1. Field of the Invention
The present invention is related to digital signal processing and digital communications. More specifically the present invention is related to interpolation, angle rotation, rectangular-to-polar conversion, and carrier and symbol timing recovery for digital processing and digital communications applications.
2. Related Art
Advances in technology have enabled high-quality, low-cost communications with global coverage, and provide the possibility for fast Internet access and multimedia to be added to existing services. Exemplary emerging technologies include cellular mobile radio and digital video broadcasting, both of which are described briefly as follows.
In recent years, cellular mobile radio has experienced rapid growth due to the desire for mobility while enjoying the two-way voice services it provides. GSM, IS-136 and personal digital cellular (PDC) are among the most successful second-generation personal communications (PCS) technologies in the world today, and are responsible for providing cellular and PCS services globally. As the technology advances, customers will certainly demand more from their wireless services. For example, with the explosive growth of the world wide web over the wired networks, it is desirable to provide Internet services over mobile radio networks. One effort to specify the future global wireless access system is known as IMT-2000 (Buchanan, K., et al., IEEE Pers. Comm. 4:8-13 (1997)). The goal of IMT-2000 is to provide not only traditional mobile voice communications, but also a variety of voice and data services with a wide range of applications such as multimedia capabilities, Internet access, imaging and video conferencing. It is also an aim to unify many existing diverse systems (paging, cordless, cellular, mobile satellite, etc.) into a seamless radio structure offering a wide range of services. Another principle is to integrate mobile and fixed networks in order to provide fixed network services over the wireless infrastructure. Such systems might well utilize broadband transport technologies such as asynchronous transfer mode (ATM).
For the applications of IMT-2000, a high-bit-rate service is needed. Moreover, for multimedia applications, the system should provide a multitude of services each requiring 1) a different rate, and 2) a different quality-of-service parameter. Thus, a flexible, variable-rate access with data rates approaching 2 Mb/s is proposed for IMT-2000.
The advent of digital television systems has transformed the classical TV channel into a fast and reliable data transmission medium. According to the specifications of the DVB project (Reimers, U., IEEE Comm. Magazine 36:104-110 (1998)), digital TV is no longer restricted to transmitting sound and images but instead has become a data broadcasting mechanism which is fully transparent to all contents. Digital TV broadcasting by satellite, cable and terrestrial networks is currently under intensive development. A typical system looks like this: a DVB signal is received from a satellite dish, from cable, or from an antenna (terrestrial reception). A modem built into an integrated receiver/decoder (IRD) will demodulate and decode the signal. The information received will be displayed on a digital TV or a multimedia PC. In addition to being used as a digital TV, DVB can receive data streams from companies who wish to transmit large amounts of data to many reception sites. These organizations may be banks, chains of retail stores, or information brokers who wish to offer access to selected Internet sites at high data rates. One such system is MultiMedia Mobile (M3), which has a data rate of 16 Mb/s.
For proper operation, these third generation systems require proper synchronization between the transmitter and the receiver. More specifically, the frequency and phase of the receiver local oscillator should substantially match that of the transmitter local oscillator. When there is a mismatch, then an undesirable rotation of the symbol constellation will occur at the receiver, which will seriously degrade system performance. When the carrier frequency offset is much smaller than the symbol rate, the phase and frequency mismatches can be corrected at baseband by using a phase rotator. It is also necessary to synchronize the sampling clock such that it extracts symbols at the correct times. This can be achieved digitally by performing appropriate digital resampling.
The digital resampler and the direct digital frequency synthesizer (DDS) used by the phase rotator are among the most complex components in a receiver (Cho, K., “A frequency-agile single-chip QAM modulator with beamforming diversity,” Ph.D. dissertation, University of California, Los Angeles (1999)). Their performance is significant in the overall design of a communications modem. For multimedia communications, the high-data-rate requirement would impose a demand for high computational power. However, for mobile personal communication systems, low cost, small size and long battery life are desirable. Therefore, it would be desirable to have an efficient implementation of the phase rotator, re-sampler, and DDS in order to perform fast signal processing that operates within the available resources. Furthermore, it would be desirable to have an efficient synchronization mechanism that uses a unified approach to timing and carrier phase corrections.
For Internet services it is important to provide instantaneous throughput intermittently. Packet data systems allow the multiplexing of a number of users on a single channel, providing access to users only when they need it. This way the service can be made more cost-effective. However, the user data content of such a transmission is usually very short. Therefore, it is essential to acquire the synchronization parameters rapidly from the observation of a short signal-segment.
For applications where low power and low complexity are the major requirements, such as in personal communications, it is desirable to sample the signal at the lowest possible rate, and to have a synchronizer that is as simple as possible. Therefore, it is also desirable to have an efficient synchronizer architecture that achieves these goals.
For applications utilizing Orthogonal Frequency Division Multiplexing (OFDM), sampling phase shift error produces a rotation of the Fast Fourier Transform (FFT) outputs (Polet T., and Peters, M., IEEE Comm. Magazine 37:8086 (1999)). A phase correction can be achieved at the receiver by rotating the FFT outputs. Therefore, it is also desirable to have an efficient implementation structure to perform rotations of complex numbers.
The present invention is directed at a rectangular-to-polar-converter that receives a complex input signal (having X0 and Y0 components) and determines an angle φ, which represents the position of the complex input signal in the complex plane. In doing so, the rectangular-to-polar converter determines a coarse angle φ1 and a fine angle φ2, where φ=φ1+φ2.
The coarse angle φ1 is obtained using a small arctangent table and a reciprocal table. These tables provide just enough precision such that the remaining fine angle φ2 is small enough to approximately equal its tangent value. Therefore the fine angle φ2 can be obtained without a look-up table, and the fine angle computations are consolidated into a few small multipliers, given a precision requirement.
More specifically, the coarse angle computation is performed by retrieving a pre-computed Z0=1/[X0] value from a reciprocal lookup table (e.g. memory device), where [X0] is a bit truncated approximation of X0. The Z0 value is multiplied by the Y0 component, resulting in a [Y0Z0] value. The coarse approximation angle φ1 is retrieved from a second lookup table that stores pre-computed arc tan values of [Y0Z0]. Next, the input complex signal is multiplied by the [Y0Z0] value. This multiplication effectively rotates the input complex number by the coarse angle φ1 back toward the X-axis of the complex plane, resulting in an intermediate complex number having an X1 component and a Y1 component. Next the reciprocal lookup table is re-used to determine an approximation of Z1=1/[X1]. Then the tangent of the fine angle φ2 is determined based on [Z1Y1], assuming that tan φ2 can be substantially approximated as [Z1Y1]. In embodiments, the Newton Raphson method is implemented to get a more accurate tan φ2 result. Finally, based on the smallness of tan φ2, the trigonometric function value tan φ2is used as an approximation to φ2, hence requiring no arc tan table.
Applications of the rectangular-to-polar converter include symbol and carrier synchronization, including symbol synchronization for bursty transmissions of packet data systems. Other applications include any application requiring the rectangular-to-polar conversion of a complex input signal.
Further features and advantages of the invention, as well as the structure and operation of various embodiments of the invention, are described in detail below with reference to the accompanying drawings. The drawing in which an element first appears is typically indicated by the leftmost character(s) and/or digit(s) in the corresponding reference number.
value according to embodiments of the present invention.
1. Introduction
As discussed herein, third generation and other cutting edge communications systems require proper synchronization between the transmitter and the receiver. More specifically, the frequency and phase of the receiver local oscillator should substantially match that of the transmitter local oscillator and accurate symbol timing must be achieved. The following section discuss some exemplary modulation schemes and configurations, and their related synchronization issues. These example configurations are not meant to be limiting, and are provided for example purposes only. After which, an overview of the present invention is provided.
1.1 Exemplary Modulation Schemes and Synchronization Issues
A key to the evolution of third-generation PCS is the ability to provide higher data rates via increased spectral efficiency of the access scheme. The IS-136 community intends to add a 200-KHz carrier bandwidth and adopt 8PSK modulation. This allows for data rates up to 384 Kb/s.
A simplified 8PSK transmitter 102 and receiver 104 are shown in FIG. 1A and
Referring to
During down-conversion, an undesirable rotation of the symbol constellation will occur if the frequency and phase of the oscillator signal 108 does not match the oscillator signal of the transmitter 102. This symbol rotation can seriously degrade system performance. When the carrier frequency offset is much smaller than the symbol rate, the phase and frequency mismatches can be corrected at baseband, using a phase rotator 124, as shown in FIG. 1D.
The sampling clock 114 is generated locally in the receiver 104. The logic decision devices 120 make more accurate decisions when the sampling instant is optimal, i.e., synchronous to the incoming symbols.
If the timing information can be extracted from the signal 106, it can be used to adjust the phase of the sampling clock 114. This adjustment would require a voltage controlled oscillator (VCO) to drive the A/D converters 112. In this scenario, the digital portion of the circuit 104 needs to keep in synchronization with the A/D converters 112, which places strict requirements on the VCO. Moreover, changing the phase of the sampling clock 114 would cause jitter. High data-rate receivers are more sensitive to such jitter when used in multimedia communications.
Another solution to timing errors is to correct them entirely in the digital domain, with the equivalent of A/D sampling adjustment performed by a digital resampler 122, as shown in FIG. 1D. This resampler 122 is controlled by a timing recovery circuit (not shown) and it attempts to supply the optimal samples (i.e. synchronous) to the decision circuits 120. Using the digital resampler 122, the timing recovery loop is closed entirely in the digital domain. This allows the complete separation of digital components from analog components.
The digital resampler 122 and a direct digital frequency synthesizer (not shown) used by the phase rotator 124 are among the most complex components in a receiver (Cho, K., “A frequency-agile single-chip QAM modulator with beamforming diversity,” Ph.D. dissertation, University of California, Los Angeles (1999)). Their performance is significant in the overall design of the modem. For multimedia communications, the high-data-rate requirement imposes a demand for high computational power. However, for mobile personal communication systems, low cost, small size, and long battery life are desirable. Therefore, efficient implementation is the key to implementing fast signal processing within the available resources. It is also desirable to provide an efficient synchronization mechanism by using a unified approach to timing and carrier phase corrections. This can be accomplished by sharing resources between the resampler 122 and the phase rotator 124.
As for the digital video broadcasting system (DVB) systems, the most challenging of all DVB transmissions is the one used in terrestrial channels (DVB-T) due to the presence of strong echoes which characterize the propagation medium. A common approach for DVB-T is based on Coded-OFDM (orthogonal frequency division multiplexing). The major benefit of OFDM is that the serial baseband bitstream which needs to be transmitted is distributed over many individual subcarriers. Such spreading makes the signal robust against the effects of multipath and narrowband interference. The simplified block diagram of an OFDM modem 108 is shown in FIG. 1C.
The example applications and modulation schemes described above in this section were provided for illustrative purposes only, and are not meant to be limiting. Other applications and combinations of such applications will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. These other applications are within the scope and spirit of the present invention.
1.2 Overview
The following is an overview of the sections that follow.
Sections 2, 3 and 4, discussed herein, present a novel interpolation method for digital resampling using a trigonometric polynomial. In Section 2, after a brief review of interpolation methods, particularly those using a conventional polynomial, the trigonometric interpolation method is introduced. Efficient implementation structures for trigometric interpolation are given. The performance, hardware complexity and computational delay are compared with conventional polynomial interpolators. The trigonometric polynomial based resampler can use the same hardware as is employed in the phase rotator for carrier synchronization, thus further reducing the total complexity in the synchronization circuitry.
In Section 3, a signal processing approach is used to analyze the interpolation method devised in Section 2. It shows how an arbitrary frequency response is achieved by applying a simple modification to the original interpolation algorithm. This enables the interpolator to also perform matched filtering of the received signal.
The approaches in Section 3 can be employed to improve the interpolator performance by optimizing the frequency response of the continuous-time interpolation filter. This method is based on optimizing the performance by conceptually reconstructing the continuous-time signal from existing samples. From the point of view of designing digital resamplers, however, what we are actually interested in are new samples corresponding to the new sampling instants. In Section 4, we optimize the interpolation filter such that the error in producing a new sample corresponding to every resampling instant is minimized, hence further improving the overall interpolation accuracy.
Section 5 presents an angle rotation processor that can be used to efficiently implement the trigonometric resampler and the carrier phase rotator. This structure can also implement the resampler for an OFDM receiver, which rotates the FFT outputs. It has many other practical applications.
The discussions in the previous Sections have assumed that the sampling mismatch that is supplied to the resampler is known The problem of obtaining the synchronization parameters is studied in Section 6. For burst mode transmissions in packet data systems, we present an efficient architecture for feedforward symbol-timing and carrier-phase estimation.
Section 7 presents an efficient implementation of a key component in the feedforward synchronizer of Section 6, as well as in many other such synchronizers. This involves computing the angle from the real and imaginary components of a complex number. The discussion, however, extends to a general problem of Cartesian-to-polar conversion, which is encountered in many communication applications. An architecture that efficiently accomplishes this conversion is presented.
Section 8 presents an exemplary computer system in which the invention can be operated.
Section 9 includes various appendices.
