The exemplary embodiments relate generally to telecommunications and, more particularly, to an apparatus and method for providing emergency and alarm communications.
Emerging communications network protocols and solutions, such as Voice over Internet Protocol (VoIP) and WI-FI, allow individuals to use VoIP and WI-FI compatible devices to communicate with each other over wide area networks, such as the Internet, in the same manner in which they currently communicate over the Public Switched Telecommunications Network (PSTN). However, in most instances, owners of legacy devices such as cellular telephones and Plain Old Telephone System (POTS) devices which are compatible with cellular networks and the PSTN are not capable of interfacing these devices to networks associated with the emerging communications network protocol and solutions. Thus, legacy device owners are inconvenienced by having multiple devices that lack functionality with the emerging communications network protocols and solutions. Owners of legacy devices cannot convert data sent via the emerging communications network protocols and solutions to formats compatible with the legacy devices. Moreover, legacy devices cannot incorporate these data translation features with emergency and alarm detection and notification functions.
In accordance with exemplary embodiments, the above and other problems are solved by providing an apparatus and method for providing emergency and alarm communications. According to one aspect, an interface device provides communications between a first device and a second device. The interface device has an input for receiving data in a first format from the first device. Logic within the interface device is configured for detecting whether the data that is received at the first input is intended to request assistance from emergency services. If so, then the logic is operative to determine the proper routing for the data, retrieve location information, and to transmit the data to the appropriate Public Safety Answering Point (PSAP) or other emergency services location. If the data is not intended to request assistance from the emergency services, then the logic is configured for identifying the second device for receiving the data, identifying a second format for the data that is compatible with the second device, translating the data to the second format, and transmitting the translated data to the second device. The interface device has an output for transmitting the data to the emergency services or for transmitting the translated data to the second device. The location information may correspond to the geographical location of the interface device or the first device as determined by a Global Positioning System (GPS) or cellular signal triangulation.
According to a further aspect, an interface device provides communications between a first device and a second device. The interface device has a first input for receiving data in a first format the first device and a second input for receiving power from an external power source. Logic within the interface device is configured for identifying the second device for receiving the data. The logic identifies a second format that is compatible with the second device and translates the data to the second format. The interface device further includes an output for transmitting the translated data to the second device and a battery for providing power to the interface device when the second input is inoperative. The logic may further be configured to provide battery power to components according to a defined priority system, with high-priority components receiving power and low-priority components being powered down.
According to yet another aspect, a method provides for communications between a first device and a second device. The method includes receiving data in a first format from the first device at an input of an interface device. The second device for receiving the data is identified, as well as a second data format that is compatible with the second device. The translated data is transmitted to the second device via an output of the interface device. It is determined whether at least one component of the interface device is inoperative or malfunctioning. If so, then a notification is provided to the second device that the at least one component is inoperative or malfunctioning. The notification may include notice that functions of the at least one component are no longer available or will not be available after an estimated amount of time. The notification may be broadcast in a plurality of formats via a plurality of outputs of the interface device.
The above-described aspects may also be implemented as a computer-controlled apparatus, a computer process, a computing system, an apparatus, or as an article of manufacture such as a computer program product or computer-readable medium. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. The computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process.
These and various other features as well as advantages, which characterize exemplary embodiments, will be apparent from a reading of the following detailed description and a review of the associated drawings.
Many exemplary embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the exemplary embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Reference will now be made in detail to the description. While several illustrative embodiments will be described in connection with these drawings, there is no intent to limit it to the illustrative embodiment or illustrative embodiments disclosed therein. On the contrary, the intent is to cover all alternatives, modifications, and equivalents included within the spirit and scope of the embodiments as defined by the claims.
The received signaling data on signaling line 355 is conveyed to the cellular telephone 305 by the cellular phone docking station 310, thereby permitting control over certain operations of the cellular telephone 305 using the signaling data on signaling line 355. In conveying the signaling data on signaling line 355, the cellular phone docking station 305 may modify the signaling data on signaling line 355 appropriately (e.g., amplify, attenuate, reformat, etc.), or, alternatively, the cellular phone docking station 305 may relay the signaling data on signaling line 355 without modification. Regardless of whether or not the signaling data on signaling line 355 is modified, several aspects of the conveyed signal are discussed below, in greater detail, with reference to other components 350 associated with the interface device 240. Although the term line is used to describe various non-limiting embodiments, one skilled in the art will be aware that in some embodiments a line carrying signals may be a path on a separate communication media from other signals while the line carrying signals in other embodiments may be a path on a communications media into which many different signals are multiplexed using various multiplexing techniques understood to one of ordinary skill in the art. Furthermore, in other embodiments, the signals may be carried by wireless communication media.
In addition to the cellular phone docking station 310, the interface device 240 comprises an interface controller 370, an audio relay 365, a tone generator 375, and a power supply 335. The audio relay 365 is configured to exchange analog-audio signals 345 between the POTS devices 140, 150 (
The tone generator 375 is configured to generate certain tones that are used by the POTS devices 140, 150 (
In another example, when a user picks up a POTS telephone 140 (
The power supply 335 is configured to provide the components of the interface device 240 with the requisite power. In this sense, the power supply 335 is connected to an external power supply 330 from which it receives external power. The external power is converted by the power supply 335 to a DC voltage, which is used to power the cellular phone docking station 310, the tone generator 375, the interface controller 370, and any other device in the interface device 240 that may be powered by a DC source.
