This application claims the benefit under 35 U.S.C. § 119(a) of an application filed in the United Kingdom Patent Office on Oct. 26, 2005 and assigned Serial No. 0521859.9, an application filed in the United Kingdom Patent Office on Oct. 26, 2005 and assigned Serial No. 0521858.1, an application filed in the United Kingdom Patent Office on Oct. 26, 2005 and assigned Serial No. 0521860.7, and an application filed in the United Kingdom Patent Office on Oct. 26, 2005 and assigned Serial No. 0521861.5, the contents of all of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates generally to an apparatus and method for receiving signals in a communication system, and in particular, to an apparatus and method for receiving signals in a communication system using Low Density Parity Check (LDPC) codes.
2. Description of the Related Art
Due to the rapid development of mobile communication systems, there is a need for technology capable of transmitting bulk data approximating the capacity of a wire network even in a wireless network. To meet the increasing demand for a high-speed, high-capacity communication system capable of processing and transmitting various data such as video and wireless data beyond the voice-oriented service, it is essential to increase system transmission efficiency using an appropriate channel coding scheme in order to improve the system performance. However, due to the characteristics of the mobile communication system, it inevitably incurs error during data transmission due to noises, interference and fading according to channel conditions. The error causes a loss of information data.
Accordingly, various error control schemes are used according to channel characteristics in order to improve reliability of the mobile communication system. The most typical error control scheme uses error correction codes.
It is well known that the LDPC code is superior in performance gain to a convolutional code conventionally used for error correction, during high-speed data transmission. The LDPC code is advantageous in that it can efficiently correct an error caused by noises generated in a transmission channel, thereby increasing reliability of the data transmission. In addition, the LDPC code can be decoded using an iterative decoding algorithm base on a sum-product algorithm in a factor graph. Because a decoder for the LDPC code uses the sum-product algorithm-based iterative decoding algorithm, it is less complex than a decoder for the turbo code. In addition, the decoder for the LDPC code is easy to implement with a parallel processing decoder, as compared with the decoder for the turbo code.
The turbo code has good performance approximating a channel capacity limit of Shannon's channel coding theorem, and the LDPC code shows performance having a difference of only about 0.04 [dB] at the channel capacity limit of Shannon's channel coding theorem at a bit error rate (BER) 10−5, using a block size 107. Shannon's channel coding theorem shows that reliable communication is possible only at a data rate not exceeding a channel capacity. However, Shannon's channel coding theorem has proposed no detailed channel coding/decoding method for supporting a data rate up to the maximum channel capacity limit. Generally, although a random code having a very large block size shows performance approximating the channel capacity limit of Shannon's channel coding theorem, when a MAP (Maximum A Posteriori) or ML (Maximum Likelihood) decoding method is used, it is impossible to implement the decoding method because of its heavy calculation load.
Meanwhile, if the LDPC code is expressed with a factor graph, cycles exist in the factor graph, and it is well known that iterative decoding in the factor graph of the LDPC code where cycles exist is not preferred. Also, it has been experimentally proven that the LDPC code has excellent performance through iterative decoding. However, when there are too many short-length cycles in the factor graph, performance degradation is expected. Therefore, continuous research is being conducted to design an LDPC code where there is no short-length cycle.
The LDPC code, proposed by Gallager, is defined by a parity check matrix in which major elements have a value of 0 and minor elements except for the elements having the value of 0 have a non-zero value, e.g., a value of 1. For convenience, it will be assumed herein that a non-zero value is a value of 1.
Because a parity check matrix of the LDPC code has a very small weight, even a block code having a relatively long length can be decoded through iterative decoding. When a block length of its block code is continuously increased, the LPDC code exhibits performance approximating the channel capacity limit of Shannon's channel coding theorem, like the turbo code. Therefore, the next generation communication system tends to positively use the LDPC code as the error correction code. Herein, for example, the next generation communication system is one of IEEE(Institute of Electrical and Electronics Engineers) 802.11n communication system(for example, the TGnSync & WWise IEEE 802.11n proposal at http://www.wwise.org/technicalproposal.htm), IEEE 802.16e communication system, and DVB-S2(Digital Video Broadcasting-Satellite 2) communication system.
