1. Field of the Invention
The present invention relates to an apparatus and a method for pulse detection, and more particularly, to an apparatus and a method based on the blood pressure measuring stage to provide blood pressure parameters and acquire pulse signals further using unique sequential reduction and regulation of pressure.
2. Description of Prior Art
With the increase in cardiovascular disease, often due to sedentary lifestyle and over work, the frequency of hypertension, arteriosclerosis, and myocardial infarction become a serious concern. Blood pressure control is an important means of preventing and treating such cardiovascular system problem.
In medical treatment, blood pressure control is very important for prevent and take care cardiovascular disease. World Health Organization's (WHO) standards for maximum healthy blood pressure define systolic pressure below 139 mmHg, and diastolic pressure below 89 mmHg, the number in accordance with correction for age and gender to adjust. Furthermore, to deal with and prevent the cardiovascular diseases, the WHO suggests systolic pressure be set at 120 mmHg and diastolic pressure at 80 mmHg, standards which represent the need for special caution.
Many kinds of electronic dynamometers exist on the market, such as arm type, wrist type, and others. Such devices are convenient for self-monitoring. However, devices providing only blood pressure monitoring fail to take into account health of blood vessels, directly affecting the cardiovascular system. Monitoring of blood vessels is not, however, commonly available to average patients.
Although diagnostic apparatus for blood vessel condition in a non-invasive fashion based on pressure sensor has been clinically developed, the apparatus is used for calculating Stiffness Index (SI) and Reflection Index (RI) by detecting a pulse so as to estimate the attrition on blood vessels. However, the devices are not only expensive but also of a size limited to clinical use. If a patient wants to know the condition of their own blood vessels, they still need to go to the hospital for a professional level check. The invention provides not only blood pressure measuring stage but also detection of pulse signals at different pressures, using unique sequential reduction and regulation of pressure. The method measures both Si and RI but also three different levels of Chinese Medical pulse diagnosis.
According to the invention, an apparatus for pulse detection based on a blood pressure monitor is provided, detecting blood pressure and pulse signals through pressure regulation, providing blood vessel analysis.
The invention further provides a method of pulse detection. The method is based on modern sphygmomanometry and utilizes pressure control to detect the pulse and estimate the condition of blood vessels.
The invention still further provides an apparatus for diagnostic analysis of blood vessels to detect blood pressure parameters and pulse signals. Pressure, pulse, and elasticity of blood vessels are acquired to diagnose the cardiovascular system.
Further, the invention provides an apparatus for pulse detection combined with Chinese Medical pulse diagnosis. Controlling pressure of drift, middle and deep levels of Chinese Medical pulse diagnosis theory, waveforms under various pressures are detected and further provided for diagnosis.
To achieve the above aims, the invention detects blood pressure, combined with detection of pulse of a blood vessel. The apparatus includes an inflatable cuff around a subject's arm, connected to an air pump and a pressure sensor. Utilizing inflation via the air pump, the pressure sensor detects a signal of pressure variation in the inflatable cuff during the inflation.
Signal of pressure variation is analyzed through a signal processor module to acquire a pressure signal and a resonance signal, both of which are delivered to a CPU for processing to acquire a plurality of blood pressure parameters, followed by application of a pressure relief valve connected to the inflatable cuff. The inflatable cuff with a unique sequential pressure control of reduction and regulation of pressure is applied, according to at least one of the blood pressure parameters or at least one predetermined pressure. The inflatable cuff is sequentially maintained at the blood pressure parameter or the predetermined pressure for a predetermined time. The pressure sensor detects a signal through the unique sequential pressure control of reduction and regulation of pressure. After analysis of the signal by the signal processor module and transmission of the signal to the CPU, the measured pulse and parameters of blood pressure under various pressures are acquired.
The objects, features and effects of the present invention will be more readily understood from the following detailed description of the preferred embodiments with the appended drawings.
In the following detailed description of the preferred embodiments, it is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the invention. The invention will be further described in conjunction with accompanying drawings, which illustrate preferred (best mode) embodiments. A method and apparatus for pulse detection based on blood pressure measuring stage is disclosed according to the invention. The invention applies blood pressure detection as applied in conventional sphygmomanometers, combined with the technique for pulse detection. Thus, the invention not only monitors blood pressure as the conventional sphygmomanometer, but also acquires various pulse signals at various pressures using a pressure control method. The invention provides not only analysis of a blood vessel but is also applicable in Chinese Medical pulse diagnosis.