The interface controller 370 is configured to control the behavior of the audio relay 365, the tone generator 375, and the cellular phone docking station 310 during the conversion of POTS compatible signals to cellular network compatible signals, and vice versa. Thus, when an outgoing telephone call is placed by one of the POTS devices 140, 150 (
In another illustrative embodiment, information relating to the connected call is transmitted to the interface controller 370 as signaling data on signaling line 355, rather than as an analog-audio signal 345. In this illustrative embodiment, the cellular telephone 305 generates signaling data on signaling line 355 when the connection is established. The signaling data on signaling line 355 is received by the interface controller 370, which generates an audio-control signal 385 in response to the received signaling data on signaling line 355. The audio-control signal 385 enables the audio relay 365, thereby permitting bi-directional audio communication between the POTS telephone 140 (
In the case of an incoming telephone call, the cellular telephone 305 detects the incoming telephone call and conveys this information to the interface controller 370. In one illustrative embodiment, the information is conveyed to the interface controller 370 through the audio relay 365. Thus, in this illustrative embodiment, the incoming telephone call generates an analog-audio signal 345 at the cellular telephone 305. The analog-audio signal 345 is transmitted from the cellular telephone 305 to the audio relay 365 through the cellular phone docking station 310, and the audio relay 365 then indicates to the interface controller 370 that there is an incoming call. The interface controller 370 receives this information and generates a ring enable signal on ring enable line 395. The ring enable signal on ring enable line 395 is received by the tone generator 375, which generates the ring tone in response to the ring enable signal on ring enable line 395. The ring tone makes the POTS devices 140, 150 (
In another illustrative embodiment, the information is conveyed to the interface controller 370 through signaling data on signaling line 355. Thus, in this illustrative embodiment, when the cellular telephone 305 detects an incoming telephone call, it generates signaling data on signaling line 355. The signaling data on signaling line 355 is transmitted to the interface controller 370, thereby indicating that there is an incoming call. The interface controller 370 receives this information and generates a ring enable signal on ring enable line 395. The ring enable signal on ring enable line 395 is received by the tone generator 375, which generates the ring tone in response to the ring enable signal on ring enable line 395. The tone makes the POTS devices 140, 150 (
The off-hook/pulse sensor 430 is configured to detect when any of the POTS devices 140, 150 (
The off-hook/pulse sensor 430 is further configured to detect dialing from POTS devices 140, 150 (
The DTMF decoder 420 is configured to detect dialing from POTS devices 140, 150 (
It can be seen, from
In one illustrative embodiment, the numbers dialed by the POTS devices 140, 150 (
When the called party “picks up” the phone, the system detects, in step 940, an analog-audio signal 345 (
In another illustrative embodiment, rather than waiting for the called party to “pick up” the phone, the system detects an analog-audio signal 345 (
In another illustrative embodiment, rather than waiting for the called party to “pick up” the phone, the system detects an analog-audio signal 345 (
While several hardware components are shown with reference to
Turning now to
The interface device 1302 may include at least one interface 1306 for communicating directly with the device 1358b and for communicating with the communications network 1320b associated with the device 1358b. It will be appreciated by those skilled in the art that the interface 1306 may comprise a wireline or wireless adapter for communicating with the device 1358b and with the communications network 1320b, which may include one of the wired or wireless networks described above. The interface 1306 may conform to a variety of wired network standards for enabling communications between the interface device 1302 and the device 1358b via a wired signaling connection 1364 and between the interface device and the communications network 1320b via a wired signaling connection 1342. The interface 1306 may include, but is not limited to, a coaxial cable interface conformed to MPEG standards, POTS standards, and Data Over Cable Service Specifications (DOCSIS). The interface 1306 may also conform to Ethernet LAN standards and may include an Ethernet interface, such as an RJ45 interface (not shown). The interface 1306 may further include a twisted pair interface conformed to POTS standards, Digital Subscriber Line (DSL) protocol, and Ethernet LAN standards. Moreover, the interface 1306 may include a fiber optics interface conformed to Synchronous Optical Network (SONET) standards and Resilient Packet Ring standards. It will be appreciated that the interface 1306 may also conform to other wired standards or protocols such as High Definition Multimedia Interface (HDMI).
The interface 1306 may further conform to a variety of wireless network standards for enabling communications between the interface device 1302 and the device 1358b via a wireless signaling connection 1366 and between the interface device and the communications network 1320b associated with the device via a wireless signaling connection 1340. The interface 1306 may include a cellular interface conformed to Advanced Mobile Phone System (AMPS) standards, Global System for Mobile Communications (GSM) standards, and Cellular Digital Packet Data (CDPD) standards for enabling communications between the interface device 1302 and the communications network 1320b. The interface 1306 may also include a WI-FI interface conformed to the 802.11x family of standards (such as 802.11a, 802.11b, and 802.11g). The interface 1306 may further include a WiMax interface conformed to the 802.16 standards. Moreover, the interface 1306 may include at least one of a satellite interface conformed to satellite standards or a receiver conformed to over-the-air broadcast standards such as, but not limited to, National Television System Committee (NTSC) standards, Phase Alternating Line (PAL) standards, and high definition standards. It will be appreciated that the interface 1306 may also conform to other wireless standards or protocols such as BLUETOOTH, ZIGBEE, and Ultra Wide Band (UWB). According to various embodiments, the interface device 1302 may include any number of interfaces 1306, each conformed to at least one of the variety of wired and wireless network standards described above for receiving data in a variety of formats from multiple devices and networks via multiple transmission media.