LDPC codes belong to the family of linear block codes. The encoder for a rate
block code has k information bits denoted by μ=[μ1, . . . , μk] that are encoded into n code bits denoted by
The generator matrix G has a dual matrix H, which is an m=n−k by n parity check matrix. These matrices, G and H, are orthogonal, i.e. G·HT=0. Herein, the “T” represents an transpose operation. The parity check matrix H defines a set of m parity check equations that are useful in the decoding process. The decoder can determine whether a received codeword estimate
LDPC codes are defined by an m by n sparse parity check matrix in which there is a lower density of ones compared to zeros. In general, the goal is to find a sparse generator matrix and a sparse parity check matrix for encoding and decoding.
These codes lend themselves to iterative decoding structures to realise near-Shannon capacity performance. The impressive performance of LDPC codes is realised by applying soft decision iterative decoding techniques such as the belief propagation (BP) algorithm, that is, sum-product algorithm, as described by Jinghu Chen and Marc P. C. Fossorier, “Decoding Low-Density Parity Check codes with Normalized APP-Based Algorithm”, 2001, IEEE, or Ajay Dholakia et. al, “Capacity-Approaching Codes: Can They Be Applied to the Magnetic Recording Channel?”. IEEE Communications Magazine, pp 122-130, February 2004, and Engling Yeo et. al., “Iterative Decoder Architectures”, IEEE Communication Magazine, pp 132-140, August 2003.
The soft decision iterative decoding schemes based on the BP algorithm work on the concept of bipartite Tanner graphs as described in Frank R Kschischang, “Codes Defined on Graphs”, IEEE Communication Magazine, pp 118-125, August 2003 and Tom Richardson, “The Renaissance of Gallager's Low-Density Parity-Check Codes”, IEEE Communications Magazine, pp 126-131, August 2003.
A bipartite Tanner graph, is a set of graph vertices decomposed into two disjoint sets where these disjoint sets of vertices are a plurality of bit nodes (also called variable nodes or symbol nodes) and a plurality of parity check nodes, hereinafter called check nodes. The graph is bipartite as no two graph vertices within the same set are adjacent. That is, bit nodes are not connected via graph edges to each other, similarly with the check nodes.
Bipartite Tanner graphs are defined by the m by n parity check matrix H. Each bit node is connected via graph edges to a set of check nodes defined by M(i)={j|Hi,j=1} for bit node i, wherein 1≦j≦m, and m is the number of check nodes (or number of rows in H). Similarly, each check node is connected via graph edges to a set of bit nodes defined by N(j)={i|Hi,j=1} for check node j, wherein 1≦i≦n, and n is the number of bit nodes (or the number of columns of H and the number of code bits per codeword).
The iterative decoding algorithms that are based on the concept of bipartite Tanner graphs are called message passing algorithms. Conceptually, these algorithms use the structure of the Tanner graph to “pass” messages, along graph edges, from the bit nodes to check nodes and vice versa. Typically, in implementing an iterative algorithm, the messages can be variables stored in a memory, for example a set of messages for each bit node i that are passed to a set of check nodes can be stored as variables in an array, and operated on as such. The use of the terms, “pass” or “message passing” and the like, are for illustrative purposes to describe the iterative decoding algorithms that follow with reference to Tanner graphs.
The messages are used to iteratively estimate the code bits of the codeword to be estimated. In one iteration of an iterative decoding algorithm, each bit node passes messages, called bit node messages, that represent an estimate of its respective code bit to all neighbouring check nodes (i.e. those check nodes associated/connected with that bit node via edges). Each neighbouring check node also receives from other neighbouring bit nodes additional bit node messages. The neighbouring check nodes passes back to the original bit node a combination of all these bit node messages via messages called check node messages. This process occurs for every bit node, hence each bit node receives a check node message from each of its neighbouring check nodes and can combine these to form an estimate of its respective code bit. Overall, in each iteration an estimate of a codeword is produced.
Although Tanner graphs can operate on messages based in the Galois Field GF(2), in soft decision iterative decoding algorithms these messages typically represent probabilities or log-likelihood ratios thereof. Hence these messages and operations are not limited to being defined on GF(2), but can be defined on other fields such as, for example, the field of real numbers r.
More specifically in terms of LDPC codes, each bit node i passes a set of bit node messages to the set of check nodes M(i), which are used in each check node to update the check node messages. Similarly, each check node j passes a set of check node messages to the set of bit nodes N(j). In each iteration of these algorithms, there are two main processes called the bit node update process, which updates the bit node messages, and the check node update process, which updates the check node messages.
The bit node and check node messages are considered the information obtainable from the received codeword about the transmitted codeword, which is called extrinsic bit node and check node messages (these terms may hereinafter be used interchangeably). In essence, these messages represent the reliability or the belief for the estimate of the n code bits of the transmitted/received codeword.