Further discussions related to materials in Sections 2-7 are included in Dengwei Fu, “Efficient Synchronization for Multimedia Communications,” Ph.D dissertation, University of California, Los Angeles, 2000, which is incorporated-by-reference, in its entirety.
Additionally, the following articles are herein incorporated by reference:
D. Fu and A. N. Willson, Jr., “A high-speed processor for digital sine/cosine generation and angle rotation,” in Conf. Record 32nd Annual Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 177-181, November 1998;
D. Fu and A. N. Willson, Jr., “Interpolation in timing recovery using a trigonometric polynomial and its implementation,” in Proc. GLOBECOM 1998, Comm. Theory Mini-Conference Record, pp. 173-178, November 1998;
D. Fu and A. N. Willson, Jr., “Design of an improved interpolation filter using a trigonometric polynomial,” in Proc. Int Symp. Circuits & Systems, vol. 4, pp. 363-366, May 30-Jun. 3, 1999;
D. Fu and A. N. Willson, Jr., “A high-speed processor for rectangular-to-polar conversion with applications in digital communications,” in Proc. GLOBECOM 1999, vol. 4, pp. 2172-2176, December 1999;
D. Fu and A. N. Willson, Jr., “A fast synchronizer for burst modems with simultaneous symbol timing and carrier phase estimations,” in Proc. Int. Symp. Circuits & Systems, vol. 3, pp. 379-382, May 28-31, 2000; and
D. Fu and A. N. Willson, Jr., “Optimal interpolator using a trigonometric polynomial,” in Proc. 43rd Midwest Symp. Circuits & Systems, 4 pages, Aug. 8-11, 2000.
2. Interpolation Using a Trigonometric Polynomial
As discussed in Section 1, when an analog-to-digital converter (ADC) is clocked at a fixed rate, the resampler must provide the receiver with correct samples, as if the sampling is synchronized to the incoming symbols. How can the resampler recover the synchronized samples by digital means without altering the sampling clock? Since the input analog signal to the ADC is bandlimited, as long as the sampling rate is at least twice the signal bandwidth, according to the sampling theorem, the sampled signal carries as much information as the continuous-time signal. Therefore, the value of the original continuous-time signal at an arbitrary point can be evaluated by applying an interpolation filter (e.g., sinc interpolation) to the samples. Hence, the design of the resampler has been transformed to the design of effective interpolation filters or, in other words, fractional-delay filters with variable delay.
There are numerous methods for designing fractional-delay filters. These filters have different coefficients for different delays. Thus, to implement variable-delay interpolation filters, one could compute one set of coefficients for each quantized delay value and store them in a memory. Then, in real-time, depending on the fractional delay extracted from the incoming signal, the corresponding coefficients could be loaded. However, this method is likely to result in a large coefficient memory.
To design low-cost modems, a large coefficient memory is undesirable. Gardner, et al., have shown that polynomials can be incorporated to compute the desired samples that are synchronous with the transmitted samples (Gardner, F. M., IEEE Trans. Comm. 41:502-508 (1993); Erup, L., et al., IEEE Trans. Comm. 41:998-1008 (1993)). In this case, an extensive coefficient memory is not needed. Moreover, the polynomial-based structure can be implemented efficiently with a so-called Farrow structure (Farrow, C., “A continuously variable digital delay element,” in Proc. IEEE Int. Symp. Circuits Syst. (June 1988), pp. 2641-2645). This method is reviewed in Section 2.1. Although this approach achieves reasonable performance, the hardware complexity grows rapidly as the number of samples used to calculate each new sample is increased for better accuracy. In addition, given a fractional delay μ, to produce a new sample using a degree N−1 polynomial, there will be N−1 sequential multiplications that involve μ since we must compute μ raised to the (N-1)-th power times a data value. Thus, the critical data path gets longer as N increases, thereby creating a limitation on the achievable data rate.
Starting in Section 2.2, a new approach to interpolation is introduced. Instead of approximating the continuous-time signal with a conventional (i.e., algebraic) polynomial, a trigonometric polynomial is used according to the present invention. First, some background information is given. Next, the detailed implementation is discussed. We then evaluate and compare the performance and computational complexity of the algebraic polynomial interpolation to that of our method, giving numerical results. 2.1 Interpolation Using an Algebraic Polynomial
To interpolate using function values y(n) at N equally-spaced sample points, also referred to as a “base point set,” we can fit an algebraic polynomial of degree N−1 to the data, as in FIG. 2. As explained in (Gardner, F. M., IEEE Trans. Comm. 41:502-508 (1993)), there should be an even number of samples in the base point set, and the interpolation should be performed only in the center interval of the base point set. That is, N is restricted to be even. In other words, given 4 samples points in
It seems that one would have to solve for the coefficients of the (N−1)-th degree polynomial from these available samples before the synchronized (i.e., interpolated) samples can be computed. However, a method devised by Farrow (Farrow, C., “A continuously variable digital delay element,” in Proc. IEEE Int. Symp. Circuits Syst. (June 1988), pp. 2641-2645) can compute the synchronized sample from the available samples efficiently with use of an algorithm that is well suited for VLSI implementation. To illustrate, we consider the following example of interpolation using a cubic Lagrange polynomial. Without loss of generality, let us assume the sampling interval is TS=1. Using the Lagrange formula for N=4, the synchronized samples can be computed as
y(μ)=y(−1)C−1(μ)+y(0)C0(μ)+y(1)C1(μ)+y(2)C2(μ) (2.1)
where Cn(μ), n=−1, 0, 1, 2, are the third degree polynomials that are shown in FIG. 3.
Obviously,
Thus, y(μ) in (2.1), the sum of polynomials Cn(μ) weighted by the y(n) values, must be a third degree polynomial and must go through the samples y(−1), y(0), y(1) and y(2). Writing Cn(μ) as
the coefficients Cnk of Cn(μ) are fixed numbers. They are independent of is. We can re-write (2.1) as
To minimize the number of multipliers, we can use a nested evaluation of (2.4), as
y(μ)=((v(3)μ+v(2))μ+v(1))μ(0) (2.6)
A Farrow structure 400 (for N=4) that implements equations (2.5) and (2.6) is shown in FIG. 4. It consists of multiplications of data by fixed coefficients, and data multipliers, as well as addition operations.
2.2 The Trigonometric Polynomial Method
To solve the problems discussed in the section 2.1, the present invention utilizes a trigonometric polynomial to fit the asynchronous samples in FIG. 2. Using WN=e−j2π/N notation, for tε[−N/2+1, N/2], the polynomial may be written as:
The polynomial must cross the N samples. Thus, the coefficients ck can be determined by solving the N linear equations in N unknowns:
whose solution is
The expression in (2.9) is simply the N-point discrete Fourier transform (DFT). This suggests that, given N equally-spaced samples, we can compute the DFT of these samples as in (2.9) to obtain the coefficients of the interpolating trigonometric polynomial in (2.7). Then, for a given offset μ, the synchronized sample y(μ) can be computed using that polynomial as:
Since ck and c−k are conjugates, this equation can be simplified as
Flowchart 500 in
In step 502, a set of N-data samples are received having the two data samples that are to be interpolated.
In step 504, coefficients of a trigonometric polynomial are determined based on the set of N data samples, according to equation (2.9). In doing so, the N data samples are multiplied by a complex scaling factor WNkn to generate a kth coefficient for the trigonometric polynomial, wherein WN=e−j2π/N, and wherein n represents an nth data sample of said N data samples.
In step 506, the trigonometric polynomial is evaluated at the offset μ based on equation (2.10) or (2.11).
In step 508, the real part of the evaluated trigonometric polynomial is determined and represents the desired interpolation value 202 in FIG. 2.
There are three issues that are to be considered in evaluating an interpolation scheme: 1) accuracy of interpolation, 2) complexity of implementation and 3) latency. In following sections, the trigonometric interpolation method is compared to the traditional polynomial method, particularly the Lagrange interpolator, in all these categories.
2.3 Performance Comparisons
Let us first derive the impulse responses of the interpolators. With N samples, N an even integer, the Lagrange formula (2.1) is
In addition, the interpolation is performed in the center interval. Thus 0≦μ≦1. Let us define a new function f(t) such that
f(μ−n)=Cn(μ), 0≦μ≦1, −N/2+1≦n<N/2. (2.13)
Using the example of
Thus, the Lagrange formula becomes
Therefore, the approach to reconstruct the continuous signal using the Lagrange polynomial is in fact equivalent to applying an interpolation filter f(t) to the available samples, with f(t) being a piecewise polynomial. The interpolator's impulse response f(t) obtained from (2.14) is shown in FIG. 6A.
Taking the Fourier transform of f(t), we obtain its frequency response. This allows us to evaluate the interpolation accuracy by examining the frequency response of the interpolation filter. The frequency response 702 of the Lagrange cubic interpolator (N=4) is shown in FIG. 7A. The horizontal axis is the normalized frequency f/Fs, with Fs=1/Ts. An ideal frequency response should have value one in the passband (0≦f/Fs<0.5) and be zero in the stopband (f/F3≧0.5).
For the interpolator using a trigonometric polynomial, we can express y(t) in terms of y(n) by substituting (2.9) into (2.10):
Defining
we have
The impulse response f(t) in (2.17) is shown in FIG. 6B. The corresponding frequency response 704 of the trigonometric interpolator (for N=4) is shown in
By comparing the frequency responses of the two interpolators, we can see that the trigonometric interpolation response 704 has a sharper roll-off in the transition band and more rapid attenuation in the stopband than the Lagrange response 702. These traits are enhanced as N increases, as demonstrated in FIG. 7B. For N=32, the trigonometric response 708 has a sharper rolloff than the Lagrange response 706 as shown in FIG. 7B.
Next we verify these observations by interpolating the samples of a practical time-domain signal. As an example, we interpolate a baseband signal with raised cosine spectrum and roll-off factor α =1.0, sampled at two samples per symbol period, as shown in FIG. 8A.
The interpolation accuracy here is measured as the normalized mean-squared difference between the signal interpolated with an ideal interpolator and the signal interpolated with the practical interpolator. The normalized mean-squared error (NMSE), discussed above, is calculated for both the Lagrange interpolator and the trigonometric interpolator for a range of typical values of N. The results are plotted in FIG. 8B.
Our test results demonstrate that the performance is improved with the trigonometric method. Using the same number of samples to interpolate, the proposed method produces a smaller NMSE, and the performance gain becomes greater as the number of samples increases.
2.4 Efficient Implementation Structures
Recalling from Section 2.2, the trigonometric interpolation algorithm includes substantially two steps:
Step 1. Given a number of data samples N, calculate the Fourier coefficients ck, k=0, . . . , N/2 using (2.9). In a preferred embodiment, an even number of N data samples are used. In other embodiments, an odd number of data samples are used.
Step 2. Compute the synchronized sample y(μ) for any given μ according to (2.11).
The first step involves multiplying the data samples by complex scaling factors WNkn. Since these factors lie on the unit circle, the computation in Step 1 can be simplified. Let us examine the case when N=4:
Example 2.1: For N=4, the Fourier coefficients are obtained as:
c1=y(−1)+y(0)+y(1)+y(2)
c1=[y(0)−y(2)]+j[−y(1)+y(−1)]
c2=y(0)−y(1)+y(2)−y(−1). (2.19)
As seen in (2.19), there is no nontrivial scaling multiplier required for N=4.
Example 2.2: We now compute the coefficients ck in (2.9) for N=8. Using the trigonometric identities, we can obtain the following simple form for ck, k=0, . . . , 4:
The only non-trivial scaling multiplications are those multiplications by cos (π/4). It appears that four such multiplications are needed to compute all the complex coefficients ck, k=0, . . . , 4. However, if we examine the data being multiplied by cos (π/4) (those terms embraced by the [ ] brackets), we observe that they are either the sums or differences of the [y(−3)−y(1)] and [y(−1)−y(3)) values. Therefore, we can compute [y(−3)−y(1)] cos(π/4) and [y(−1)−y(3)]cos(π/4), then use these two products to generate the cn coefficients. Thus, only two scaling multiplications are needed in computing all the coefficients.
Having observed the simplicity in the first step, let us focus on the second step. The second step may look complicated because of the complex multiplications ckWN−kμ and cN/2e1πμ. However, since |WN−kμ|=|e1πμ|=1, these products are just rotations of points ck and CN/2 in the complex plane. Furthermore, this is the same type of operation performed in the phase rotation for carrier recovery by the phase rotator 124 that is shown in FIG. 1D. This suggests that we can reduce the total complexity of the synchronization circuitry by sharing some resources needed by the digital resampler 122 and the carrier phase rotator 124. In one embodiment, a lookup table is utilized to determine the angle rotation associated with the angle
for rotation of the ck coefficients. In another embodiment, an angle rotator processor is utilized. Both embodiments are discussed further below, and the angle rotator processor is discussed in detail in section 5.
The trigonometric interpolator 1000 receives input data samples having two data samples that are to be interpolated at an offset μ (see FIG. 2). The resulting interpolated value y(μ) represents the interpolated point 202 in FIG. 2. The interpolator 1000 includes a delay module 1004, an adder/subtractor module 1006, and an angle rotator module 1008, and an adder 1012.
The delay module 1004 includes one or more delay elements 1012. The delay elements 1012 can be configured using known components.