In one embodiment, the interface device 1302 may communicate with the device 1358a and with the communications network 1320a associated with the device 1358a via a relay device 1324. The relay device 1324 operates as a transceiver for the interface device 1302 to transmit and receive data to and from the device 1358a and the communications network 1320a. The relay device 1324 may modify the signaling data appropriately (e.g., amplify, attenuate, reformat, etc.), or, alternatively, the relay device 1324 may relay the signaling data without modification. Additionally, the relay device 1324 may be fixed, or may be portable to provide a user with a remote means for accessing data from a network or other device via the interface device 1302. Examples of fixed relay devices include, but are not limited to, a DSL modem, a cable modem, a set top device, and a fiber optic transceiver. Examples of portable relay devices include portable communications devices such as, but not limited to, a cellular telephone, a WI-FI telephone, a VoIP telephone, a PDA, a satellite transceiver, or a laptop.
The relay device 1324 may also include a combination of a fixed device and a portable device. For example, the relay device 1324 may comprise a cellular telephone in combination with a docking station. The docking station remains connected to the interface device 1302, through wired or wireless means, while the cellular telephone may be removed from the docking station and transported with a user. In this embodiment, data received from the interface device 1302 at the cellular telephone may be taken with the user to be utilized at a remote location. While the cellular telephone is not docked with the docking station, communication would occur between the device 1358a and the interface device 1302 as well as between the communications network 1320a and the interface device via a direct connection or via an alternate relay device.
The device 1358a may provide data via signals, which are transmitted either over a wireless signaling connection 1360 or over a wired signaling connection 1362 directly to the relay device 1324. Alternatively, the communications network 1320a associated with the device 1358a may provide data via signals, which are transmitted either over a wireless signaling connection 1332 or over a wired signaling connection 1336 to the relay device 1324. The data may include audio, video, voice, text, rich media, or any combination thereof. Signals provided by the device 1358a over the wireless signaling connection 1360 to the relay device 1324 and signals provided by the communications network 1320a over the wireless signaling connection 1332 to the relay device may be in a format compatible with a cellular network, a WI-FI network, a WiMax network, a BLUETOOTH network, or a satellite network. Signals provided by the device 1358a over the wired signaling connection 1362 to the relay device 1324 and signals provided by the communications network 1320a over the wired signaling connection 1336 may be in a format compatible with a DSL modem, a cable modem, a coaxial cable set top box, or a fiber optic transceiver.
Once the relay device 1324 receives data from the device 1358a or from the communications network 1320a, the relay device may transmit the data to an interface 1304 associated with the interface device 1302 via a signal over a wireless signaling connection 1334 or a wired signaling connection 1338. In one embodiment, the device 1358a and the communications network 1320a may communicate both directly with the interface device 1302 through the interface 1304 and with the interface device via the relay device 1324 through the interface 1304. The interface 1304 may conform to a variety of wireless network standards for enabling communications between the interface device 1302 and the relay device 1324. The interface 1304 may include a cellular interface conformed to AMPS, GSM standards, and CDPD standards for enabling communications between the interface device 1302 and the relay device 1324. The interface 1304 may also include a WI-FI interface conformed to the 802.11x family of standards (such as 802.11a, 802.11b, and 802.11g). The interface 1304 may further include a WiMax interface conformed to the 802.16 standards. Moreover, the interface 1304 may include at least one of a cordless phone interface or a proprietary wireless interface. It will be appreciated by one skilled in the art that the interface 1304 may also conform to other wireless standards or protocols such as BLUETOOTH, ZIGBEE, and UWB.
The interface 1304 may also conform to a variety of wired network standards for enabling communications between the interface device 1302 and the relay device 1324. The interface 1304 may include, but is not limited to, microphone and speaker jacks, a POTS interface, a USB interface, a FIREWIRE interface, a HDMI, an Enet interface, a coaxial cable interface, an AC power interface conformed to Consumer Electronic Bus (CEBus) standards and X.10 protocol, a telephone interface conformed to Home Phoneline Networking Alliance (HomePNA) standards, a fiber optics interface, and a proprietary wired interface.
Signals provided by the relay device 1324 over the wireless signaling connection 1334 to the interface 1304 may be in a format compatible with a cellular network, a WI-FI network, a WiMax network, a BLUETOOTH network, or a proprietary wireless network. Signals provided over the wired signaling connection 1338 to the interface 1304 may be in a format compatible with microphone and speaker jacks, a POTS interface, a USB interface, a FIREWIRE interface, an Enet interface, a coaxial cable interface, an AC power interface, a telephone interface, a fiber optics interface, or a proprietary wired interface.