In the bit node update process, the bit nodes receive a priori information related to the channel, hence in an additive white gaussian noise (AWGN) channel, for example, bit node i receives the log likelihood ratio of the i-th bit of the received code word estimate given by the intrinsic information
where σ2=N0/2 is the variance of the AWGN and N0/2 is the power spectral density. The intrinsic information
is used to initialise the BP algorithm—or for that matter most of the other algorithms as well.
The bit node message that is passed from bit node i to check node j is denoted as Ti,j. This message Ti,j is updated by summing the set of check node messages passed from the set of check nodes M(i) to bit node i, but excluding the check node message passed from check node j to bit node i. This update process requires fewer computational resources (or has a lower complexity) compared with the check node update process.
It is the check node update process that contributes the greatest complexity to the computation of the BP algorithm. The computational burden comes from a non-linear function, Φ(•) (defined below in equation (3)), used in each check node message update.
In the check node update, the check node message that is passed from check node j to bit node i is denoted by Ej,i. Each check node message Ej,i is updated by summing Φ(Ti,j) over the set of bit node messages passed from the set of bit nodes N(j) to check node j, but excluding the bit node message Ti,j passed from bit node i to check node j. Finally, Ej,i is updated by reapplying Φ(•) to the non-linear summation of Φ(Ti,j).
In an attempt to simplify matters, the sign of Ej,i and the magnitude of Ej,i are computed separately. However, it is the magnitude of Ej,i that contributes towards the overall complexity of the check node update process.
The iterations of the BP algorithm continue until either a predetermined or maximum number of iterations is achieved, or until algorithm has converged, that is the bit node messages have converged. A soft decision (denoted Ti) for bit node i is calculated by summing the intrinsic information Ii and the set of check node messages that are passed from the set of check nodes M(i) to bit node i. A hard decision is formed for each of the soft decisions Ti producing zi giving the estimate codeword
The parity check equations are applied,
The complexity of the decoding process is primarily, due to the non-linear function used in the check node update process. Hence, reducing the complexity of this process is the focus of current research in the field of LDPC Codes. Several examples of reduced complexity LDPC decoders are disclosed in US 2005/0204271 A1 and US 2005/0138519 A1.
A simplified LDPC decoding process is disclosed in US 2005/0204271 A1, which describes an iterative LDPC decoder that uses a “serial schedule” for processing the bit node and check node messages. Schedules are updating rules indicating the order of passing messages between nodes in the Tanner graph. As well, an approximation to the BP algorithm called the Min-Max algorithm is used in the iterative decoding process in order to reduce the complexity of the check node update process.
This is achieved by using a property of the non-linear function, Φ(•), in which small values of Ti,j contribute the most to the summation of Φ(•). So, for each check node j, the smallest magnitude bit node message is selected from the set of bit node messages passed to check node j. Only this bit node message is used in the approximation, for updating check node j. That. is the least reliable bit node message is used and the most reliable bit node messages are discarded.
However, although a reduction in complexity is achieved, the result is a dramatic reduction in bit and frame error rate performance compared to the BP algorithm. This is due to the fact that the discarded extrinsic information Ti,j has not been used in the check node update.
US 2005/0138519 A1 discloses an LDPC decoding process that simplifies the iterative BP algorithm by using a reduced set of bit node messages, i.e. a predetermined number, λ>1, of bit node messages from the set of bit nodes N(j) that are passed to check node j are used in the check node update process. Hence, only the bit nodes that pass the bit node messages with the lowest magnitude levels (smallest or least reliable bit node messages) to check node j are identified and used in the check node update process.
The BP algorithm is then applied to this reduced set of bit node messages in the check node update process. This simplification results in what is called the Lambda-Min algorithm, for more details see F. Guilloud, E. Boutillon, J. L. Danger, “Lambda-Min Decoding Algorithm of Regular and Irregular LDPC Codes”, 3nd International Symposium on Turbo Codes and Related Topics, Brest, France, pp 451-454, September 2003. However, there is only a slight decrease in complexity compared with the BP-algorithm, and typically a large gap in the complexity and performance between λ and λ+1 type Lambda-Min algorithms leading to, what is called, poor granularity in terms of both complexity and performance, where a desired performance is not achievable due to computational resources not being available.
Therefore, there is a need for a LDPC decoding scheme capable of reducing a complexity and maintaining a performance.