The adder/subtractor module 1006 includes multiple adders (or subtractors) 1014, where subtraction is indicated by a (−) sign.
The angle rotator module includes two angle rotators 1010. The angle rotators 1010 can be configured using an angle rotator processor or a table lookup (e.g. read only memory) as discussed below.
The operation of the trigonometric interpolator 1000 is discussed further in reference to the flowchart 1700 in
In step 1702, the interpolator 1000 receives a set of N-input data samples. The N-data samples include the two data samples that are to be interpolated at the offset μ relative to one of the data samples, as shown in the FIG. 2. In
In step 1704, the delay module 1004 delays the input data samples.
In step 1706, the adder/subtractor module 1006 generates one or more trigonometric coefficients according to the equation (2.9). In
In step 1708, the angle rotators 1010 rotate appropriate real and complex coefficients in a complex plane according the offset a, resulting in rotated complex coefficients. More specifically, the angle rotator 1010a rotates the real coefficient C and the angle rotator 1010b rotates the complex coefficient C1 in the complex plane.
In embodiments, as discussed herein, the angle rotators 1010 are table look-ups. In which case, a rotation factor is retrieved from the table lookup based on the offset μ, where the rotation factor includes the evaluated cosine and sine functions of
that are shown in the equations (2.21) below. The rotation factor is then multiplied by the corresponding real or complex coefficient, to generate the respective rotated complex coefficient. An interpolator 1800 having a table lookup ROM 1802 and a complex multiplier 1804 are shown in
In step 1710, the adder 1012 adds together C0, a real part of the rotated coefficient C1, and a real part of the rotated coefficient C2. The adder 1012 also scales the output of the adder as necessary according to equation 2.10. The resulting value is the desired interpolation value at the offset a, as represented by point 202 in FIG. 2.
The trigonometric interpolator is not limited to the 4th degree embodiment that is shown in FIG. 10. The trigonometric interpolator can be configured as an Nth degree interpolator based on N_data points, as represented by the equations (2.9)-(2.11). These other Nth degree interpolators are within the scope and spirit of the present invention. For example and without limitation,
2.4.1 Using a Lookup Table
For carrier recovery, the phase correction is generally accomplished by looking up the sine and cosine values corresponding to the phase, then by multiplying these values with the complex data. This requires the same operations as the rotation of ck by an angle
that is:
The sine and cosine table can be used for both the resampler, as in (2.21), and the phase rotator for carrier recovery. In embodiments, a read only memory (ROM) is utilized as the lookup table. However, other embodiments could be utilized in including other types of memories. An interpolator 1800 utilizing a table lookup ROM 1802 and complex multiplier 1804 are shown in
2.4.2 Using an Angle Rotation Processor
When a very low complexity implementation is desired at the expense of a slight increase in computational delay, we propose to use an efficient structure for angle rotation, which is described in Section 5. Based on this structure, each angle rotator has a hardware complexity slightly greater than that of two multipliers. In addition, a very small ROM is needed. We will subsequently refer to this particular implementation of our algorithm as the angle-rotation method.
Thus, there are at least two choices for implementing (2.21) as well as the phase rotator for carrier recovery. The trade-off is between complexity and speed. In a base-station where computation power is more affordable, the table lookup method might be used. In a hand-set, where cost is a major concern, an angle rotation processor might be used for both the resampler and the phase rotator, multiplexing the operations.
Now let us compare the complexity of the trigonometric resampler with that of the Lagrange method. Table 2.1 summarizes the comparisons for several typical N values. The numbers are based on the table-lookup method. It indicates that, for the same filter length N the trigonometric interpolation method needs less hardware.
2.5 Delays in the Computation
The critical path of the Farrow structure 400 (
In contrast, the critical path for the trigonometric interpolator 1000 is path 1002 and it contains just one angle rotation 1010, or only one multiplier if the table-lookup method is employed to replace the angle rotator 1010. Since the angle rotations for various angles can be carried out in parallel, the critical path does not lengthen as N increases.
Table 2.1 compares the computational delays for the trigonometric interpolator with that of the Lagrange interpolator for various values of N. The delay data for the trigonometric interpolator 1000 are based on the table-lookup method. As shown in
2.6 Simplifications of the Preliminary Structures
As mentioned in Section 2.4, to produce each y(μ) we first calculate the Fourier coefficients ck using existing samples, according to (2.9). We then compute Re(ckWN−kμ) to be used in (2.11). This is accomplished either by retrieving WN−kμ from a lookup table, followed by two real multiplications, or by an angle-rotation processor.
2.6.1 The Simplified Structure for N=4
Let us examine the trigonometric interpolator 1000 having N=4. To compute Re(ckWN−kμ) and Re(c2W4−2μ) the system requires either two angle rotators 1004 or two accesses to a lookup table.
If the input samples would happen to be such that c2=0 then one fewer angle rotator, or one fewer ROM access, would be required. Of course, the original data samples y(−1), y(0), y(1), and y(2) are not likely to have the special property that c2=(0)−y(1)+y(2)−y(−1)=0. However, if the data samples are changed, then the modified samples can be determined to satisfy c2=0. If the modified samples for interpolation, then the c2 angle rotator 1010a can be eliminated. However, the interpolation result will not then correspond to the original data samples.
It seems that the data samples can be changed to attain savings in hardware, as long as the interpolation result is fixed so that it corresponds to the original data samples. Of course, it must also cost less in hardware to “fix” the interpolation result than is saved in hardware by using the modified samples.
If the samples y(k) are modified to form {tilde over (y)}(k) according to:
{tilde over (y)}(−1)=y(−1)−K
{tilde over (y)}(0)=y(0)
{tilde over (y)}(1)=y(1)+K
{tilde over (y)}(2)=y(2)+2K (2.22)
then the K value can be adjusted to force the {tilde over (y)}(k) samples to satisfy c2=0, where K is the slope of a straight line 1202 in FIG. 12.
To find K, the c2 value that corresponds to the modified samples is determined according to:
To force c2=0, requires:
Therefore, the c2 angle-rotator can be eliminated, and c0 and c1 are determined accordingly as,
c0=2(y(1)+y(−1))
c1=[2y(0)−y(1)−y(−1)]+j[−2y(1)+y(0)+y(2)] (2.25)
Then, the interpolated sample is
However, {tilde over (y)}(μ) should be adjusted so that it corresponds to the original samples. From
y(μ)={tilde over (y)}(μ)−Kμ. (2.27)
Using equations (2.25), (2.26) and (2.27) leads to an interpolator 1400 as shown in FIG. 14. This simplified interpolator structure is not limited to N=4 configurations. In fact, this simplification technique can be applied to an interpolator with an arbitrary N value. To eliminate the angle-rotation needed by Re(cN/2ejπμ) in (2.11), the samples are modified according to
{tilde over (y)}(n)=y(n)+nK, n=integer. (2.28)
Using (2.9), and then applying (2.28), results in
If we choose
we can force CN/2=0.
Referring to
In step 1902, the interpolator 1400 receives a set of N input data samples. The N data samples include two of the data samples that are to be interpolated at the offset μ, as shown in the FIG. 2.
In step 1904, the delay module 1004 delays the input data samples.
In step 1906, the adder/subtractor module 1402 modifies one or more of the data samples so that a coefficient cN/2 is 0. In embodiments the data samples are modified according to y(n)mod=y(n)+n·K, wherein K is determined by the equation (2.30) above so that cN/2 is 0, and wherein y(n) represents the nth data sample of the N data sample set.
In step 1908, the adder/subtractor module 1402 generates one or more trigonometric coefficients according to modifications to the equation ([2.8]2.9). In the N=4 case, equations (2.25) are implemented by the module 1402. In
In step 1910, the angle rotator 1010b rotates the complex coefficient C1 in a complex plane according the offset μ, resulting in a rotated complex coefficient. In embodiments, as discussed herein, the angle rotator 1010b is table look-up. In which case, a complex rotation factor is retrieved from the table lookup based on the offset A, and the resulting rotation factor is then multiplied by the corresponding complex coefficient, to generate the respective rotated complex coefficient. The rotation factor includes the evaluation of the cosine and sine factors that are shown in equations (2.21). Note that since C2=0, the angle rotator 1010a is replaced with the multiplier 1404.
In the step 1912, the multiplier 1404 multiplies the K factor by the offset μ, to produce a Kμ factor.
In step 1914, the adder 1406 adds together C0 and Kμ and a real part of the rotated complex coefficient C1, and scales the sum by the trivial factor ½, to produce the desired interpolation value. The addition of the Kμ factor compensates the desired interpolation value for the modification that was done to the data samples in order to force C to zero in step 1906.
The simplified trigonometric interpolator is not limited to the four-sample embodiment that is shown in FIG. 14. The simplified trigonometric interpolator can be configured as an N-sample interpolator based on N_data points, as represented by the equations (2.28)-(2.30). These other N-sample interpolators are within the scope and spirit of the present invention. For example and without limitation, an interpolator with N=8 is discussed below.
2.6.2 The Simplified Structure for N=8
According to (2.30), we choose
The coefficient values can be computed following this procedure:
p1=(4K+y(1)−y(−3)) cos π/4
p2=(4K+y(3)−y(−1)) cos π/4. (2.32)
c0=2(y(1)+y(3)+y(−3)+y(−1))
c1=[y(0)−y(4)−4K+p1−p2]+j[y(−2)−y(2)−4K−p1−p2)
c2=[4K+y(0)+y(4)−y(2)−y(−2)]+j[4K+y(3)+y(−1)−y(1)−y(−3)]
c3=[y(0)−y(4)−4K−p1+p2]+j[−y(−2)+y(2)+4K−p1−p2]
c4=0. (2.33)
The resulting modified structure for N=8 is shown in
2.3 Performance Comparisons with Other Structures
How does the simplified interpolator 1400 (
Next, let us verify this performance improvement by interpolating two signals: Signal 1, which is the same as signal 802 in
The results in Table 2.2 show that the modified structure for N=4 not only requires less hardware, it also obtains the highest accuracy among the three methods for these practical signals used in our simulation.
2.7 Trigonometric Interpolator Application
An important application of the interpolation method and apparatus described in this patent is the following. It is often necessary to increase the Li sampling rate of a given signal by a fixed integer factor. For example, a signal received at a rate of 1000 samples per second might need to be converted to one at a rate of 4000 samples per second, which represents an increase of the sampling rate by the integer factor four. There are methods in common practice for doing such a conversion. One method is a very popular two-step process wherein the first step creates a signal at the desired higher sampling rate but one where simple zero-valued samples (three of them in the example situation just mentioned) are inserted after each input data value. The second step in the interpolation scheme is to pass this “up-sampled” or “data-rate expanded” signal through an appropriately designed lowpass digital filter which, in effect, smoothes the signal by “filling in” data values at the previously inserted zero-valued samples. In the process of doing this filtering operation it might or might not be important that the original data samples remain intact, and when this is important there exist certain special lowpass filters that will not alter those samples.
We can easily adapt the trigonometric interpolator described herein to efficiently create such a sampling rate conversion system, but one that does not require such filtering operations. If we denote the integer factor by which we desire to increase the data rate as L (in the above example, L=4) we proceed as follows. We build the system 7800 shown below in FIG. 78. System 7800 includes a Delay Module 7802 and Add/Subtract Module 7804 (that are similar to those in FIG. 10), and such that it can accommodate incoming data at a rate r. We now build L copies of the Angle-Rotation Module 7806 (similar to that in FIG. 10), with each one being fed by the same outputs of the Add/Subtract Module. Within each of these L Angle-Rotation Modules 7806 we fix the μ value; that is, each one has a different one of the values: 1/L, 2/L, . . . , (1−L)/L. With such fixed μ values, each Angle-Rotation Module 7806 can be constructed as a set of fixed multipliers (a very special case of the table-lookup method), although any of the Angle-Rotation Module implementations previously discussed can be employed.
As shown in
A major advantage of the system 7800 is that all of the system's components are operated at the (slow) input data rate except the output multiplexer 7808. If desired, it would also be possible to employ fewer Angle-Rotation Modules 7806, but operating them at a higher data rate, and using several μ values, sequentially, for each. This would result in a system that employed less hardware but one that traded off the hardware savings for a higher data rate operation of such modules.
2.8 Trigonometric Interpolator Summary
In this Section we have described an interpolation method that we have devised that uses trigonometric series for interpolation. Comparing the interpolations using the trigonometric polynomial and the Lagrange polynomial of the same degree, the trigonometric-based method achieves higher interpolation accuracy while simultaneously reducing the computation time and the amount of required hardware. Moreover, the trigonometric-based method performs operations that are similar to those of a phase rotator for carrier phase adjustment. This allows a reduction in the overall synchronization circuit complexity by sharing resources.
This trigonometric interpolator yields less computational delay, as compared to algebraic interpolators. To achieve the same throughput rate, this translates into more savings in hardware using the proposed structure, because the data registers that are required by algebraic interpolators to pipeline the computation for a faster rate would not be needed by our structure.
We have also introduced two implementations of the trigonometric interpolation method: one using a lookup table, and one using an angle rotation processor (to be discussed in Section 5).