Data received at the interfaces 1304, 1306 either directly from the devices 1358a, 1358b and the communications networks 1320a, 1320b or via the relay device 1324 is provided to an interface controller 1308 via a signaling line 1316. The interface controller 1308 is similar to the interface controller 370 of the interface device 240 described above with respect to
The interface controller 1308 is further configured to receive data from the user devices 1322a-1322n and the communications networks 1356a, 1356b, identify one or more of the devices 1358a, 1358b and/or one or more of the communications network 1320a, 1320b to receive the data, identify a format compatible with the one or more receiving devices and/or receiving networks, and translate the current format of the data to the format compatible with the one or more receiving devices and/or receiving networks. Thus, the interface controller 1308 provides a bi-directional communication for all data transmitted between the devices 1358a, 1358b and the user devices 1322a-1322n, between the devices 1358a, 1358b and the communications networks 1356a, 1356b, between the communications networks 1320a, 1320b and the user devices 1322a-1322n, and between the communication networks 1320a, 1320b and the communications network 1356a, 1356b. In an illustrative embodiment, the interface controller 1308 is also configured to either amplify or attenuate the signals carrying the data transmitted between the communications networks and the devices.
The interfaces 1326, 1328, and 1330 may transmit the data to the user devices 1322a-1322n directly, as illustrated by the interface 1330 in
The interfaces 1326, 1328, and 1330 may conform to a variety of wireless network standards for enabling communications between the interface device 1302 and the devices 1322a-1322n or the communications networks 1356a, 1356b. The interfaces 1326, 1328, and 1330 may include at least one cellular interface conformed to AMPS, GSM standards, and CDPD standards for enabling communications between the interface device 1302 and the devices 1322a, 1322b, and 1322n. The interfaces 1326, 1328, and 1330 may also include at least one WI-FI interface conformed to the 802.11x family of standards (such as 802.11a, 802.11b, and 802.11g). The interfaces 1326, 1328, and 1330 may further include at least one WiMax interface conformed to the 802.16 standards. Moreover, the interfaces 1326, 1328, and 1330 may include at least one of a cordless phone interface or a proprietary wireless interface. It will be appreciated by those skilled in the art that the interfaces 1326, 1328, and 1330 may also conform to other wireless standards or protocols such as BLUETOOTH, ZIGBEE, and UWB.
The interfaces 1326, 1328, and 1330 may also conform to a variety of wired network standards for enabling communications between the interface device 1302 and the devices 1322a-1322n or the communications networks 1356a, 1356b. The interfaces 1326, 1328, and 1330 may include, but are not limited to, microphone and speaker jacks, a POTS interface, a USB interface, a FIREWIRE interface, a HDMI, an Enet interface, a coaxial cable interface, an AC power interface conformed to CEBus standards and X.10 protocol, a telephone interface conformed to HomePNA standards, a fiber optics interface, and a proprietary wired interface.
Signals provided by the interfaces 1326, 1328, and 1330 over the wireless signaling connections 1346, 1350, and 1354 may be in a format compatible with a cellular network, a WI-FI network, a WiMax network, a BLUETOOTH network, or a proprietary wireless network. Signals provided over the wired signaling connections 1344, 1348, and 1352 may be in a format compatible with microphone and speaker jacks, a POTS interface, a USB interface, a FIREWIRE interface, a HDMI, an Enet interface, a coaxial cable interface, an AC power interface, a telephone interface, a fiber optics interface, or a proprietary wired interface.
For some interfaces such as, but not limited to, POTS interfaces, functionality of the interfaces that provide service from a network to a user device is different from the functionality of the interfaces that receive service from the network. Interfaces that deliver service from a network to a user device are commonly referred to as Foreign eXchange Subscriber (FXS) interfaces, and interfaces that receive service from the network are commonly referred to as Foreign eXchange Office (FXO) interfaces. In general, the FXS interfaces provide the user device dial tone, battery current, and ring voltage, and the FXO interfaces provide the network with on-hook/off-hook indications. In an embodiment, the interfaces 1326, 1328, and 1330 are the FXS interfaces that deliver data from the communications networks 1320a, 1320b to the user devices 1322a-1322n, and the interfaces 1304,1306 are the FXO interfaces that receive data from the communications networks 1320a, 1320b.
As mentioned above, the interface controller 1308 may control the translation of the data received at the interface device 1302 from one format to another. In particular, the interface controller 1308 is configured to control the behavior of the relay device 1324 and any additional components necessary for translating data in order to effectuate the translation of the data from one format to another format. For example, as described above, for translating between POTS compatible signals and cellular network compatible signals, the interface controller 1302 may communicate with an audio relay and a tone generator, and includes an off-hook/pulse sensor and a DTMF decoder. The interface device 1302 shares the same capabilities for translating between POTS compatible signals and cellular network compatible signals as described above with regard to the interface device 240 illustrated in
According to one embodiment of the present invention, the interface controller 1308 comprises a processor 1372, RAM 1374, and non-volatile memory 1368 including, but not limited to, ROM and SRAM. The non-volatile memory 1368 is configured to store logic used by the interface controller 1308 to translate data received at the interface device 1302. In this sense, the non-volatile memory 1368 is configured to store the program that controls the behavior of the interface controller 1308, thereby allowing the interface controller 1308 to translate data signals from one format to another. The non-volatile memory 1368 is also adapted to store configuration information and may be adapted differently depending on geographical area and signal formats and protocols. The configuration information stored on the non-volatile memory 1368 of the interface controller 1308 may include default configuration information originally provided on the interface device 1302. In another embodiment of the present invention, the configuration information stored on the non-volatile memory 1368 may include a user profile 1370 associated with one or more of the devices 1322a-1322n, one or more of the communications networks 1356a, 1356b, or a combination thereof.