It is, therefore, an object of the present invention to provide an apparatus and method for receiving signals using a LDPC code in a communication system.
It is another object of the present invention to provide an apparatus and method for receiving signals using a LDPC code, with reduced coding complexity, in a communication system.
According to one aspect of the present invention, there is provided an apparatus for receiving a signal in a signal reception apparatus of a communication system using a low density parity check (LDPC) code. The apparatus includes decoder for decoding a received signal according to a hybrid decoding scheme, wherein the hybrid decoding scheme is generated by combining two of a first decoding scheme, a second decoding scheme, and a third decoding scheme.
According to another aspect of the present invention, there is provided an apparatus for receiving a signal in a signal reception apparatus of a communication system using a low density parity check (LDPC) code. The apparatus includes decoder for decoding a received signal according to a hybrid decoding scheme; wherein the decoder updates a plurality of bit nodes, and updates a plurality of check nodes; wherein the hybrid decoding scheme is generated by combining two of a first decoding scheme, a second decoding scheme, and a third decoding scheme.
According to another aspect of the present invention, there is provided an apparatus for iteratively decoding a low density parity check (LDPC) code in a signal reception apparatus of a communication system. The apparatus includes an iterative LDPC decoder for updating a plurality of check nodes; wherein the iterative LDPC decoder, for each check node, determines a first subset of bit node messages from the set of bit node messages for use in updating each check node; selects a first algorithm for use in updating a first subset of check node messages corresponding to the first subset of bit node messages; determines a second subset of bit node messages, excluding the first subset of bit node messages, for use in updating each check node; and selects a second algorithm for updating a second subset of check node messages corresponding to the second subset of bit node messages.
According to another aspect of the present invention, there is provided a method for receiving a signal in a signal reception apparatus of a communication system using a low density parity check (LDPC) code. The method includes decoding a received signal according to a hybrid decoding scheme, wherein the hybrid decoding scheme is generated by combining two of a first decoding scheme, a second decoding scheme, and a third decoding scheme.
According to another aspect of the present invention, there is provided a method for receiving a signal in a signal reception apparatus of a communication system using a low density parity check (LDPC) code. The method includes decoding a received signal according to a hybrid decoding scheme; wherein decoding the received signal according to the hybrid decoding scheme comprises: updating a plurality of bit nodes; and updating a plurality of check nodes; wherein the hybrid decoding scheme is generated by combining two of a first decoding scheme, a second decoding scheme, and a third decoding scheme.
According to another aspect of the present invention, there is provided a method for iteratively decoding a low density parity check(LDPC) code in a signal reception apparatus of a communication system. The method includes updating a plurality of check nodes; wherein updating the plurality of check nodes comprises: for each check node, determining a first subset of bit node messages from the set of bit node messages for use in updating each check node; selecting a first algorithm for use in updating a first subset of check node messages corresponding to the first subset of bit node messages; determining a second subset of bit node messages, excluding the first subset of bit node messages, for use in updating each check node; and selecting a second algorithm for updating a second subset of check node messages corresponding to the second subset of bit node messages.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings in which:
Preferred embodiments of the present invention will now be described in detail with reference to the annexed drawings. In the following description, a detailed description of known functions and configurations incorporated herein has been omitted for the sake of clarity and conciseness.
The present invention discloses an apparatus and method for receiving signals in a communication system using a Low Density Parity Check (LDPC) code. And, the present invention discloses an apparatus and method for receiving signals using a LDPC code, with reduced coding complexity, in a communication system.
In particular, the present invention proposes an apparatus and method for receiving signals so as to reduce a complexity and maintain a performance by using one of a plurality of hybrid decoding schemes according to a situation of a communication system using a LDPC code . Herein, each of the plurality of hybrid decoding schemes is generated by combining two of a Belief Propagation algorithm, that is, sum-product algorithm, Min-Sum algorithm, and Lambda-Min algorithm.
Referring to
The transmitter unit 104 receives information bits from a data source 102, and has an LDPC encoder 106 and a modulator/transmitter 108. The coded signal is transmitted to the receiver unit 112 via a communications channel 110. The receiver unit 112 has the corresponding components necessary for receiving the coded signal, they are, a demodulator/matched filter 114, an iterative LDPC decoder 116, where an estimate of the transmitted coded information is forward to a data sink 122.