After introducing a first interpolation method, we have shown that we can trade one angle rotator for a multiplier by conceptually modifying the input samples, then by “correcting” the interpolated value obtained from the “modified” samples. Through this modification, we have obtained a simpler implementation structure while simultaneously improving the performance when interpolating most practical signals. This performance improvement has been demonstrated by comparing the frequency responses of the interpolators and the mean-squared interpolation errors using these interpolators. Our discussion of the optimal digital resampler in Section 4 will be based on this simplified interpolator.
3. Interpolation Filters with Arbitrary Frequency Response
In Section 2, an interpolation method using a trigonometric polynomial was introduced, along with an example of such an interpolation structure of length N=4. In addition to being a very simple structure, our analyses and simulations also demonstrated that the trigonometric interpolator outperformed the interpolator of the same length using a Lagrange polynomial. In this Section, a more systematic approach will be taken to analyze this method from the digital signal processing point of view. A formula giving its impulse response allows us to analyze the frequency response of the interpolation filter. We then show how to modify the algorithm to achieve arbitrary frequency response. The discussions in this Section will provide the framework for the optimal interpolator of Section 4.
3.1 Formulating the Trigonometric Interpolator as an Interpolation Filter
We have shown that, given N equally-spaced samples y(n), a continuous-time signal can be reconstructed as
where f(t) is the impulse response of a continuous-time interpolation filter. As in Section 2, it is assumed that the sampling period is Ts=1. This assumption makes the notation simpler and the results can easily be extended for an arbitrary Ts. In other words, the invention is not limited to a sampling period of T,=1, as other sampling periods could be utilized. In Section 2 we have shown that f(t) can be expressed as:
It is apparent that the amount of oscillation cannot be reduced using the method discussed thus far while only increasing the filter length N. Moreover, it seems that an arbitrary frequency response cannot be achieved using this method. To address these problems, let us examine how the frequency response of this method is determined.
3.2 Analysis of the Frequency Response
Let us examine how the frequency response off for the trigonometric interpolator is obtained using the example in
is a weighted sum of cosine functions. We can view the finite-length filter f in (3.2) as having been obtained by applying a window 2206 according to the following:
to an infinitely-long, periodic function 2204 with period N:
such that
f(t)=fc(t)w(t), −∞<t<∞. (3.5)
Thus F the frequency response off can be obtained by convolving Fc and W the Fourier transforms of fc and w, respectively.
The Fourier transform of the periodic function fc(t), −∞<t<∞, is
which consists of a sequence of impulses 2208. We will subsequently refer to the weights of these impulses as frequency samples. Denoting the weight of
where
is an integer. In the case of (3.6),
For our particular interpolation filer, according to (3.6), all in-band frequency samples {circumflex over (F)}(k)=1 for |k|<N/2. For |k|>N/2, the out-of-band samples F(k)=0. The two samples in the transition band are {circumflex over (F)}(N/2)={circumflex over (F)}(−N/2)=½. The transition bandwidth is determined by the distance between the last in-band, and the first out-of-band frequency samples.
Since w is a rectangular function, W must be a sinc function 2210. Convolving Fc and the sinc function W simply interpolates the frequency samples {circumflex over (F)}(k) to obtain F(Ω), −∞<Ω<∞, shown as response 2212. (Here we have plotted the symmetric F only on the positive half of the Ω axis.) We thus have
From response 2212, the continuous-frequency response F(Ω) is uniquely determined by an infinite number of equally spaced frequency samples {circumflex over (F)}(k). If we modify the frequency samples 2214 near the passband edge to let the transition between the passband and stopband be more gradual, as depicted in
If a narrower transition band is desired, we can increase the duration of the filter f(t). This can be seen by comparing
3.3 Implementing the Modified Algorithm
By comparing (3.6) and (3.4) we can see that the frequency sample values, i.e., the weights of the impulses in (3.6), are determined by the weights in the sum in (3.4).
We can modify our original interpolation filter in (3.2) for |t|≦N/2 as
By expressing (3.9) using the WN notation, for |t|<N/2 we have
and fm(t)=0 for |t|>N/2. Substituting this result into (3.1), and re-ordering terms, we have
By comparing (3.12) to (2.9), we can see that, for
Thus, a modified algorithm can be implemented as the following steps:
Step 1′. (Same as Step 1 in Section 2.4): Given an even number of samples N, calculate the Fourier coefficients ck, k=0, . . . , N/2 using (2.9).
Step 2′: Multiply the coefficients Ck by scale factors {circumflex over (F)}(k) using (3.13).
Step 3′: Given a fractional delay p, compute the synchronized samples using (3.11), which, due to Ĉk*=Ĉ−k, can be simplified as:
It seems that, in Step 3′, we need coefficients c(k) (hence c, not only for k≦N/2 but also for k>N/2 while only Ck values for k≦N/2 are computed in Step 1′. However, Ck values for k>N/2 can be obtained using
ck=ck−mN (3.15)
where m is an integer such that 0≦k−mN≦N/2. We have (3.15) because ck is periodic in k with period N, because ck is obtained from the Fourier transform of the discrete-time signal y(n), −N/2+1≦n≦N/2.
At this point, we have shown that the continuous-time frequency response of the interpolation filter having impulse response f(t) can be improved by modifying the weights {circumflex over (F)}(k) in (3.10). Now a question arises: the modification of the weights would alter the shape of the impulse response of the f(t) filter. How do we guarantee that the resulting filter does not change the original samples?
3.4 Conditions for Zero ISI
In order for f(t) not to alter the original samples when used for interpolation as in (3.1), it must have zero-crossings at integer multiples of the sampling period:
The well-known Nyquist condition for zero ISI (Proakis, J. G., Digital Communication, McGraw-Hill, New York, N.Y. (1993)) states that the necessary and sufficient condition for (3.16) is
Since the filter's impulse response f(t) has a finite duration, i.e. f(t)=0 for |t|>N/2, (3.16) holds if and only if the frequency samples F(k) satisfy
The proof is given in Appendix A.
In summary, we can still guarantee that the modified interpolation filter f does not alter the original samples as long as the modified weights t(k) (frequency samples) satisfy (3.18). Using this constraint, we can design the weights F(k) to meet given frequency response requirements.
3.5 Optimization Algorithm
Using the approach discussed, one can approximate an arbitrary frequency response by choosing appropriate weights {circumflex over (F)}(k). For example, a desired frequency response Fd(Ω) for an interpolation filter should be unity in the passband and be zero in the stopband, as
The interpolation error using our interpolation filter is defined as
e(Ω)=Wt(Ω)|Fd(Ω)−F(Ω) (3.20)
where Wt(Ω) is a weighting function.
From Section 3.2 we have F(Ω)=Fc(Ω){circle around (×)} sinc(Ω). Thus, we can express F(Ω) in terms of {circumflex over (F)}(k), using (3.7), as
An optimal interpolation filter can be designed by choosing {circumflex over (F)}(k) to minimize the peak interpolation error, as
or the mean-squared interpolation error
subject to the constraint described by (3.18).
By examining
3.6 Conclusion
In this Section, an interpolation method was presented that achieves arbitrary frequency response by modifying the trigonometric interpolator discussed in Section 2. Using this approach, the performance of a trigonometric interpolation filter can be further improved.
It is interesting to note that this procedure is equivalent to the well-known filter design method using windows.
4. Design of Optimal Resamplers
4.1 Motivation
We have thus far discussed digital resampling using interpolation methods. To accomplish this, we conceptually reconstruct the continuous-time signal by fitting a trigonometric polynomial to the existing samples and then re-sample the reconstructed signal by evaluating this polynomial for a given sampling mismatch (or offset) μ. The reconstruction of the continuous-time bandlimited signal y(t) from existing samples y(m) using interpolation filter f(t), according to (3.1), is
Then y is resampled at t=μ as
where fμ(m)=f(m−μ)
In the previous sections we approached the problem only from the point of view of reconstructing the continuous-time signal, as in (4.1), since we have only examined the frequency response of the continuous-time filter f(t). However, what we actually are interested in is the new sample y(μ) that is obtained by resampling the continuous-time signal at a new sampling instant, t=μ.
Now, a question arises: Even when the frequency response F(Ω) of the continuous-time filter is optimized as in Section 3.5, do we necessarily obtain the minimum error in producing a new sample y(μ) for each μ value?
According to (4.2), the new sample y(μ) is actually obtained by filtering the original samples y(m) using a discrete-time filter whose impulse response fμ(m) depends on a particular delay 11. What is the desired frequency response of the fμ(m) filter?
A digital resampler that is used in timing recovery simply compensates for the timing offset in sampling the received signal. Ideally, the fμ(m) filter should not alter the signal spectrum as it simply delays the existing samples by μ. Obviously, the desired frequency response of the discrete-time fμ(m) filter is
Fd(ω, μ)=ejωμ
where ω is the normalized angular frequency. Let us define the frequency response of f82 (m) as Fμ(ω). The error in approximating the ideal frequency response Fd(ω, μ) by Fμ(ω) for a given μ value, is
e(ω)=W1(ω)|Fd(ω, μ)−Fμ(ω)| (4.4)
where Wt(ω) is a weighting function.
We now examine how the discrete-time fractional-delay frequency response Fμ(ω) is obtained. We denote by F(Ω) the Fourier transform of the continuous-time filter f(t). Hence, the Fourier transform of f(t−μ) must be e−jΩμF(Ω). We know that fμ(n)=f(n−μ) are just samples of f(t−μ), where −∞<t<∞. Therefore, according to the sampling theorem (Proakis, J. G., Digital Signal Processing, Macmillan, New York, N.Y. (1992)), the Fourier transform of fμ(n) is
after we replace Ω on the right-hand-side expression by the normalized angular frequency variable ω(ω=Ω since TS=1). This relationship is shown in
4.2 Resampler Optimizations
In Section 3, we analyzed the relationship between the weights {circumflex over (F)}(k) in (3.9) and the frequency response of the interpolator. We have shown that we can enhance F(Ω) by adjusting the {circumflex over (F)}(k) values. In
To further improve the interpolation performance, we could take g into account, by optimizing Fμ(ω) for each μ value. As in Section 3, we could adjust {circumflex over (F)}(k) near the band edge to change the shape of F(Ω), for each μ value, such that the discrete-time frequency response Fμ(Ω), which is obtained from (4.5), best approximates the desired response of (4.3).
As discussed in Section 3, to guarantee that the original samples are not altered using the modified interpolator, the weights {circumflex over (F)}(k) should satisfy (3.18). When N=8, for example, we modify {circumflex over (F)}(3) and {circumflex over (F)}(5) together in order to satisfy (3.18). Here, however, our goal of optimization is to obtain the best approximation for the sample corresponding to a specific μ. Hence we need not be concerned with the issue of altering the original samples in Section 3, where there is only one set of optimized weights for all μ values.
Let us demonstrate this method using the example of N=8. We chose to modify {circumflex over (F)}(3) and {circumflex over (F)}(4). For each given μ, we search for the {circumflex over (F)}(3) and {circumflex over (F)}(4) values such that (4.4)is We denote such {circumflex over (F)}(3) and {circumflex over (F)}(4) values by {circumflex over (F)}μ(3) and {circumflex over (F)}μ(4) respectively, since they are now also dependent on μ.
To demonstrate the performance improvement, let us use this example: Given μ=0.5, we optimize Fμ(ω) for the signal whose spectrum is shown in dashed lines 2902 in FIG. 29. Comparing the un-optimized frequency response 2904 with the optimized frequency response 2906, the modification clearly produces a better frequency response. More specifically, the response 2906 is flat in the frequency band where the power of the signal 2902 is concentrated, and the deviation from the ideal response mostly falls in the “don't care” band.
Similar to Section 3, to implement this improved method, we first compute the coefficients ck from the existing samples as in (2.9). Then, given the μ value, we multiply, e.g., for N=8, the c3 and c4 values by {circumflex over (F)}μ(3) and {circumflex over (F)}μ(4), respectively. Finally, we compute the synchronized sample y(μ) using (2.11), where c3 and c4 are replaced by {circumflex over (F)}μ(3) c3 and {circumflex over (F)}μ(4) c4, respectively.
We can apply similar modifications to the interpolator with N=4.
The flowchart 3400 in
In step 3402, a factor {circumflex over (F)}μ is determined to adjust the frequency response of the trigonometric interpolator so that it is consistent with the frequency response of N-data samples and the offset μ.
In step 3404, one or more of the complex coefficients are multiplied by the {circumflex over (F)}μ to modify the frequency response of the interpolator so that it is consistent with the input signal and the offset μ.
The optimization routine can also be used with K-modified data samples that leads to the simplified interpolator structures of
As will be shown in the section that follows, the steps 3402, 3404, and 1708 can be combined into a single step if a table lookup is used to determine the rotation factor. In other words, the sine and cosine values can be multiplied by the {circumflex over (F)}μ factor before they are stored in the ROM.
In Section 2.6, we have presented an efficient algorithm that eliminates one angle-rotation. For example, for N=4, we can “modify” the input samples according to (2.22). With this modification, we can treat the new samples as if the input signal satisfies c2=0. The remaining non-zero coefficients are c0 and c1. In the example for N=4 in the previous Section, two parameters, {circumflex over (F)}μ(1) and {circumflex over (F)}μ(2), are optimized to achieve the best approximation of a desired fractional-delay frequency response described by (4.3). Now, with c2=0, we have only one parameter, {circumflex over (F)}μ(1), to choose.