Principles of sphygmomanometric measurement are described as follows for better understanding of the invention. The sphygmomanometr in the market conventionally use auscultatory method, such as a mercury sphygmomanometer, and resonance method, as applied in most electric sphygmomanometry. Both applications are using an inflatable cuff to restricte the blood flow in the vessel, then measuring systolic pressure, diastolic pressure, and mean arterial pressure through pressure in the inflatable cuff. As shown in
Referring to
Optical and pressure methods are also used to measure pulse. The optical method utilizes the difference in the concentration of oxygen in the blood due to the result of heart contraction and heart diastole to measure the absorption and reflection quantities in the blood. Pressure method is similarly as mentioned, wherein, when blood vessel is compressed, the difference blood flow due to the result of heart contraction and heart diastole will impact to the vessel wall differently. Pulse is thus obtained. Using a pulse waveform of a subject's finger for example, as shown in
In addition, a difference between heights of the two peaks is used to estimate the reflection intensity of reflected blood transmitted back in the artery, namely RI calculated as the following formula:
The foregoing is the principle for detecting blood pressure and pulse. Because the sphygmomanometer has no pulse analysis function, the invention provides an apparatus and method of detecting blood pressure and pulse, not only providing complete evaluation of the health of the cardiovascular system but also monitoring of health away from the clinical environment, e.g., at home. The embodiment is described as follows.
A signal processor module 28 processing the signals detected by the pressure sensor 26 includes an analog signal analytic unit 280 and a transfer unit 282 for analog/digital formats (means for converting). The analog signal analytic unit 280 is utilized for analyzing and separating signals, then converted to digital format by the transfer unit 282 to achieve a pressure signal and a resonance signal. The pressure and resonance signals are delivered to the CPU 30 for calculation. After receiving the signals, the CPU 30 calculates the subject's blood pressure parameters, such as systolic and diastolic pressure and mean arterial pressure. A pressure relief valve 32 connected to the inflatable cuff 20 is controlled by the CPU 30 in accordance with at least one of systolic, diastolic, or mean arterial pressure or at least one of the predetermined pressure. Thus, a unique sequential pressure control of reduction and regulation of pressure is executed on the inflatable cuff 20 by the pressure relief valve 32. The reduction pressure signal from the inflatable cuff 20 is acquired by the pressure sensor 26. The reduction pressure signal analysis and format transformation through signal processor module 28 is descried as follows.
During unique sequential pressure control of reduction and regulation of pressure, the pressure variation signal (the reduction pressure signal) to the inflatable cuff 20 is acquired. Similarly, the signal is analyzed and separated by the signal processor module 28, and a regulation pressure signal and a pulse signal of blood vessel are acquired. Both signals are delivered to the CPU 30 to work out at least one pulse signal and at least one pulse parameter, such as SI, RI . . . etc. are acquired accordingly. Then the blood pressure parameters and the pulse parameters are transmitted to a display unit 34, such as liquid crystal display [LCD] or light emitting diode [LED] display. The apparatus of the invention further includes a storage unit 36, such as RAM, ROM, EEPROM, Flash RAM, or others, to store the blood pressure parameters, pulse signals, and the pulse parameters processed in the CPU 30. Through an information transmission module 38, such as USB, Blue Tooth, far-infrared parameters, RS232, or other module interfaces, the signals and parameters stored in the storage unit 36 can be delivered to an external information device 40, such as computer, PDA, cell phones, database server, or others, to provide information for health management.
The unique sequential pressure control of reduction and regulation of pressure of the invention records pulse signals for calculation blood vessel parameters. Different pulse signal under different pressures is further used for Chinese Medical pulse diagnosis analysis, in which a physician presses a blood vessel deeply with fingers such that blood flow is nearly obstructed, a method referred to as “deep acquisition”. Pressure is released until almost no pressure remains. This method referred to as “drift acquisition”. Finally, the physician presses between the “deep acquisition” and the “drift acquisition” to sense the characteristic of the pulse. This method referred as to “middle acquisition”. Based on the invention, systolic pressure, diastolic pressure, and mean arterial pressure or predetermined plurality of pressure values provide a basis of pressure for the Chinese Medical pulse diagnosis theory. Working with an established database, known symptoms and corresponding results of “deep acquisition”, “drift acquisition”, and “middle acquisition” can improve Chinese Medical pulse diagnosis research.
While the invention has been explained in relation to preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
094111427 | Apr 2005 | TW | national |