The data source 102 generates information bits grouped into a block of k information bits denoted by
for encoding at the LDPC encoder 106. The LDPC encoder 106 has a code rate of
and encodes the block of k information bits
The codeword
where n is the n-dimensional vector of AWGN samples. The receiver unit 112 receives the noisy signal
The iterative LDPC decoder 116 has two units, the iterative decoder 118, which produces an estimated codeword
and the error detection and the decoder 120, which checks then decodes the estimated codeword
into an estimate of the k information bits {tilde over (μ)}=[{tilde over (μ)}1, . . . , {tilde over (μ)}k], sent by the transmitter. The information bits {tilde over (μ)} are forwarded to the data sink 122.
As mentioned previously, the generator matrix G has a dual matrix H, which is the m=n−k by n parity check matrix where G·HT=0. Herein, the “T” represents an transpose operation. The parity check matrix H defines a set of m parity check equations that are useful in the decoding process. LDPC codes are defined by an m by n sparse parity check matrix in which there is a lower density of ones compared to zeros. In general, the goal is to find a sparse generator matrix and a sparse parity check matrix for encoding and decoding.
Once the iterative decoder 118 has estimated the codeword
and hence
then p1=1, p2=1, and p3=0 and an error would be detected, otherwise the codeword
It is the task of the iterative decoder 118 to determine/find the closest or the most likely codeword that was transmitted for each received coded signal
Referring now to
In a preferred embodiment, the parity check matrix H 200 is stored in memory at the iterative LDPC decoder 116. The bipartite Tanner Graph 202 described in
Bipartite Tanner graphs 202 consist of a plurality of bit nodes 204 (n bit nodes) and a plurality of parity check nodes 206 (m=n−k check nodes). These graphs 202 are defined by the parity check matrix H 200. Each bit node 204 (e.g. bit node 204c) is connected via graph edges (e.g. edges 208) to a set of check nodes (e.g. 206a and 206c) defined by M(i)={j|Hi,j=1} for bit node i, wherein 1≦j≦m and m is the number of check nodes 206 (or number of rows in H). Similarly, each check node (e.g. check node 206b) is connected via graph edges (e.g. edges 210) to a set of bit nodes (e.g. 204b and 204d) defined by N(j)={i|Hi,j=1} for check node i, wherein 1≦i≦n, and n is the number of bit nodes 204 (or the number of columns of H and the number of code bits per codeword).
For example,
The messages that are passed between check nodes 206 and bit nodes 204, and vice-versa, are stored as variables in a memory, for example a set of messages for each bit node i that are passed to a set of check nodes can be stored as variables in an array. The use of the terms, “pass” or “message passing” and the like, are for illustrative purposes to describe the iterative decoding algorithms that follow with reference to bipartite Tanner graphs.
Each of the BP algorithm, Min-Sum algorithm, Lambda-Min algorithm will be described.
(1) BP Algorithm
In the BP algorithm, each bit node i passes a set of bit node messages to the set of check nodes M(i), which are used in each check node to update the check node messages. Similarly, each check node j passes a set of check node messages to the set of bit nodes N(j). In each iteration of this algorithm, there are two main processes called the bit node update process illustrated in
The LLR-BP algorithm is now described with reference to
Referring to
where σ2=N0/2 the variance of the AWGN and N0/2 is the power spectral density.
In the first iteration, the intrinsic information is used to initialise the LLR-BP algorithm, where all bit node messages, Ti,j for iεN(j) and 1≦j≦m are passed from the set of bit nodes N(j) (not shown) to check node j 306 are set to
All check node messages, Ej,i for jεM(i) and 1≦i ≦n, that are passed from the set of check nodes M(i) to bit node i 304 are set to zero.
In subsequent iterations, the message Ti,j is updated by summing, with the Intrinsic information, the set of check node messages, Ej,i for j′εM(i)\j and 1≦i≦n, that are passed from the set of check nodes M(i) to bit node i 304 but excluding the check node message Ej,i passed from check node j 306 to bit node i 304 (not shown). The summation is given by:
In each iteration, a posteriori probabilities (APP) or soft decisions Ti for bit node i 304 can be calculated by summing the Intrinsic information Ii and the set of check node messages, Ej′,i for j′εM(i), that are passed from the set of check nodes M(i) to bit node i 304. However, generally, these soft decisions could be calculated in the final iteration. The soft decisions are given by the following equation:
A hard decision zi of Ti is formed for each of the i bit nodes producing an estimate of the transmitted code word
The bit node update process requires few computational resources compared with the check node update process, which is now described.