The impulse response of the simplified interpolation filter is derived in Appendix B. From the mathematical expression of the impulse response (B. 5), we can obtain the corresponding frequency response. The frequency responses of the interpolator 1400 (
4.3 Implementations
It may appear that additional hardware is needed to implement the multiplication by, for example, {circumflex over (F)}μ(1) for the simplified N=4 structure. Let us examine the corresponding computations. As we know, we first compute coefficients c0 and c1 according to (2.25) (c2=0, of course). We then compute y(μ) using
according to (2.26) and (2.27), where K is defined in (2.24). As discussed in Section 2.4, the computation
can be accomplished by retrieving the
value from a ROM lookup table and then multiplying Re(c1)+j Im(c1) by the retrieved value, since both {circumflex over (F)}μ(1) and
can be pre-determined for all μ values.
If the angle-rotation method is used, we can use a lookup table to store the {circumflex over (F)}μ(1) values. In real-time, after computing
using an angle-rotation processor, we can multiply the result by {circumflex over (F)}μ(1). In this case, if {circumflex over (F)}μ(1) is allowed to be a complex number in optimizing performance, we then need two real multiplications to obtain
in (4.6). However, if we restrict {circumflex over (F)}μ(1) to be a real number, we can use just one real multiplication as
According to Table 4.1, the NMSE using complex and real {circumflex over (F)}μ(1) values are −37.41 dB and −37.08 dB, respectively. Therefore, the performance degradation caused by restricting {circumflex over (F)}μ(1) to be a real number is insignificant.
When the table-lookup method is employed, the implementation structure for the optimal interpolator is the same as that for the interpolator 1400, except for the coefficient c1 which is now multiplied by
instead of
The table should therefore contain the
and
values, rather than the
and
values used by the interpolator 1400. We now show that the size of the table is the same as the one storing the sine and cosine values.
Let us examine the contents of the lookup table.
values, used by (4.7), where the real values are represented by curve 3202, and the imaginary values are represented by the curve 3204. These values are monotonic with respect to μ, just like the
and
values for 0≦μ≦1. Moreover, simulations show that, when optimal values of {circumflex over (F)}μ(1) are reached, the real and imaginary components of
display the following complementary relationship:
Therefore, we need only store one of the
and
values. The other can be obtained by looking-up the value corresponding to 1−μ. This is the same technique used in storing and retrieving the sine and cosine values with the purpose of reducing the table size.
Various circuit implementations of optimized interpolators having N=4 are illustrated in
and
values. Therefore, coefficient optimization and angle rotation are performed in a simultaneous and efficient manner.
It will be apparent to those skilled in the arts that the combined {circumflex over (F)}μ and angle rotator ROM 3702 can be implemented for interpolator configurations that include more than N=4 elements, based on the discussions herein.
4.4 Simulation Results
We have verified the new design with the following simulation. A baseband signal, shown in
Using the optimal structure, the NMSE is reduced by 4 dB over the method without optimization (
aComplex {circumflex over (F)}μ(1) values are used.
bReal {circumflex over (F)}μ(1) values are used.
The frequency response of an optimized interpolator 1400 (
For a high-performance interpolator, we now turn to the structure described in Section 2.6.2, for N=8. Applying a similar approach for N=4, as just discussed, to the N=8 interpolator of Section 2.6.2, we can multiply the c3 coefficient by {circumflex over (F)}μ(3), whose value optimizes the frequency response Fμ(ω) of a fractional-delay filter with delay μ.
In designing the proposed N=8 interpolator, only one parameter {circumflex over (F)}μ(3) was adjusted to minimize the MSE in (3.22).
Next, three interpolators of length N=8 were used to interpolate the signal in FIG. 33: 1) A Lagrange polynomial interpolator, 2) a Vesma-Saramäki optimal polynomial interpolator (Vesma, J., and Saramäki, T., “Interpolation filters with arbitrary frequency response for all-digital receivers,” in Proc. 1996 IEEE Int. Symp. Circuits Syst. (May 1996), pp. 568-571) (with length 8 but a third degree polynomial) and, 3) the proposed interpolator.
Table 4.2 shows the simulation results. These results demonstrate that our method has an NMSE more than 16 dB lower than the Lagrange interpolator, and more than 4 dB lower than the Vesma-Saramäki polynomial interpolator in (Vesma, J., and Saramäki, T., “Interpolation filters with arbitrary frequency response for all-digital receivers,” in Proc. 1996 IEEE Int Symp. Circuits Syst. (May 1996), pp. 568-571).
4.5 Conclusion
Instead of optimizing F(Ω), the frequency response of the continuous-time interpolation filter, we could optimize Fμ(ω) of the fractional-delay filter for each μvalue. By doing this, better interpolation performance can be achieved, as demonstrated by the simulations.
As for the implementation complexity, when a table-lookup method is employed, the optimal interpolator does not require additional hardware, just table values that implement the coefficient optimization and angle rotation. When the angle rotation method is used, one additional real multiplier is needed.
For N=4, the optimal interpolator attained a 6 dB lower NMSE than the Lagrange cubic interpolator, while requiring less hardware.
5. A High-Speed Angle Rotation Processor
In previous Sections, an interpolation method and apparatus for timing recovery using a trigonometric polynomial has been discussed. The major computation in this method is the angle rotation, such as angle rotator 1010 (in FIG. 10 and FIG. 14). As mentioned in Section 2.4, these operations, together with the phase rotator for carrier recovery, can be implemented by table-lookup in a ROM containing pre-computed sine and cosine values, followed by four real multipliers to perform the angle rotation (see FIG. 18). Herein, going forward, this approach will be referred to as the single-stage angle rotation. Although fast angle rotation can be achieved with efficient multiplier design techniques, for practical precision requirements, the ROM table can be quite large. For applications where low complexity and low power are the major concern, can we further reduce the amount of hardware for angle rotation with slightly more computational delay?
There are various hardware designs that accomplish angle rotations, notably the CORDIC processors (Ahn, Y., et al., “VLSI design of a CORDIC-based derotator,” in Proc. 1998 IEEE Int. Symp. Circuits Syst., Vol. II (May 1998), pp. 449-452; Wang, S., et al., “Hybrid CORDIC algorithms,” IEEE Trans. Comp. 46:1202-1207 (1997)), and, recently, an angle-rotation processor (Madisetti, A., et al., “A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range,” IEEE J. Solid-State Circuits 34:1034-1043 (1999)). These algorithms accomplish the rotation through a sequence of subrotations, with the input to each subrotation stage depending on the output of the previous stage. In these cases, the latency is proportional to the precision of the angle.
We now propose a different approach for angle rotation. Here the rotation is partitioned into just two cascaded rotation stages: a coarse rotation and a fine rotation. The two specific amounts of rotation are obtained directly from the original angle without performing iterations as does CORDIC. The critical path is therefore made significantly shorter than that of the CORDIC-type methods. In addition, only a small lookup table is needed.
In this Section, methods and apparatus for two-stage angle rotation will be described. These method and apparatus are meant for example purposes only, and are not meant to be limiting. Those skilled in the arts will recognize other methods and apparatus for two stage angle rotation based on the discussion given herein. These other methods and apparatus for angle rotation are within the scope and spirit of the present invention.
It will be shown that more precision and less hardware can be obtained using the two stage angle rotator compared to the single-stage angle rotator, with slightly more computational delay. We will then show that, given an overall output precision requirement, various simplifications can be applied to the computations within the two stages to reduce the total hardware.
5.1 The angle rotation problem
If we rotate a point in the X-Y plane having coordinates (X0, Y0) counterclockwise, around the origin, by the angle φ, a new point having coordinates (X, Y) is obtained. It is related to the original point (X0, Y0) as:
X=X0 cos φ−Y0 sin φ
Y=Y0 cos φ+X0 sin φ (5.1)
5.1.1 Single-Stage Angle Rotation
The operation in (5.1) is found in many communication applications, notably in digital mixers which translate a baseband signal to some intermediate frequency and vice versa. In addition to accomplishing (5.1) with CORDIC, a very common implementation is to store pre-computed sine/cosine values in a ROM (Tan, L. and Samueli, H., “A 200-MHz quadrature frequency synthesizer/mixer in 0.8-μm CMOS,” IEEE J. Solid-State Circuits 30:193-200 (1995)). Then, in real-time, the computation in (5.1) is accomplished with a ROM access for each given φ followed by four real multiplications. This method avoids the excessive latency of the iterations performed by CORDIC and can yield lower latency than the angle-rotation method (Madisetti, A., “VLSI architectures and IC implementations for bandwidth efficient communications,” Ph.D. dissertation, University of California, Los Angeles (1996)). Furthermore, a very fast circuit can be built, based on efficient multiplier design techniques. However, since the size of the ROM grows exponentially with the precision of φ, a rather large ROM is required to achieve accurate results.
ROM compression can be achieved by exploiting the quarter-wave symmetry of the sine/cosine functions and such trigonometric identities as sin θ=cos(π/2−θ). The angle φ in the full range [0,2π] can be mapped into an angle θε[0,π/4]. This is accomplished by conditionally interchanging the input values and X0 and Y0, and conditionally interchanging and negating the output X and Y values (Madisetti, A., “VLSI architectures and IC implementations for bandwidth efficient communications,” Ph.D. dissertation, University of California, Los Angeles (1996)). Thus, we will focus only on θε[0,π/4] and replace φ by θ in(5.1). Defining θ=(π/4){overscore (θ)}, we must have {overscore (θ)}ε[0,1].
Obviously, the sine/cosine ROM samples must be quantized because of the limited storage space for sine/cosine samples. This produces an error in the ROM output when compared to the true (unquantized) sine/cosine value, which will subsequently be referred to as the ROM quantization error. Next we examine how this error affects the output. Let cos θ and sin θ be quantized to N bits, to become [cos θ] and [sin θ], respectively. We have
cos θ=[cos θ]+Δcos θ
sin θ=[sin θ]+Δsin θ (5.2)
where Δcos θ and Δmin θ are the ROM quantization errors, which satisfy |Δcos θ|<2−N and |Δsin θ|<2−N. The error in X due to the ROM quantization is the difference between X calculated using infinite-precision sine/cosine values and the quantized values, that is
Its upper bound is
|Δx|<(|X0|+|Y0|)2−N. (5.4)
5.1.2 Rotation by a Small Angle
If the rotation angle happens to be so small that
|θ|<2−N/3 (55)
then its sine/cosine values can be approximated as
sin θ˜θ (5.6)
cos θ˜1−(θ2/2). (5.7)
For such θ no table is needed. Next, we show how accurate (5.6) and (5.7) are by estimating their approximation errors.
The Taylor expansion of sin θ near θ=0 yields
where ξ=hθ, 0≦h≦1. Thus, since
|sin′ξ|=|cos ξ|≦1 (5.9)
and in view of (5.5), an error bound on (5.6) is
|Δsin θ|=|sin θ−θ|≦|θ3/6|<2−N/6. (5.10)
Similarly, the Taylor expansion of cos θ yields
Thus, an error bound on (5.7) is
|Δcos θ|=|cos θ−(1−θ2/2)|≦|θ4/24| (5.12)
which is negligible in comparison to the bound on |Δsin θ|.
5.1.3 Partitioning into Coarse and Fine Rotations
While it is unlikely that (5.5) is satisfied for a given θε[0,π/4], i.e., {overscore (θ)}ε[0,1], if we let B>N/3 be the number of bits in {overscore (θ)}, then we can express {overscore (θ)}={overscore (θ)}M+{overscore (θ)}L where
{overscore (θ)}M=d12−1+ . . . +dN/32−N/3 (5.13)
{overscore (θ)}L=dN/3+12−N/3−1+ . . . dB2−B (5.14)
with d1ε{0,1}. Next we define θM=(π/4){overscore (θ)}M and θL=(π/4){overscore (θ)}L. Clearly, with π/4<1 and from (5.14), θL satisfies (5.5).
If we substitute θ=θM+θL for φ in (5.1) and expand cos(θM+θL) and sin(θM+θL), we obtain:
X=X1 cos θL−Y1 sin θL
Y=Y1 cos θL+X1 sin θL (5.15)
and
X1=X0 cos θM−Y0 sin θM
Y1=Y0 cos θM+X0 sin θM. (5.16)
Now the rotation (5.1) is decomposed into two stages: a coarse rotation (5.16) by θM followed by a fine rotation (5.15) by θL. With this partitioning (5.5) and (5.6) can be applied to the fine stage:
X=X1(1−θL2/2)−Y1θL
Y=Y1(1−θL2/2)+X1θL (5.17)
A benefit of this partitioning is that the functions cos θM and sin θM in (5.16) depend only on the N/3 most significant bits of the angle {overscore (θ)}, where θ=(π/4){overscore (θ)}. They can be stored in a small lookup table. This results in a significant ROM size reduction. However, the approximation (5.6) introduces additional error. We now seek to achieve an overall precision comparable to that in the implementation having one stage and a large ROM table.