The user profile 1370 may include user preferences established by one or more users of the interface device 1302 regarding formats in which data is to be transmitted and received, translations to be performed on the data, the devices and networks to send and receive the data, as well as any other configuration information associated with transmitting data via the interface device 1302. The RAM 1374 is configured to store temporary data during the running of the program by the processor 1372, allowing the RAM to operate as a memory buffer for times in which the data is being received at a rate that is faster than the interface device 1302 can determine a proper recipient, translate the data, and transmit the data to the proper recipient. The processor 1372 is configured to generate signaling data on the signaling line 1316, which may instruct the relay device 1324 to dial a number, connect to a network, etc. The interface device 1302 may further include a battery 1384 for providing back-up power to essential components and a GPS receiver 1376 for determining the geographic location of the interface device 1302. These components will be described in greater detail below.
As mentioned above, the interface device 1302 contains logic within the interface controller 1308 that is used by the interface controller to translate data received at the interface device. The logic may include any number and types of data translation standards. In particular, the interface controller 1308 uses the logic to translate the data received at one of the interfaces 1304, 1306, 1326, 1328, 1330 of the interface device 1302 from at least one format to at least one other format. How the data received at the interface device 1302 is translated may be based on any one or combination of factors. According to one embodiment, the type of data translation may depend on the source and destination of the data. It should be understood that although the description contained herein describes the devices 1358a, 1358b and the communications networks 1320a, 1320b as the source devices and the source networks, respectively, and the user devices 1322a-1322n and the communications networks 1356a, 1356b as the destination devices and the destination networks, respectively, embodiments contemplate data transfer from the user devices 1322a-1322n and from the communications networks 1356a, 1356b to the devices 1358a, 1358b and to the communications networks 1320a, 1320b as well as bidirectional communication and data transfer. As an example, data arriving at the interface device 1302 that is directed to a POTS device would be translated to a format compatible for transmission over the appropriate medium associated with the POTS device.
According to another embodiment, the type of data translation may depend on default configuration information originally provided on the interface device 1302. For example, the default configuration information may be provided by a service provider offering the interface device 1302 to customers. In yet another embodiment, the type of data translations may depend on a user profile 1370 stored on the interface device 1302. As discussed above, the user profile 1370 may be configured by a user of the interface device 1302 to include user preferences regarding formats in which data is to be transmitted and received, translations to be performed on the data, the devices and networks to send and receive the data, as well as any other configuration information associated with transmitting data via the interface device 1302.
When configuring the user profile 1370, the user may specify the appropriate destination device, transmission medium, and filtering options for data received under any variety of circumstances. For example, the user may configure the interface device 1302 such that all incoming rich media content is translated for transmission to and display on the device 1322b, which, as discussed above, may include a television. The user might configure the interface device 1302 such that only media from specific websites be allowed to download to a device or network via the interface device 1302. In doing so, the user profile 1370 might include access data such as a user name and password that will be required from the user prior to accessing a specific type or quantity of data. The user profile 1370 may additionally contain priorities for translation and transmission when multiple data signals and data formats are received at the interface device 1302. For example, a user may specify that audio data be given transmission priority over other types of data. The priority may be based on a specific transmitting or receiving device, the type of transmitting or receiving device, the format of the data being transmitted or received, the transmission medium of the transmitting or receiving signals, or any other variable. As used herein, the format associated with the data may include a transmission medium associated with the signal carrying the data, a standard associated with the data, or the content of the data.
It should be understood by one skilled in the art that data translations as discussed above may include several different types of data conversion. First, translating data may include converting data from a format associated with one transmission medium to another transmission medium. For example, audio data from an incoming telephone call may be translated from a wireless, cellular signal to a twisted pair wiring signal associated with POTS telephones. Next, data translation may include converting data from one type to another, such as when voice data from a telephone or network is translated into text data for display on a television or other display device. For example, data translation may include, but is not limited to MPEG 2 translation to MPEG 4, or the reverse, Synchronized Multimedia Interface Language (SMIL) to MPEG 1, or Macromedia Flash to MPEG 4.
Additionally, data translation may include content conversion or filtering such that the substance of the data is altered. For example, rich media transmitted from one or more of the devices 1358a, 1358b or one or more of the communications networks 1320a, 1320b may be filtered so as to extract only audio data for transmittal to one or more of the user devices 1322a-1322n or one or more of the communications networks 1356a, 1356b. Translation may further include enhancing the data, applying equalizer settings to the data, improving a poor quality signal carrying data based on, e.g., known characteristics of the device providing the data signal, degrading the data signal, or adding a digital watermark to the data to identify the device or the network associated with the data or the user sending the data. Translation may further include adding information to the data and annotating the data. Moreover, translation may include any combination of the above types of data conversions.