Referring to
An example of the shape of the function Φ(•) is shown in
In an attempt to simplify matters, the sign of Ej,i and the magnitude of Ej,i are computed separately. However, it is the magnitude of Ej,i that contributes towards the overall complexity of the check node update process.
Each check node message Ej,i is updated by summing Φ(Ti,j) over the set bit node messages passed from the set of bit nodes N(j) to check node j 306, but excluding the bit node message Ti,j from bit node i 304 to check node j 306. Finally, Ej,i is updated by reapplying Φ(•) to the non-linear summation of Φ(Ti,j). The magnitude of Ej,i is given by:
where the sign processing, or Sign(Ej′,i) is given by:
The iterations of the LLR-BP algorithm continue until either a predetermined or maximum number of iterations are achieved, or until the algorithm has converged, that is the bit node messages have converged.
The complexity of the decoding process is primarily, due to the non-linear function used on the bit node messages (which are log-likelihood ratios) in the check node update process. Hence, reducing the complexity of this process is the focus of current research in the field of LDPC Codes.
Instead of the summation carried out in equations (1), (2) or (4) of the bit node update and check node update processes, the simplification in the following section may be used. Herein, an algorithm using a simplified computation instead of the summation carried out in equations (1), (2) or (4) of the bit node update and check node update processes is called as “Simplified LLR-BP algorithm”
First, a bit node update process of the Simplified LLR-BP algorithm will de described.
The bit node update process of the LLR-BP algorithm can be simplified by computing the soft decision, Ti first. Referring to
This slightly reduces the complexity of the bit node update process as only the sum
is required to be computed once per bit node i 304, for 1≦i≦n.
Second, a check node update process of the Simplified LLR-BP algorithm will de described.
Referring to
The non-linear function Φ(•) is called in a full summation once per check node j 306. However, although this goes someway to reduce the complexity of the LLR-BP algorithm, it is still computationally intensive and difficult to implement on hardware having a limited amount of computing capabilities, for example mobile phones, TV receivers, or any other wireless transceiver.
(2) Min-Sum Algorithm
In order to reduce the complexity of the check node update process, the Min-Sum algorithm was proposed in the literature as a sub-optimal algorithm that can be used in the soft decision iterative decoding of LDPC codes instead of the LLR-BP algorithm.
The bit node update process in the Min-Sum algorithm is the same as that of the LLR-BP algorithm. It is the check node update process that is greatly simplified at the cost of decreased performance.
For each check node j, the check node update process can be simplified by observing that small values of Ti,j result in large values of Φ(Ti,j), see
of equations (4) or (8) of the LLR-BP algorithm than larger values of Ti,j. As well, small values of Ti,j represent a lower reliability bit node message and these are more important to the final decision than larger values of Ti,j. The complexity of the call to the function Φ(Ti,j)can be avoided by considering the following approximation:
where
substituting equation (10) into equation (4) or (8) and exploiting the property Φ[Φ(x)]=x, then the update for |Ej,i| is given by
In summary, for each check node j the update of the check node message |Ej,i| passed to bit node i, the smallest magnitude bit node message |Tn
(3) Lambda-Min Algorithm
The Min-Sum algorithm sacrifices performance with complexity, whereas the Lambda-Min algorithm attempts to attain the performance of the LLR-BP algorithm through a higher complexity by using only a predetermined number, λ>1, of bit node messages passed from the set of bit nodes N(j) to check node j, during the check node update process.
The bit node update process in the Lambda-Min algorithm is the same as that of the BP algorithm.
As with the Min-Sum algorithm, for each check node j, the check node update process is simplified by observing that small values of Ti,j result in large values of Φ(Ti,j), as seen in
in equations (4) or (8) of the BP algorithm than larger values of Ti,j.
As opposed to the Min-Sum algorithm, the Lambda-Min algorithm updates the extrinsic check node messages passed from the check nodes to bit nodes, by relying on just the λ>1 least reliable bit nodes and hence the most contributing bit nodes are used within the aggregated sum of either equations (4) or (8).
In particular, the check node update process of check node j, 1≦j≦m, is given as follows:
Identify a set of bit nodes, i.e. λ bit nodes, that pass bit node messages to check node j by:
Nλ(j)={iεN(j)|λlowest|Ti,j|}
The check node messages for check node j is updated by only using the Nλ(j) bit node messages:
Next, hybrid decoding schemes will be described.