Defining the approximation errors Δsin θ
Comparing this error estimate with (5.3) and (5.4) it is evident that, so long as the errors due to Δcos θ
Therefore, from (5.18), we have
which is smaller than (5.4). A similar relationship can be found for ΔY. This demonstrates that, if we add one more bit of precision to the ROM for the coarse stage, we can achieve the same precision as that in the one-stage case, but with a significantly smaller ROM.
A straightforward implementation of this method is illustrated by the angle rotator 3800 in FIG. 38. The angle rotator 3800 includes a ROM 3802, butterfly circuits 3806 and 3810, and fine adjustment circuit 3804.
The ROM 3802 stores the cos θM and sin θM values, where θM is the most significant part of the input angle θ. In embodiments the input angle θ is normalized and represented by a binary number, so that θM is the most significant word of the binary number, and θL is the least significant word of the binary number.
The first butterfly circuit 3806 multiplies the input complex number 3812 by the (cos θM)+ and the (sin θM)+ to perform a coarse rotation, where the ( )+ denotes that the appropriate ROM quantization errors have been added to the cos θM and sin θM by the adders 3814.
The fine adjustment circuit 3804 generates a fine adjust value (1−½θL2)O where θL is the least significant word of the input angle θ.
The second butterfly circuit 3810 multiples the output of circuit 3806 by θL+ and the fine adjustment value from circuit 3804, to perform a fine rotation that results in the rotated complex number 3814. The + on the θL+denotes that an error value Δsin θ
The three error sources Δcos θ
The ROM table 3802 in the rotator 3800 contains many fewer sine/cosine samples in comparison to the number of samples needed to implement (5.1) using a conventional (single stage) table-lookup approach. Although the approximation (5.6) introduces additional error, so long as that error is smaller than the conventional ROM quantization error, we can increase the precision of the samples in our small ROM table such that, overall, precision is not sacrificed. In principle, we can reduce the hardware complexity significantly in one block of our structure, with the corresponding accuracy loss compensated by higher precision from another block, and at the cost of a slight increase in the complexity of that block. As a result, the complexity of the overall structure is reduced without loss of accuracy. We will now exploit this idea again to further reduce the computational complexity.
5.2 Simplification of the Coarse Stage
The coarse stage, according to (5.16), involves multiplications of input data X0 and Y0 by the cos θM and sin θM values. Writing sin θM as the binary number
sin θM=0.b1 . . . bN/3bN/3+1 (5.20)
where bn ε{0,1}, we now round sin θM upward, to obtain an (N/3+1)−bit value [sin θM], as
[sin θM]=0.b1 . . . bN/3bN/3+1+2−(N/3+13+1), (5.21)
where N represents the number of bits in the real part and the imaginary part of the input complex number. In other words, the real part has N bits, and the imaginary part has N bits.
Letting θ1 be the angle for which
sin θ1=[sin θM] (5.22)
we must have θ1≧θM. Next we can compute the corresponding cos θ1 value. Using sin θ1=[sin θM] and cos θ1 values, we actually rotate the point having coordinate (X0, Y0) by θ1instead of θM, as
X1=X0 cos θ1−Y0 sin θ1
Y1=Y0 cos θ1+X0 sin θ1. (5.23)
Since θ1=arc sin([sin θM]) and, of course, θM=arc sin(sin θM), applying the mean value theorem we have
where ξ satisfies sin θM≦ξ≦[sin θM]. Since sin θM≦1/(√{square root over (2)}), according to (5.21) we must have
For most applications, N≧9. Thus, according to (5.25), we have is ξ≦0.7696. Applying this value to (5.24),
Because 0≦θM≦π/4, we have, for N≧12, that
0≦θ1≦0.0978+π/4=0.8832. (5.27)
The resulting fine-stage angle is θ−θ1, instead of θL=θ−θM. Thus, as in (Madisetti, A, “VLSI architectures and IC implementations for bandwidth efficient communications,” Ph.D. dissertation, University of California, Los Angeles (996)), a modified fine-stage angle compensates for a simplified coarse-stage angle. Since sin θ1=[sin θM], by rotating by θ1, the (N/3+1)-bit number sin θ1 decreases the number of partial products needed in computing X0 sin θ1 and Y0 sin θ1 to just over a third of those needed for X0 sin θM and Y0 sin θM. This simplifies the computation in (5.23). However, if we can also reduce the multiplier size in computing X0 cos O, and Y0cos θ1, we can further simplify (5.23). Certainly, truncating the cos θ1 value would reduce the number of partial products in computing X0 cos θ1 and Y0 cos θ1. Let us truncate cos θ1 to 2N/3 bits to obtain [cos θ]. Then,
0≦Δcos θ
We now have
X1=X0[cos θ1]−Y0 sin θ1
Y1=Y0[cos θ1]+X0 sin θ1. (5.29)
Apparently, by truncating cos θ1, smaller multipliers are needed. But the amount of rotation is no longer θ1. We now examine the effect on θ1 of using the truncated value [cos θ1] instead of cos θ1 as
First, we determine how θm is different from θ1 due to the truncation of cos θ1. Letting cos θ1 and [cos θ1] denote specific values of a variable z we consider the function
Hence, θ1 and θm are the Θ(z) values corresponding to Z1=cos θ1 and Z2=[cos θ1], i.e., θ1=Θ(Z1) and θm=Θ(Z2) According to the mean value theorem, we have
where [cos θ1]≦ξ≦cos θ1. The negation of the derivative at an
satisfies
According to (5.27), for N>9 we have
0≦sin θ1≦0.7727
0.6347≦cos θ1≦1
0.6406<[cos θ1]≦1 (5.35).
Since [cos θ1]=cos θ1−Δcos θ
Combining (5.35) and (5.36), one can verify, for N≧9, that (5.34) satisfies
Thus, according to (5.28) and (5.33), we have
θm−θ1<(cos θ1−[cos θ1])×0.7976≦0.7976×2−2N/3 (5.38)
Combining (5.26) and (5.38), and for N≧9, we have
0≦θm−θM≦1.566×2−(N/3+1)+0.7976×2−2N/3<0.8827×2−N/3 (5.39)
This is the amount of coarse rotation error, due to coarse-stage simplifications, that a modified fine stage must compensate. Let us examine the bound on the fine-stage angle.
Now, the fine rotation angle is θ1=θ−θm instead of θL. If θ1 satisfies
|θ1|<2−N/3 (5.40)
then we have |sin θ1−θ1|<2−N/6. That is, the approximations sin θ1˜θ1 and cos θ1=1−θ12/2 can be applied as discussed in Section 5.1. Let us now examine the bound on θ1. By definition,
Therefore, subtracting (5.39) from (5.41) yields
−0.8827×2−N/3<θL−(θm−θM)<0.7854×2−N/3 (5.42)
which implies (5.40) because
θ1=θ−θm=θM+θL−θm=θL−(θm−θM) (5.43)
Hence, no lookup table is needed for the fine stage.
Next, we examine the magnitude of the complex input sample after rotation. One can verify from (5.29) that
X12+Y12=(X02+Y02)([cos θ1]2+(sin θ1)2 (5.44)
Since [cos θ1] is obtained by truncating cos θ1, we must have 0 [cos θ1]<cos θ1, thus
[cos θ1]2+(sin θ1)2≦(cos θ1)2+(sin θ1)2=1 (5.45)
Therefore,
X12+Y12≦X02+Y02 (5.46)
To maintain the magnitude, the result X1 and Y1 must then be multiplied by 1/√{square root over ([cos θ1]2+(sin θ1)2.)} We define a new variable δ[cos θ
Since √{square root over ((cos θ1)2+(sin θ1)2)}{square root over ((cos θ1)2+(sin θ1)2)}=1, and [cos θ1] is very close to cos θ1 because of (5.28), we have that √{square root over ([cos θ1]2+(cos θ1)2)} is very close to 1. Thus, the δ[cos θ
Substituting (5.28) into (5.48), we have
Because (5.28) and (5.35) imply that Δcos θ1<<[COS θ1], we have Δcos θ
then (5.49) becomes √{square root over (1+2δ)}. From (5.28) and (5.35) we must have δ>0. Applying the mean-value theorem to √{square root over (1+2δ)}, we have
where 0≦ζ<δ. Hence,
√{square root over (1+2δ)}≦1+δ (5.52)
According to (5.35),
and therefore, from (5.28) and (5.50), we have 0≦δ<2-2N/3.
By definition, in (5.47), we have √{square root over (1+2δ)}=1+δ[cos θ
0≦δ[cos θ
According to (5.40) and (5.54), instead of storing the sin θM and cos θM values in ROM, we may store sin θ1, which has N/3+1 bits for each sample, and [cos θ1], which has 2N/3 bits. Given {overscore (θ)}M, the sin θ1 and [cos θ1] values are retrieved from the ROM to be used in performing the coarse rotation. Since the actual angle θm differs from the θM=(π/4){overscore (θ)}M, we must also store the θM−θm values, so that the fine stage can compensate for the difference. The approximations (5.6) and (5.7) still apply to θb in view of (5.40). In addition, the change of magnitude in the rotation using the sin θ1 and [cos θ1] values, as seen in (5.45), must also be compensated. Therefore we store the δ[cos θ
We can now implement the coarse rotation stage as in (5.29). Later we will show that the scale factor 1+δ[cos θ
To compute θ1 we must first convert the normalized {overscore (θ)}L value to the radian value θL, which involves a multiplication by π/4. Since π/4=2−1+2−2+2−5+2−8+2−13+ . . . , if we multiply 0≦{overscore (θ)}L<2−N/3 by (2−1+2−2+2−5+2−8), this product and (π/4) {overscore (θ)}L differ by no more than 2−12×2−N/3=2−(N/3+12), which is sufficiently small for a 12-bit system. (And two more bits would suffice for building a 16-bit system.)
5.3 Reduction of Multiplier Size in the Fine Stage
In the fine rotation stage, the computations involved in generating X2 are
Since |θ1|<2−N/3 it follows that θ1 can be expressed as
θ1=S. S . . . S θN/3+1 . . . θ2N/3 θ2N/3+1 (5.56)
where s is the sign bit. The N/3 MSBs do not influence the result. This property helps to reduce the size of the multipliers that implement (5.55). Even more savings in hardware can be achieved by further reducing multiplier size, with just a small loss of accuracy.
Let [Y1] represent the 2N/3 MSBs of Y1 as in
Y1=S.y1 . . . Y2N/3 Y2N/3+1 . . . =[Y1]+Δr
Then we must have |Δr
|Y1θ1−[Y1]θ1|=|Δr
Therefore, for N-bit precision, the multiplication Y1θ1 can be accomplished with a (2N/3)×(2N/3) multiplier.
This method can be applied to the computation of θ12/2. Defining [θ1] as the 2N/3 MSBs of θ1, and letting Δθ
[θ1]=s.s . . . sθN/3+1 . . . θ2N/3 (5.59)
and
Δθ
The error in calculating θ12/2 using [θ1] instead of θ1 is
|([θ1]+Δθ
Thus θ12 can be implemented with an (N/3)×(N/3) multiplier, since the N/3 MSBs of [θ1] are just sign-bits.
5.4 Scaling Multiplier Simplification
As mentioned in Section 5.2, the scale factor 1+δ[cos θ
X2=X1(1−θ12/2)(1+δ[cos θ
=X1+X1(δ[cos θ
The only significant error in approximating (5.62) by (5.63) is the absence of the θ1δ[cos θ
|θ1δ[cos θ
In view of (5.40) we have 0≦θ12<2−2N/3 which, combined with (5.54), yields
|δ[cos θ
Thus, if we truncate δcos θ
|δ[cos θ
By merging the scale factor of the coarse stage into the fine stage, we thus replace multiplications by the scale factor by additions. The final architecture is shown in
The ROM 3902 stores the following for each corresponding {overscore (θ)}: sin θ1, [cos θ1], δ[cos θ
The butterfly circuit 3908 includes multiple multipliers and adders as shown. The implementation of these multipliers and adders is well known to those skilled in the arts. In embodiments, the sizes of the multipliers and adders are as shown in FIG. 40. Note that savings are obtained on the size of the multipliers because of bit truncated approximations that are described above. This produces a faster and more efficient angle rotator compared to other angle rotator schemes.
The operation of the angle rotator 3900 is further described in reference to the flowchart 4100. As with all flowcharts herein, the order of the steps is not limiting, as one or more steps can be performed simultaneously (or in a different order) as will be understood by those skilled in the arts.
In step 4102, the input complex signal is received.
In step 4104, the sin θ1, cos [θ1], δ[cos θ
In step 4106, the butterfly circuit 3908 multiplies the input complex signal by the sin θ1 and [cos θ1] values to perform a coarse rotation of the input complex signal, resulting in an intermediate complex signal at the output of the butterfly circuit 3908.
In step 4108, the adder 3914 adds the θL value to the error value θM−θm to produce a θ1 angle.
In step 4110, a fine adjustment circuit 3904 generates a fine adjust value
based on the θ1 angle and δ[cos θ
to perform a fine rotation of the intermediate complex number, resulting in the output complex signal 3912.