In one embodiment, data received at the interface controller 1308 may include a request for data. It should be understood that the request may be dialed telephone numbers, an IP address associated with a network or device, or any other communication initiating means. When a request for data is provided by one of the user devices 1322a-1322n, the devices 1358a, 1358b, the communications networks 1320a, 1320b, or the communications networks 1356a, 1356b, the interface controller 1308 receives the request and converts the request to a digital command. The digital command is transmitted as signaling data either on the signaling line 1316 to one or more of the interfaces 1304, 1306 or on the signaling line 1318 to one or more of the interfaces 1326, 1328, and 1330 based on the devices and/or communications networks identified to receive the request. Once received at one or more of the interfaces 1304, 1306 or one or more of the interfaces 1326, 1328, and 1330, the signaling data is transmitted to the destination devices and/or communications networks either directly or via the relay device 1324. If the signaling data is transmitted to the relay device 1324, the signaling data instructs the relay device to make the required connection to the identified devices 1358a, 1358b and/or the identified communications networks 1320a, 1320b.
When a connection is made between the device 1358a and one or more of the user devices 1322a-1322n, between the device 1358a and one or more of the communications networks 1356a, 1356b, between the communications network 1320a and one or more of the user devices 1322a-1322n, or between the communication network 1320a and one or more of the communications network 1356a, 1356b in response to a request for data, the relay device 1324 detects the connection and conveys a signal to the interface controller 1308. In this illustrative embodiment, in response to receiving the signal from the relay device 1324, the interface controller 1308 enables bi-directional communication of the requested data. If one of the devices and/or communications networks that requested the data disconnects, then the disconnect is detected by the interface controller 1308. In this illustrative embodiment, the interface controller 1308 terminates the bi-directional communication by generating another signal, which instructs the relay device 1324 to stop transmission and reception of the data. If, on the other hand, the relay device 1324 disconnects, then this is detected by the interface controller 1308, which, in response, terminates the bi-directional communication by stopping transmission and reception of the data.
While hardware components are shown with reference to
The power supply 1312 is configured to provide the components of the interface device 1302 with the requisite power similar to the power supply 335 discussed above in view of
In order to extend the life of the battery 1384, the interface controller 1308 may selectively provide battery power to components of the interface device 1302 according to a priority system. Various components corresponding to various functions of the interface device 1302 are assigned a priority. When the interface device 1302 operates under battery power, power is only allocated to the high-priority components and the low-priority components are powered down. Examples of high-priority components include those that provide the basic telephone service without advanced call features, emergency services such as a 911 or enhanced 911 service, and alarm functions. Low-priority components include those associated with providing communications between entertainment devices such as components for receiving, translating, and transmitting a television or other rich media broadcast, as well as various network services and interface device 1302 accessories. It should be appreciated that priorities may be set at the factory or may be user-defined and stored within the user profile 1370. These priorities may be overridden by a user when the interface device 1302 is operating on battery 1384 power using a power management user interface provided by the interface controller 1308.
The interface device 1302 is operative to provide notifications or alarms to at least one user or device upon detection of an anomaly. The anomaly may be a loss of primary power or a malfunction of a component within the interface device 1302. Systems and components of the interface device 1302 may be continuously or periodically monitored and tested. This testing is described in detail in copending U.S. patent application Ser. No. ______, entitled “Apparatus And Method For Testing Communication Capabilities Of Networks And Devices,” filed on Dec. 30, 2005 and assigned Attorney Docket No. 60027.5011US01/BLS050369, which is herein incorporated by reference in its entirety. When a malfunction of any system or component, including the power source 1312, is detected by the interface controller 1308, a notification is made to at least one user or device. The notification may be in the any number of formats. First, the notification may include the illumination of one or more Light Emitting Diodes (LEDs) located on the interface device 1302. The notification may also be an audible alarm emitted from a speaker located within the interface device 1302. The notification may be text displayed on a display screen associated with the interface device 1302. In addition to providing notification on the interface device 1302 itself, the interface device may transmit a notification to the relay device 1324 or any of devices 1358a, 1358b, or 1322a-1322n. This transmitted notification may be in the form of an electronic mail message, a text message, an instruction to the receiving device to illuminate one or more LEDs, or a telephone call with a recorded message. The notification may be sent to one or more designated locations or broadcast over all available transmission mediums. It should be understood that any method of notifying a user or a device that a malfunction has occurred may be used.
The content of the notification may contain no information regarding the malfunction, or it may contain detailed information. For example, the notification may be an illuminated LED or audible tone that alerts a user that an anomaly exists but does not provide any additional information. In contrast, the notification may include detailed information as to the date, time, and exact nature of the anomaly. A log of anomalies triggering notifications may be stored within the interface device 1302 for notification and troubleshooting purposes. Moreover, the interface device 1302 may notify at least one of the devices 1358a, 1358b, or 1322a-1322n that one or more systems or functions of the interface device are malfunctioning, inoperative, or will be inoperative within an estimated amount of time. For example, in the event of a power failure, the battery 1384 may provide power to essential systems or components as described above. In response, the interface device 1302 may transmit a message to one or all devices 1358a, 1358b, or 1322a-1322n stating that one or more systems will be powered down in five minutes or some other predetermined time in order to give the devices or users associated with the devices time to prepare for the loss of functionality. The exact message sent may depend on the alerting capabilities of the particular device. Devices that have the capability to display complex messages may get the complete details regarding the problem and resulting actions to be taken by the interface device 1302, while devices with minimal alerting capabilities will get a minimal level of detail corresponding to the minimal device capabilities. The interface controller 1308 translates the detailed notification for each device according to the alerting capabilities of the device.