As described above, each of the plurality of hybrid decoding schemes is generated by combining two of the BP algorithm, the Min-Sum algorithm, and the Lambda-Min algorithm. That is, the number of hybrid decoding schemes according to the present invention is 3. The hybrid decoding schemes according to the present invention include a SET #1 scheme, a SET #2 scheme, and a SET #3 scheme. The SET #1 scheme is generated by combining the BP algorithm with the Min-Sum algorithm. The SET #2 scheme is generated by combining the BP algorithm with the Lambda-Min algorithm. The SET #3 scheme is generated by combining the Lambda-Min algorithm with the Min-Sum algorithm.
(1) SET #1 Scheme
It has been realised that valuable information is lost by using the Min-Sum algorithm due to the discarded extrinsic information Ti,j∀iεN(j)\n0 for check node j.
Instead, a preferred embodiment of the invention updates the check nodes, in each iteration, by exploiting the contributions from bit nodes by prioritising, in terms of computational resources or complexity, the most contributing bit node n0, where
to update the extrinsic check node messages Ej,n,
In general, this is achieved by:
Identifying for each check node j, 1≦j≦m, the least reliable bit node by finding the smallest bit node message Ti,j, ∀iεN(j) among the set of bit nodes
Selecting a first algorithm for use in the check node update process, by for example, allocating computational resources to calculate the check node message Ej,n
Identifying the remaining set of bit nodes ∀iεN(j)\n0.
Selecting a second algorithm for use in the check node update process, for example allocating further computational resources, for the remaining bit nodes ∀iεN(j)\n0 to calculate the remaining check node messages Ej,i, ∀jεM(i).
The result is a check node update process that selects a first algorithm, where the allocation of more computational resources, complexity, and thus more accuracy for estimating the extrinsic check node message sent from a given check node to the bit node generating less reliable bit node messages, (also seen as generating the smallest or most contributing bit node messages). While still taking into account the contribution from other bit nodes in the check node update process by selection of a second algorithm.
Referring to
This results in the following check node update process, for each check node j, 1≦j≦m:
Identifying:
(a) the least reliable or smallest bit node 502 among N(j):
(b) the remaining set of bit nodes ∀iεN(j)\n0
Selecting a first and second algorithm for use in the check node update process for check node j 306 to update the extrinsic check node messages as follows:
(a) For the check node message being passed to bit node n0 502 use as the first algorithm the LLR-BP algorithm (either using equations (4) or (8)) i.e.:
(b) For check node messages being passed to the remaining bit nodes use as the second algorithm the Min-Sum algorithm:
Referring now to
LDPC code having a frame length of Zf=96 bits. The simulated bit error rate (BER) vs SNR(Eb/N0) for this system is shown in
Referring to
The computational complexity of the reference algorithms and this preferred embodiment is shown in Table 1. The complexity of the preferred embodiment is given in the row labelled SET#1 and is shown to be less than the LLR-BP algorithm and closer to that of the Min-Sum algorithm.
Text missing or illegible when filed
The complexity is given in terms of the degree of the check and bit nodes (also called variable nodes) denoted dc and dv respectively. The degree of a check node is the row weight of the parity check matrix H, which represents the number of bit nodes that pass bit node messages to that check node. Similarly, the degree of a bit (or variable node) is the column weight of the parity check matrix H, which is the number of check node messages that are passed to a bit node.
Referring to
The bit node update process in this preferred embodiment is the same as that of the LLR-BP algorithm. It is clear, that this preferred embodiment allows for low complexity decoding of LDPC codes with a performance gain increase of 0.1 dB with respect to the Min-Sum algorithm, while maintaining a complexity close to it.
(2) SET #2 Scheme
It has been realised that valuable information is still lost by using the Lambda-Min algorithm due to the discarded extrinsic information Ti,j∀iεN(j)\Nλ(j) that is not used in the check node update process, for check node m.
Instead, a preferred embodiment of the invention updates the check nodes, in each iteration, by exploiting the contributions from bit nodes by prioritising, in terms of computational resources or complexity, for each check node j the most contributing bit node n0, where
to update the extrinsic check node message Ej,n
The result is the allocation of more computational resources, complexity, and thus more accuracy to the extrinsic check node message sent by the check node to the bit node that generates less reliable edge messages, while still taking into account the contribution from other bit nodes. This can result in either similar performance with less computational complexity or improved performance with slightly more computational complexity.