In embodiments, the ROM 3902 storage space is 2′ words, where N is the bit size of the real or imaginary input complex number 3906. Therefore, the overall size of the ROM 3902 can be quite small compared with other techniques. This occurs because of the two-stage coarse/fine rotation configuration of the angle rotator 3900, and saving of storing sin θ1, [cos θ1] instead of sin θ and cos θ. Also, there is another advantage to having a small ROM: in certain technologies it is awkward to implement a ROM. Thus, if only a small ROM is needed, it is possible to implement the ROM's input/output relationship by combinatorial logic circuits instead of employing a ROM. Such circuits will not consume an unreasonable amount of chip area if they need only be equivalent to a small ROM.
5.5 Computational Accuracy and Wordlength
In this section we study the effect of quantization errors on the final output's computational accuracy and the most efficient way to quantize the data for a given accuracy.
In our algorithm, the errors can be classified into three categories. The first category is the quantization of the values in the ROM table. The second category is the error due to the truncation of data before multiplications, to reduce multiplier size. The third type of error is that resulting from approximating sin θ1 by θ1. Quantization errors are marked in
The values stored in the ROM are sin θ1, [cos θ1], θM−θm and δ[cos θ
The total error in X can be obtained by combining all the terms in the third column of Table 5.1:
Since ξ6 in Table 5.1 is a truncation error, we have ξ6≧0. If we quantize δ[cos θ
From the above analysis it can be seen that the computation errors resulting from hardware reduction have similar magnitudes and no particular source dominates. This seems to provide the best trade-off between the hardware complexity and the accuracy of the entire system.
According to (5.67), the total output error can be reduced by increasing the internal data wordlength and the wordlength of each sample in the ROM. For each bit increase, we get one more bit of precision at the output. Therefore, we can design the processor to have the minimum hardware for a given precision requirement. Next, we give a simulation example to illustrate this method.
Example: A cosine waveform with an error less than 2−12 is specified. According to (5.67), we chose N=15, as indicated in FIG. 40. We obtained the maximum error to be approximately 5×10−5, which is considerably smaller than 2−12.
In
words to achieve no more than a total error of 7×2−N in the X output. If N is not a multiple of 3, we can choose the smallest N′>N that is a multiple of 3. Having
words in ROM, of course, suffices to achieve the required precision. As discussed before, the total output error is a combination of errors from various sources, such as from quantizing the data before multiplications and from approximating sin θ1 by θ1, etc. However, our error bound estimation is rather conservative. Hence, the ROM size can be perturbed to determine the minimum size to satisfy a specific precision requirement. Our experience in designing the angle-rotation processor has shown that, even by rounding
down to determine the ROM size, the total error is still less than 7×2−N.
5.6 Comparison with the Single-Stage Mixer
As mentioned earlier, the main advantage of the two-stage angle rotator is that it requires only a small ROM 3902. For the single stage angle rotation, the ROM size grows exponentially with the precision of the angle. Thus, our two-stage method is well-suited for applications where more than 14 bits in the input angle are required. In this case, the sine lookup table for the single-stage angle-rotator, even with compression, is too large for high-speed operations (Vankka, J., “Methods of mapping from phase to sine amplitude in direct digital synthesis,” IEEE Trans. Ultrasonics, Ferroelectronics and Freq. Control 44:526-534 (1997)). However, the following comparison of our method to a well-known single-stage method with 14-bit input angle shows that even in this case our method has advantages, and this is true even when the single-stage method is optimized for that particular precision requirement.
To compare, we use the quadrature direct digital frequency synthesizer/mixer (QDDFSM) with 14-bit input angle and 12-bit input data that is reported in (Tan, L. and Samueli, H., “A200-MHz quadrature frequency synthesizer/mixer in 0.8-μm CMOS,” IEEE J Solid-State Circuits 30:193-200 (1995)). It achieves 84.3 dB spurious free dynamic range (SFDR). According to this method, the sine and cosine values are generated using a DDFS, which employes lookup tables for these values. To reduce the ROM size, ROM compression techniques are used. The DDFS is followed by four 12×12 real multiplications.
For our structure, we chose the internal wordlengths and multiplier sizes as indicated in FIG. 42. The phase-accumulator that generates {overscore (θ)} as well as the circuit that maps an angle in the range [0, 2π] into [0, π/4], are described in (Madisetti, A., “VLSI architectures and IC implementation for bandwidth efficient communications,” Ph.D. dissertation, University of California, Los Angeles (1996)). These structures are also employed here in our test. Truncating the 32-bit phase word to 14 bits, this structure has achieved a SFDR of 90.36 dB, as shown in FIG. 43. This is 6 dB better than the single stage method.
The integrated circuit that implements this structure is currently being built. A preliminary estimation of its hardware complexity yields a similar transistor count as that of (Tan, L. and Samueli, H., IEEE J Solid-State Circuits 30:193-200 (1995)). Thus, using approximately the same number of transistors, our structure achieves a 6 dB performance gain. Our structure requires a much smaller ROM (17×25=425 bits) in comparison to the single-stage method, which needs a 3072-bit ROM when the ROM compression technique is employed. Since the ROM access is hard to pipeline, it is usually the bottleneck in the data path, thereby limiting the achievable data rate. Hence, one pronounced benefit of having a much smaller ROM would be the much faster ROM access. Also, there is another advantage to having a small ROM: in certain technologies it is awkward to implement a ROM. Thus, if only a small ROM is needed, it is possible to implement the ROM's input/output relationship by combinatorial logic circuits instead of employing a ROM. Such circuits will not consume an unreasonable amount of chip area if they need only be equivalent to a small ROM.
5.7 A Modified Structure When Only One Output is Needed
In some applications, such as the implementation of the trigonometric interpolator discussed in the previous sections, only one output, say X is needed. In such cases, obviously, we can eliminate certain computations used to generate Y. However, using the angle rotator 3900, only those generating Y in the fine stage are subject to deletion, while the coarse stage must remain the same, since we need both X1 and Y1 to generate the X output. Let us seek to further simplify the coarse stage by attempting to eliminate one multiplication by cos θM.
5.7.1 Modifications to the Coarse Stage
If we factor out the cos θM term of the coarse stage in (5.16), we can then apply the factor cos θM to the output of the second stage in (5.17), because the two operations (scaling and rotation) are permutable, to obtain
X1=X0−Y0 tan θM
Y
1
=Y
0
+X
0 tan θM (5.68)
In this case, we have only two multipliers in the coarse stage (5.68), and the multiplications by the scale factor θM are applied to the output of the fine stage (5.69). Unlike the situation in (5.16) and (5.17), if only one output from the angle rotator, say X, is needed, we can also eliminate one more multiplier—the one that multiplies the coarse stage output with the cos θM factor. As in Section 5.2, we now seek to simplify the coarse stage in (5.68).
Let tan θm be tan θM rounded upward at the (N/3)-rd bit. In other words, writing θM as the binary number
tan θM=0.b1 . . . bN/3bN/3+1 (5.70)
where bnε{0, 1}, tan θm is obtained from tan θM according to
tan θm=0.b1 . . . bN/3+2−N/3. (5.71)
Obviously,
0≦tan θm−tan θM≦2−N/3. (5.72)
The N/3-bit number tan θm decreases the number of partial products needed in computing X0 tan θm and Y0 tan θm to at most a third of those needed for X0 tan θM and Y0 tan θM.
The resulting fine-stage angle is θ1=θ−θm. Thus, as in Section 5.2, a modified fine-stage angle compensates for a simplified coarse-stage angle. If θ1 satisfies (5.40), we then have |sin θ1−θ1|<2−N/6. That is, the approximations sin θ1=θ1 and cos θ1=1θ12/2 can be applied. The proof that (5.40) holds is as follows:
Proof: According to the mean value theorem
where ξ=θM+(θm−θM)h, 0≦h≦1. The derivative tan′ξ satisfies
tan′ξ=1+(tan ξ)2≧1, for every ξ. (5.74)
Re-arranging (5.73), and using (5.74), we have
Hence, according to (5.72),
0≦θm−θM≦2−N/3. (5.76)
By definition,
0≦θL<2−N/3. (5.77)
Therefore, subtracting (5.76) from (5.77) yields
−2−N/3<θL−(θm−θM)<2−N/3. (5.78)
which is exactly (5.40) because
θ1=θ−θm=θM+θL−θm=θL−(θm−θM). (5.79)
This concludes our proof.
This indicates that, instead of storing the tan θM values in the ROM, we may store tan θm, which has N/3 bits for each sample, and we may store θm−θM. This results in a reduction of the multiplier size in the coarse stage. The difference between θm and θM can be compensated in the following fine rotation stage. Furthermore, the approximations (5.6) and (5.7) still apply to θ1, in view of (5.40).
We can now implement the coarse rotation stage as follows:
X1=X0−Y0 tan θm
Y1=Y0+X0 tan θm. (5.80)
Accordingly, the scale-factor at the output of the fine stage is cos θm instead of cos θM. Since θ1 satisfies (5.40), the fine stage simplification is similar to the method described in Section 5.3. Next we examine how the multiplications of the fine-stage output by cos θm can be simplified.
5.7.2 Sealing Multiplier Simplification
A straightforward implementation would use the full wordlength of cos θm in the product X=X2 cos θm, which would require a multiplier of size N×N. But this multiplier's size can be reduced as follows: By defining [cos θm] as the 2N/3+1 MSBs of cos θm the scale factor can be written as
Let us define
and, since 0≦θm≦/4, we surely have [cos θm]>0.5, and hence
0<δcos θ
Moving the factor 1+δcos θm into the fine stage, we have
X2=X1(1−θ12/2)(1+δcos θ
=X1+X1(δcos θ
The only significant error approximating (5.83) by (5.84) is the absence of the θ1≡cos
|θ1δcos θ
In view of (5.40) we have 0≦θ12<2−2N/3 which, combined with (5.82), yields
|δcos θ
Thus, if we truncate δcos θ
|δcos θ
The factorization of cos θm in (5.81) allows a reduction of the multiplier to approximately ⅔ its original size. In this case, the values of [cos θm] and δcos θm are stored in the ROM instead of cos θm.
The modified structure for one output is illustrated as angle rotator 4400 in FIG. 44. The angle rotator 4400 includes a ROM 4402, a fine adjustment circuit 4404, a first butterfly circuit 4408, and a second butterfly circuit 4410. The angle rotator 4400 rotates an input complex signal 4406 according to angle θ to produce a rotated complex output signal 4412. As with the rotator 3900, the angle θ can be broken down into a most significant portion (or word) θM and least significant portion (word) θL. Note that normalized angle values are shown in
The ROM 4402 stores the following for each corresponding normalized θ: tan θm[cos θm], δcos θ
In the butterfly circuit 4410, the arithmetic units that are encircled by the line 4418 can be eliminated when only the X output is needed in the output signal 4412. This may be desirable for applications where only one output from the angle rotator 4400 is needed, such as when implementing a trigonometric interpolator, such as interpolator 1000 in
The operation of the angle rotator 4400 is further described in reference to the flowchart 4500 in FIG. 45. As with all flowcharts herein, the order of the steps is not limiting, as one or more steps can be performed simultaneously (or in a different order) as will be understood by those skilled in the arts.
In step 4502, the input complex signal 4406 is received.
In step 4504, the tan θm, [cos θm], δcos θ
In step 4506, the butterfly circuit 4408 multiplies the input complex signal 4406 by tan θm to perform a coarse rotation of the input complex number, resulting in an intermediate complex signal at the output of the butterfly circuit 4408.
In step 4508, the adder 4414 adds the θL value to the error value θM−θm to produce a θ1 angle.
In step 4510, a fine adjustment circuit 4404 generates a fine adjust value
based on the θ1 angle and δcos θm.
In step 4512, the butterfly circuit 4410 multiplies the intermediate complex signal by the θ1 angle, and the fine adjustment value
to perform a fine rotation of the intermediate complex signal, resulting in the output complex signal.
In step 4514, the X value for the output complex signal is scaled by the [cos θm] value, resulting in the output complex number 4412. As discussed above, the elements inside the outline 4418 can be eliminated if only the X value of signal 4412 is desired. Alternatively, similar elements could be eliminated from the butterfly circuit 4410 if only the Y value of signal 4412 was desired.
5.8 Application of Angle Rot on Processors
This subsection describes exemplary applications for angle rotator processors. These applications are provided for example purposes only and are not meant to be limiting, as those skilled in the arts will recognize other applications based on the discussions given herein. These other applications are within the scope and spirit of the present invention.
One application for the angle rotation processor is the Quadrature Direct Digital Frequency Synthesizer/Mixer (QDDFSM), including a few special cases that are candidates for the angle rotator algorithm. One is the case when only one of the outputs (X or Y) is desired, as shown by angle rotator 4400 (FIG. 44). As shown in
5.8.1 Using the Angle Rotation Processor in a Quadrature Direct Digital Frequency Synthesizer/Mixer
The frequency synthesis and mixing operation can be described with the following pair of equations, which relate an input with x-y coordinates (X0, Y0) and a frequency control word (fcw) for the synthesizer, to an output with new x-y coordinates (X, Y). The following pair of equations establishes the relationship between (X0, Y0), fcw, and (X, Y).