Referring now to
The routine 1400 begins at operation 1402, where data is received in a first format from a first device 1321. The data is received at an interface 1304 of interface device 1302. The interface device 1302 identifies a second device 1322 for receiving the data at operation 1404. This identification may depend upon a user profile stored within the interface device 1302. Alternatively, identifying a second device may comprise selecting a second device that is compatible with the signal type or transmission medium corresponding to the data received at interface 1304. After identifying the second device 1322, the interface device 1302 identifies a second format compatible with the second device 1322 at operation 1406. Similarly, this process may be based on a user profile or on the characteristics of the second device 1322. For example, the second device may be selected based on a user profile that instructs a POTS telephone to receive all media received at interface 1304. Because the POTS telephone does not have the capability to display video, the interface device 1302 may identify the second format as containing only the audio portion of the received media.
At operation 1408, the data is translated to the second format for transmittal to the second device 1322. The data is then transmitted to the second device 1322 at operation 1410. The communications capabilities of interface device 1302 are bi-directional. At operation 1412, data is received in a second format from the second device 1322. This data is translated to the first format at operation 1414. After transmitting the translated data to the first device 1321 at operation 1416, the routine 1400 continues to operation 1418, where it ends.
Turning now to
Once the data is received at the interface 1304, the routine 1500 continues to operation 1504, where the data is transmitted via the signaling line 1316 to the interface controller 1308. At operation 1506, the interface controller 1308 identifies at least one of the devices 1322a-1322n to receive the data from the communications network 1320a. As discussed above in view of
After the interface controller 1308 identifies at least one of the devices 1322a-1322n to receive the data, the routine 1500 proceeds to operation 1508, where the interface controller 1308 identifies a second format compatible with the communications network associated with the at least one device identified from the devices 1322a-1322n to receive the data. The routine 1500 then proceeds to operation 1510, where the interface controller 1308 determines whether the first format of the data is the same as the second format compatible with the communications network associated with the at least one device identified from the devices 1322a-1322n to receive the data. If the formats are the same, then the routine 1500 proceeds to operation 1514. If the formats are not the same, then the routine 1500 proceeds to operation 1512, where the interface controller 1308 translates the data from the first format to the second format compatible with the communications network associated with the at least one device identified from the devices 1322a-1322n to receive the data. The routine 1500 then proceeds to operation 1514.
At operation 1514, the interface controller 1308 transmits the data, whether translated or not, through at least one of the interfaces 1326, 1328, and 1330 associated with the at least one device identified from the devices 1322a-1322n to the device identified from the devices 1322a-1322n to receive the data via either a wireless or wired signaling connection. As discussed above with regard to
When data is received at the interface device 1302 from a device 1358a, 1358b, or 1322a-1322n, the interface device 1302 determines whether the data is intended to request assistance from emergency services. This determination may be detecting whether the data at the DTMF decoder 420 (shown in
The location information 1376 includes the geographical location of the interface device 1302 or the geographical location of the relay device 1324 associated with the interface device. The geographical location of the interface device 1302 may be determined in a number of ways. First, the geographical location may be determined by a GPS receiver 1378 located within the interface device 1302. The GPS receiver utilizes satellite signals from multiple satellites to fix the location of the interface device 1302 and then communicates that location to the interface controller 1308 via signaling line 1380. Alternatively, the geographical location of the interface device 1302 may be determined by triangulating signals from three or more cellular telephone towers to fix the location of the interface device. It should be understood that any means for determining the geographical location of a device may be used to determine the location information 1376. It should also be understood that the location detection may take place within the interface device 1302 or within the relay device 1324. Alternatively, location detection may occur both within the interface device 1302 and within the relay device 1324. By doing so, the location of the relay device 1324 with respect to the interface device 1302 may be tracked by the interface device 1302. This information may be displayed for a use at the interface device 1302 or provided over an Enet interface to a web browser for remote display.
The location information 1376 may be stored within the non-volatile memory 1368 and periodically or continuously updated utilizing data from the GPS receiver 1378. Alternatively, the location information 1376 may be determined only upon request from the logic associated with the processor 1372 and temporarily stored in RAM 1374 for transmittal to a device 1358a, 1358b, or 1322a-1322n. In addition to transmitting the location information 1376 to a device associated with emergency services, the location information 1376 may be displayed on a display screen associated with the interface device 1302, displayed on the relay device 1324, or transmitted to any other device 1358a, 1358b, or 1322a-1322n by request or with any other transmitted data.
Once data is received at the interface device 1302 and it is determined that emergency services are being requested, the data is coupled with location information 1376 for transmittal to the intended recipient. The proper location of the intended recipient must first be determined. For example, if the data received by the interface device 1302 is a telephone call to 9-1-1, then the proper PSAP 1382 for routing the call must be determined. The proper PSAP 1382 is based on the location of the interface device 1302 or associated relay device 1324. To determine the proper PSAP 1382, the location information 1376 is cross-referenced with a list of emergency service facilities, including PSAPs, along with location information associated with each emergency services facility, to retrieve the routing information for the closest facility for responding to the emergency. The list of emergency service facilities and associated information may be stored in the non-volatile memory 1368, mass storage within the interface device 1302 or externally connected to the interface device, or in a remote database that may be accessed by the interface device. Using this information, the interface device 1302 routes the call to the appropriate PSAP along with location information associated with the interface device 1302 or relay device 1324. It should be appreciated that the interface device 1302 may be configured according to preferences stored in the user profile 1370 to provide notification to any number of devices 1358a, 1358b, or 1322a-1322n that an emergency request has been received by the interface device 1302 and routed to the appropriate response facility.