Referring to
This preferred embodiment results in the following check node update process for each check node j 306:
Identify:
(a) The least reliable bit node 502 (bit node with smallest bit node message) among N(j):
(b) The (λ−1) least reliable bit nodes among N(j) \n0:
Nλ(j)={iεN(j)|λlowest|Ti,j|}
In the check node update process, for check node j 306, update the extrinsic check node messages as follows by selecting a first and second algorithm:
(a) For the check node message being passed to bit node n0 502 use LLR-BP algorithm as the first algorithm:
(b) For check node messages being passed to the remaining bit nodes 304 use Lambda-Min algorithm as the second algorithm:
Referring now to
with a frame length of Zf=96 bits. The Lambda-Min algorithm is shown for λ=3 and 4. However, the preferred embodiment uses λ=3.
The simulated bit error rate (BER) vs SNR (Eb/N0) for this system is shown in
Referring to
The computational complexity of the reference algorithms and this preferred embodiment is shown in Table 1. The complexity of the preferred embodiment is given in the row labelled SET#2. This is shown to be less than the complexity of the BP algorithm and closer in complexity to that of the Lambda-Min algorithms. For the same λ used in both the preferred embodiment and the Lambda-Min algorithm, there is in fact less complexity in the number of simple operations, while only slightly more complexity in the calls to Φ(•). However, as seen in the BER and FER shown in
The bit node update process in this preferred embodiment is the same as that of the BP algorithm.
It is clear, that this preferred embodiment allows for lower complexity decoding of LDPC codes while having a performance close to the LLR-BP algorithm. Moreover, there is more granularity in terms of complexity and performance. That is, there is a reduced gap in the performance between λ-min and (λ+1)-min of the preferred embodiment and a reduced increase in complexity, as opposed to the granularity in terms of complexity and performance between the λ-min and (λ+1)-min Lambda-Min algorithms.
This allows for the fine tuning of the complexity or gradations of computational complexity to be allocated before or during the iterative decoding process, allowing the selection of the first and second algorithms, (and other algorithms), to be used for, or if necessary adapted during, the iterative decoding process. This provides an iterative decoding process that is able to adapt to the computational requirements of the hardware/software that the LDPC decoder requires for a given communications link/channel for example, or for a given performance or quality of service.
Furthermore, the Lambda-Min algorithm for the same λ as in the preferred embodiment requires an increased amount of storage/memory.
(3) Set #3
A further preferred embodiment of the invention updates the check nodes, in each iteration, by exploiting the contributions from bit nodes by prioritising, in terms of computational resources or complexity, the set of most contributing bit nodes Nλ(j)={iεN(j)|λlowest|Ti,j|}, to update the extrinsic check node messages
being passed to those bit nodes over the less contributory bit nodes to update the remaining extrinsic check node messages Ej,i, ∀iεN(j)\Nλ(j).
The result is the allocation of more computational resources, complexity, and thus more accuracy to the extrinsic check node message sent by the check node to the bit node that generates less reliable bit node messages (i.e. the smallest magnitude bit node messages). While still taking into account the contribution from other bit nodes by selection of a second algorithm. This can result in intermediate performance with reduced computational complexity compared with the LLR-BP and Lambda-Min algorithms.
Referring to
This results in the following check node update process for each check node j, 1≦j≦m:
Identify:
(a) The λ least reliable bit nodes (bit nodes passing the smallest bit node messages to check node j 306) among N(j):
Nλ(j)={iεN(j)|λlowest|Ti,j|}
(b) The least reliable bit node among N(j)\Nλ(j):
In the check node update process, update the extrinsic check node messages using a first and second algorithm as follows:
(a) For check nodes messages being passed to the set of bit nodes Nλ(j) use the Lambda-Min algorithm as the first algorithm:
(b) For check node messages being passed to the remaining bit nodes use the Min-Sum algorithm as the second algorithm:
Referring now to
with a frame length of Zf=96 bits. The Lambda-Min algorithm is shown for λ=3 and 4. The preferred embodiment uses λ=3.
The simulated BER vs SNR (Eb/N0) for this system is shown in
Referring to
As can be appreciated from the foregoing description, the present invention provides a hybrid decoding scheme generated by combining two of BP algorithm, Min-Sum algorithm, and Lambda-Min algorithm, thereby maintaining a decoding performance, and reducing a decoding complexity in decoding LDPC code.
While the invention has been shown and described with reference to a certain preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0521859.9 | Oct 2005 | GB | national |
0521858.1 | Oct 2005 | GB | national |
0521860.7 | Oct 2005 | GB | national |
0521861.5 | Oct 2005 | GB | national |