin 44 contacts the edges of slots or openings 46 and 48 so that movement of the release lever 40 is transferred to the detent lever 14 due to the position of the intermittent pin 44.
If on the other hand the latch is in the second position or locked position and accordingly the intermittent pin 44 is in the second position, movement of the release lever 40 is not transferred to the bell crank lever 42 as pin 44 will move within opening 48 of the release lever 40. In other words, the intermittent pin 44 bypasses the bell crank lever 42 allowing the unlatching or release lever 40 to move within its full range of travel without transmitting the movement of the release lever 40 to the detent lever 14.
The intermittent pin 44 is operatively coupled to the intermittent lever 38 and is slidably received within a slot or opening 50 of the intermittent lever 38. Accordingly and as the intermittent lever 38 is moved between the first and second positions via the sector gear 34 the intermittent pin 44 is moved between its first and second positions.
As illustrated in the attached FIGS. and when the sector gear 34 is moved to its second position via motor 30, the intermittent pin 44 moves from its first position to its second position in the direction of arrow 52 and in slot or opening 46 of the bell crank lever 42.
Once the intermittent pin 44 is in its second position it is now aligned with an upper slot or opening 48 of the release lever 40 such that should the release lever 40 be moved from its first position to its second position when the intermittent pin 44 is in its second position the intermittent pin 44 will be allowed to move in the direction of arrow 54 and not contact an edge of opening 48 so that the movement of the release lever 40 will not be transferred to the bell crank lever 42. In other words, the slot or opening 48 on the release lever 40 is configured to allow the intermittent pin 44 to not be moved by the release lever 40 and thus not engage the bell crank lever 42 when the release lever 40 is moved. Accordingly, the movement of the release lever 40 will not be transferred to the bell crank lever 42 and thus the detent lever 14 will not be moved. Accordingly and when the intermittent pin 44 is in its second position, the intermittent pin 44 bypasses the bell crank lever 42 allowing the release lever 40 to move in its full range of motion without transmitting the movement to the detent lever 14.
Also shown is that the intermittent pin 44 is also slidably received within the slot or opening 50 of the intermittent lever 38 and movement of the intermittent lever 38 moves the intermittent pin 44 between its first position and its second position.
Accordingly, one embodiment of the present invention provides an intermittent component that translates a pin 44 into a bypassed condition (e.g., locked wherein forces applied to the release lever 40 are not transferred to the bell crank lever 42) or into a non-bypassed condition (e.g., unlocked wherein forces applied to the release lever 40 are transferred to the bell crank lever 42). This configuration does not add any bending stresses to the intermittent lever 38 when the latch is unlocked and the release lever 40 is pulled. This can be achieved due to the fact that the intermittent pin 44 is concentric to the rotation of the levers. The movement of the intermittent lever 38 is also achieved by means of a cam surface mounted to the worm gear 34 for rotation about the same axis of the worm gear sector 34.
Often in the door latching system industry, issues arise when confronted with the available packaging environment. Compounding the design issues are the requirements of the vehicles the latches are placed in such as electric locking, manual release handle and lock lever interfaces. Exemplary embodiments of the present invention allows for bypass functions without adding complexity to the latch 10.
As used herein, the terms “first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item. In addition, it is noted that the terms “bottom” and “top” are used herein, unless otherwise noted, merely for convenience of description, and are not limited to any one position or spatial orientation.
The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity).
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.
This application is a divisional application of U.S. patent application Ser. No. 14/541,697 filed on Nov. 14, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/904,905 filed on Nov. 15, 2013, the entire contents each of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
3695662 | Ploughman | Oct 1972 | A |
3969789 | Wize | Jul 1976 | A |
5667260 | Weyerstall | Sep 1997 | A |
5802894 | Jahrsetz et al. | Sep 1998 | A |
5918917 | Elton | Jul 1999 | A |
5997055 | Strathmann | Dec 1999 | A |
6019402 | Arabia, Jr. | Feb 2000 | A |
6053543 | Arabia, Jr. et al. | Apr 2000 | A |
6382687 | Gruhn | May 2002 | B1 |
6499776 | Takamura | Dec 2002 | B2 |
6511106 | Perkins | Jan 2003 | B2 |
6568741 | Leung et al. | May 2003 | B1 |
6575507 | Reddmann | Jun 2003 | B2 |
6679531 | Rogers, Jr. et al. | Jan 2004 | B2 |
7210714 | Berghahn et al. | May 2007 | B2 |
8348310 | Vazquez et al. | Jan 2013 | B2 |
8480138 | Bendel | Jul 2013 | B2 |
8876176 | Spurr et al. | Nov 2014 | B2 |
8955889 | Bendel et al. | Feb 2015 | B2 |
9194162 | Perkins | Nov 2015 | B2 |
9322198 | Kovie | Apr 2016 | B2 |
9428943 | Mitchell | Aug 2016 | B2 |
20010005079 | Takamura | Jun 2001 | A1 |
20020074805 | Perkins | Jun 2002 | A1 |
20020074806 | Perkins | Jun 2002 | A1 |
20020089188 | Edgar | Jul 2002 | A1 |
20020117863 | Shinkawa | Aug 2002 | A1 |
20030116977 | Erices | Jun 2003 | A1 |
20030127866 | Martinez et al. | Jul 2003 | A1 |
20040075284 | Hillgaertner | Apr 2004 | A1 |
20040201226 | Spurr | Oct 2004 | A1 |
20040227358 | Kachouh | Nov 2004 | A1 |
20050087994 | Umino | Apr 2005 | A1 |
20050218662 | Umino | Oct 2005 | A1 |
20060006670 | Song | Jan 2006 | A1 |
20060006671 | Noel et al. | Jan 2006 | A1 |
20060163883 | Hoshikawa et al. | Jul 2006 | A1 |
20070040391 | Fujihara | Feb 2007 | A1 |
20070210588 | Cetnar | Sep 2007 | A1 |
20080217928 | Spurr | Sep 2008 | A1 |
20100052336 | Bendel et al. | Mar 2010 | A1 |
20100127511 | Vasquez et al. | May 2010 | A1 |
20100127512 | Vazquez et al. | May 2010 | A1 |
20100244466 | Tomaszewski | Sep 2010 | A1 |
20110204659 | Estrada et al. | Aug 2011 | A1 |
20120292927 | Vazquez et al. | Nov 2012 | A1 |
20140091581 | Taurasi | Apr 2014 | A1 |
20140175809 | Takeuchi | Jun 2014 | A1 |
20140292000 | Vazquez et al. | Oct 2014 | A1 |
20150137530 | Vazquez | May 2015 | A1 |
20150308163 | Tomaszewski | Oct 2015 | A1 |
20160032630 | Machida | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
103132823 | Sep 2015 | CN |
29623782 | May 1996 | DE |
0603934 | Dec 1993 | EP |
Entry |
---|
English Translation to Office Action for Application No. 201410649461.1; dated Jun. 20, 2016. |
EP Office Action for Application No. 201410649461.1; dated Feb. 21, 2017. |
Office Action for Application No. 201410649461.1; dated Jun. 20, 2016. |
Search Report for Application No. 201410649461.1; dated Feb. 21, 2017. |
English Machine Translation Abstract of CN103132823. |
Number | Date | Country | |
---|---|---|---|
20200032559 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
61904905 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14541697 | Nov 2014 | US |
Child | 16592607 | US |