The interface device 1302 additionally has an internal clock that may be configured for synchronization with the National Institute of Standards and Technology (NIST) atomic clock radio or a GPS clock to ensure the most accurate date, time, and Network Time Protocol (NTP). Time data from this clock is useful for accurately recording information regarding emergency communications and device malfunctions in a log for user access and troubleshooting. Additionally, the time data may be transmitted to the PSAP 1382 or other emergency services facility to ensure that the data reported is the most accurate possible. The interface device 1302 may also be configured to receive any number of public emergency broadcasts or alerts. For example, the interface device 1302 may include receivers for AM, FM, UHF, or VHF reception. The interface device 1302 may receive Emergency Broadcast System (EBS) alerts as well as weather alerts such as National Oceanic and Atmospheric Administration (NOAA) broadcasts.
It should be understood that any number of devices or users may be notified in addition to or instead of the receiving device. As discussed above, notifications may include the illumination of one or more LEDs, audible and visual alerts, and alerts sent to the relay device 1324 or any one or more communications devices 1358a, 1358b, or 1322a-1322n in communication with the interface device 1302. If it is determined at operation 1612 that a component of the interface device 1302 is not malfunctioning, then the routine proceeds to operation 1616. At operation 1616, a determination is made as to whether any new emergency or weather alerts have been received at the interface device 1302. These alerts may be broadcasts over the EBS, NOAA broadcasts, or any other emergency broadcasts, including over-the-air broadcasts as well as point-to-point emergency notifications directed to the interface device 1302. If new alerts have been received by the interface device 1302, then the routine returns to operation 1614 where the receiving device or other device is notified and the process continues as described above. If no new alerts have been received by the interface device 1302, then the routine 1600 ends at operation 1618.
It will be appreciated that exemplary embodiments provide methods, systems, apparatus, and computer-readable medium for interfacing devices with communications networks. Although the exemplary embodiments have been described in language specific to computer structural features, methodological acts and by computer readable media, it is to be understood that the exemplary embodiments defined in the appended claims are not necessarily limited to the specific structures, acts or media described. Therefore, the specific structural features, acts and mediums are disclosed as exemplary embodiments implementing the claimed invention.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the invention. Those skilled in the art will readily recognize various modifications and changes that may be made without following the example embodiments and applications illustrated and described herein, and without departing from the true spirit and scope of the exemplary embodiments, which are set forth in the following claims.
This application is continuation of co-pending U.S. patent application Ser. No. 11/323,818 filed Dec. 30, 2005 entitled “Apparatus and Method for Providing Emergency and Alarm Communications”, which is a Continuation-In-Part patent application of copending U.S. Pat. No. 7,194,083, entitled “System and Method for Interfacing Plain Old Telephone System (POTS) Devices with Cellular Networks,” filed on Jul. 15, 2002, which is herein incorporated by reference in its entirety. This patent applications is related to the following U.S. patents and copending U.S. patent applications: U.S. Pat. No. 7,623,654, entitled “Systems and Methods for Interfacing Telephony Devices with Cellular and Computer Networks,” filed on Aug. 30, 2004; U.S. Pat. No. 7,522,722, entitled “System and Method for Interfacing Plain Old Telephone System (POTS) Devices with Cellular Devices in Communication with a Cellular Network,” filed on Aug. 30, 2004; U.S. Pat. No. 7,200,424, entitled “Systems and Methods for Restricting the Use and Movement of Telephony Devices,” filed on Aug. 30, 2004; U.S. Pat. No. 7,623,653, entitled “Systems and Methods for Passing Through Alternative Network Device Features to Plain Old Telephone System (POTS) Devices,” filed on Aug. 30, 2004; U.S. Pat. No. 7,363,034, entitled “Cellular Docking Station,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,180, entitled “Apparatus, Method, and Computer-Readable Medium for Interfacing Communications Devices,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,820, entitled “Apparatus, Method, and Computer-Readable Medium for Interfacing Devices with Communications Networks,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,825, entitled “Apparatus and Method for Providing a User Interface for Facilitating Communications Between Devices,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,181, entitled “Apparatus, Method, and Computer-Readable Medium for Securely Providing Communications Between Devices and Networks,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/324,034, entitled “Plurality of Interface Devices for Facilitating Communications Between Devices and Communications Networks,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,182, entitled “Apparatus and Method for Providing Communications and Connection-Oriented Services to Devices,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,185, entitled “Apparatus and Method for Prioritizing Communications Between Devices,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/324,149, entitled “Apparatus, Method, and Computer-Readable Medium for Communication Between and Controlling Network Devices,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/323,186, entitled “Apparatus and Method for Aggregating and Accessing Data According to User Information,” filed on Dec. 30, 2005; U.S. patent application Ser. No. 11/324,033, entitled “Apparatus and Method for Restricting Access to Data,” filed on Dec. 30, 2005; and U.S. patent application Ser. No. 11/324,154, entitled “Apparatus and Method for Testing Communication Capabilities of Networks and Devices,” filed on Dec. 30, 2005. Each of the U.S. patent applications listed in this section is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11323818 | Dec 2005 | US |
Child | 12640073 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10195197 | Jul 2002 | US |
Child | 11323818 | US |