X=[X0×cos(fcw×n)]−[Y0×sin(fcw×n)]
Y=[Y0×cos(fcw×n)]+[X0×sin(fcw×n)] (5.88)
where n is the time index
Per (5.88), since the sine and cosine functions are periodic with period 27 (i.e., fcw×n=<fcw×n>2π=φ, where < >is a modulo operator) an overflowing adder is used as a phase accumulator to compute φ from the input few, as shown by the the phase accumulator 4600 in FIG. 46.
Now, for any given time instance n, we have a corresponding angle φ from the phase accumulator, hence the original pair of equations (5.88) for QDDFSM can be rewritten in terms of the angle φ as follows.
X=[X0×cos φ]−[Y0×sin φ]
Y=[Y0×cos φ]+[X0×sin φ (5.89)
Note that the expressions (5.89) are exactly those of an angle rotator expressed by equations (5.1). By applying a phase accumulator fed by an fcw, we have converted the QDDFSM into an angle rotation application. The only conflict between the above expressions and the angle rotation processor is that the angle rotation processor takes an angle θ in the range [0, π/4], while the angle φ in the above expressions is in the interval [0,2π).
5. $1.1 A General Angle Rotator for Arbitrary Input Angles
Let us consider the changes necessary to make the angle rotation processor use an input angle φ that may lie outside the [0, π/4) range. Fortunately, a simple interchange operation at the input of the coarse stage, and an interchange/negate operation at the output of the fine stage is all we need in order to map ¢ into an angle θ in the range [0, π/4] and use it as the input to the angle rotator. Even though the input angle θ is in the range [0, π/4], the rotation by 0 along with the interchange and interchange/negate operations make the overall rotation of the input (X0, Y0) equivalent to a rotation by the original angle θ in the full range [0,2π). The latter is possible because of the convenient symmetry properties of sine and cosine functions over the range [0, 2π].
For example, sin φ=−sin (φ−π) and cos φ−−cos(φ−π), while sin φ=cos(φ−π/2) and cos φ=−sin(φ−π/2), and finally, for 0<φ<π/4, if we write π/4+φ for φ then sin(π/4+φ)=cos(π/4−φ) and cos(π/4+φ)=sin(π/4−φ). Using the first pair of trigonometric identities, we can map φ into the range [0, π]) by simply performing a negate operation at the output of the angle rotator. Using the second pair of identities along with the first pair enables one to map φ into the range [0, π/2) by performing negate and interchange operations at the output of the angle rotator. Finally, using all three pairs of identities, the angle φ can be mapped into the range [0, σ/4) by performing an interchange operation at the input of the angle rotator, along with interchange and negate operations at the output of the angle rotator. Note that all of these interchange and negate operations are conditioned only on the issue of which octant φ is in. This means that if φ is a normalized angle, then the interchange and negate decisions depend only on the top three MSB bits of φ. The following tables show the interchange and negate operations required for all eight octants (specified by the three MSB bits of φ). It is evident, as well, that other interchange and negate criteria for the input and output would also be suitable.
This table indicates when an interchange operation is required at the input and when an interchange operation is required at the output of the angle rotator.
The following table indicates when a negation operation is required at the output of the angle rotator.
Note that the flag for input interchange is simply the 3rd MSB bit of φ, while the flag for output interchange is just the 2nd MSB bit of φ. Finally, to produce the remapped angle θ in the range [0, π/4) for the angle rotation processor, we simply take the remaining bits of +after stripping the top two MSBs and performing a conditional subtract operation to produce e. More specifically, if the MSB bit (after stripping the two MSB bits) is low, i.e., the angle is in an even octant (numbering them 0, . . . , 7), we pass the angle unchanged, otherwise we perform a “two s-complement type” inversion of the angle. Note here that after such remapping operation, the MSB bit of θ is set to one only in the case when θ =π/4. This fact is useful in determining the required amount of lookup table in the angle rotation processor. In other words, even though the MSB bit of θ is an address to the lookup table, since we know that when it is ‘1’ the remaining bits have to all be ‘0’ we only need to allocate a single address for that case (as opposed to increasing the size of the lookup table by an entire factor of two).
5.8.1.2 Adapting the General Angle Rotator to Make a QDDFSM
The structure of the QDDFSM using an angle rotation processor 3900 is depicted in the FIG. 4700. It simply requires the employment of a phase accumulator 4702 and a conditional subtract 4704 to provide an input angle from the input frequency control word fcw. We refer to the system of
5.8.2 How to Use the Conditionally Negating Multipliers in the General Angle Rotator
For a moment assume we have a powerful technique for making conditionally negating multipliers. What we mean by that is a multiplier which takes a negate flag to produce an output depending on that negate flag as follows: The output is simply the product of the input signals if the flag is low (0) and the output is the negative of the product of the input signals if the flag is high (1).
Each one of the two outputs in the coarse and fine stages is computed with two multipliers and one adder as shown in FIG. 47. These multipliers and the adder are implemented in a single Carry-Save Adder (CSA) tree, with the partial products being generated from Booth decode modules corresponding to the two multipliers. This technique of employing a single tree eliminates the need for intermediate carry propagation from each multiplier and makes the propagation delay of each rotation stage very short. Note that the single CSA tree implementation is possible since the multipliers are operating in parallel. Furthermore, because the structure that is needed to compute one output of a rotation stage is identical to the structure required by the other output (with the exception of the minus sign), a single CSA tree can easily be interleaved between the two outputs for a significant amount of hardware savings. The minus sign at the output of the multiplier can be implemented very efficiently by the technique described in the following sections (using the conditionally negating multiplier). The negation or non-negation of the multiplier output can be controlled with a flag that changes between the two cycles of the interleave operation.
The angle at the output of the conditional subtract module 4704 in
Furthermore, the conditional interchange of the outputs can be implemented by conditionally interchanging the inputs of the fine rotation stage and appropriately controlling the signs of the multiplier outputs in the fine stage. The conditional interchange of the fine stage inputs can be propagated to the inputs of the coarse stage with the same line of reasoning. Remember that the inputs to the coarse stage were conditionally interchanged according to the three MSBs of the input angle anyway. In conclusion, the conditional interchange and negation operations of the outputs can be implemented by modifying only the condition of the interchange at the inputs of the coarse stage and appropriately controlling the multiplier output signs by using conditionally negating multipliers (which we had to do for interleaving anyway). This eliminates the conditional negate and interchange block at the output of the fine stage entirely (i.e., it eliminates muxes and two's complement negators), and also eliminates the need for storing and pipelining control signals (i.e., it eliminates registers) to perform the conditional interchange and negation operations at the output. The resulting General Angle Rotator 4800 is now depicted in the following FIG. 48.
5.8.2.1 Booth Multiplier
There are many algorithms for digital multiplication. One of the most popular is the Booth multiplier. The essence of the Booth multiplier is in the decoding scheme performed on the multiplicand to reduce the number of partial products which, when added together, produce the desired product. For an N×M Booth multiplier, where N is the wordlength of the multiplier, and M is the wordlength of the multiplicand, there will be ceiling(N/2) Booth decoders. Each Booth decoder will take three bits from the multiplier (with one bit overlapping the decoders on both sides) and will manipulate the multiplicand according to the Booth decoding table 5000 shown in FIG. 50. Some relevant details for a 10×M Booth multiplier are depicted in
5.8.2.2 How to Make a Negating Booth Multiplier
Suppose we wish to make a multiplier that produces the negative of the product. More specifically, suppose we wish to multiply two signals N and M and get —C=−(N×M). The latter can be accomplished in a number of different ways. The most obvious is perhaps to use a regular multiplier to produce the product C=(N×M) and then negate C to achieve —C=−(N×M). In case of two's complement representation, this approach requires an additional carry propagation chain through the negator, which is costly in terms of speed and additional hardware associated with a negating circuit. Another approach, described below, is more favorable in a few key aspects.
The product C is essentially the result of adding a number of partial products, which are generated by the Booth decode blocks as described in the previous section. Therefore, we can write the following sum expression for C:
where p, are then (in the 10×M example above n=5) partial products generated from the n Booth decoders. Note that, in order to negate C, we can negate all of the partial products and proceed with the summation of the negated partial products to produce —C. The expression for —C is then the following:
where −p1 are the negated n partial products generated from the n Booth decoders. Let us investigate how the Booth decoders need to change to produce the desired negated partial products. All we need to do is to change the decoding table 5000 from that of
5.8.2.3 How to make a Conditionally Negating Booth Multiplier
A particularly interesting case arises when one wishes the multiplier product to be negated sometimes, and normal (non-negated) the other times. One can extend the idea presented in the previous section to craft the following powerful technique. Let us investigate the original Booth decode table 5000 depicted in FIG. 50 and the negating Booth decode table 5100 of
Given a signal F which specifies when the output of the multiplier should be negated and when not (F=0 implies regular multiplication, F═I implies negating multiplication), F can simply be X OR d with the three bits (b2 b1 b0) at the input of the regular Booth decoders to make a new conditionally negating Booth decoder, hence a conditionally negating multiplier. The details of a conditionally negating Booth decoder 5300 are captured in FIG. 53. Note that with a minimal amount of hardware (N XOR gates for an N×M multiplier, which is insignificant compared to the hardware cost of the entire multiplier), we have the means to control the sign of the multiplier product. Also note that the overall latency of the multiplier is increased insignificantly since the latency through a single XOR gate is much smaller than the latency through the entire multiplier. Furthermore, the latency of a single XOR gate is much smaller than the latency associated with a carry propagation chain that would be necessary if one built such a circuit with a two's complement negator. A 10×M conditionally negating multiplier 5400 is shown in FIG. 54.
5.8.3 Using the Angle Rotation Processor in a Quadrature Direct Digital Frequency Synthesizer
As mentioned above, the angle rotator is useful in implementing various forms of direct digital synthesizers. In this case, all starting points for the angle rotations are X0=1, Y0=0 (with, of course, the various usual interchange/negation requirements).
Notice that the angle rotator 5502 is preceded by a system 5504 that generates a data stream of input rotation angles, a so-called overflowing phase accumulator 5506, and its input is a single fixed data word that precisely controls the frequency of the output sample waveforms. The three MSBs of each phase accumulator output word, of course, assess the approximate size of the angle that is being used as a rotation angle (i.e., these three bits show how many octants the rotation angle spans), and they are stripped off to control the interchange/negation operations that are appropriate for obtaining the desired output samples. Also, the third MSB is used, as described previously, to determine whether or not to perform a “two's complement type” inversion of the LSBs. One other operation is required by the “Conditional Subtract” module 5508 shown in
A special case of the QDDS system, one having only a single output data stream, which could be either of the two, but which we call the “cosine-only” case, is also useful for various well-known applications. FIG. 56 and
5.9 Conclusion
Based on the design method discussed, for a given accuracy requirement, an architecture with the least amount of hardware is produced by balancing the precision of intermediate computations and the complexity of each arithmetic block, while keeping the output error within the specified bound. Furthermore, our architecture consolidates all operations into a small number of reduced-size multipliers. This permits us to take advantage of many efficient techniques that have been developed for multiplier implementation, such as Booth encoding, thereby yielding a smaller and faster circuit than those previously proposed.
Simulations and preliminary complexity estimation show that, even comparing to the method of (Tan, L. and Samueli, H., IEEE J Solid-State Circuits 30:193-200 (1995)) that is optimized for a 14-bit input angle, our method achieved 6 dB more SFDR while using approximately the same number of transistors as those needed by (Tan, L. and Samueli, H., IEEE J Solid-State Circuits 30:193-200 (1995)). In addition, since our structure employs only a small ROM, it overcomes the problem of slow access time that occurs when large ROMs are used, thereby facilitating a higher data rate. Using the two-stage method, when a higher precision is needed, it is very straightforward to satisfy such a requirement, since more accurate results can be attained simply by increasing the wordlength and the multiplier size. For the single-stage method, however, when high precision is desired, the required lookup table is likely to be too large to be practical, particularly for high-speed operation.
6. Symbol Synchronization for Bursty Transmissions
We have thus far discussed methods that provide efficient implementations of the resampler for symbol synchronization in a digital receiver using trigonometric interpolation as well as the phase rotator for carrier recovery. To produce the correct samples, a timing recovery circuit must supply the resampler with symbol timing information, as shown in FIG. 1D. We will now consider how this can be accomplished. 6.1 Initial Parameter Estimations for Burst Modems
There are many methods to derive timing information from the received signal. According to their topologies, synchronization circuits can be divided into two categories: there are feedback and feedforward schemes. Feedback structures usually have very good tracking performance, and they work quite well in continuous mode transmissions. For packet data systems used by third-generation mobile communications, where the transmission is bursty, it is essential to acquire initial synchronization parameters rapidly from the observation of a short signal-segment.
A typical packet format is shown in FIG. 58. It includes a short preamble 5802 followed by user data 5804. The preamble 5802 is a set of known modulation symbols added to the user data packet at the transmitter with the intention of assisting the receiver in acquisition.
There are many approaches to burst demodulation, depending on the specific system requirements. In one approach (S. Gardner, “Burst modem design techniques, part 1,” Electron. Eng. 71:85-92 (September 1999); Gardner, S., “Burst modem design techniques, part 2,” Electron Eng. 71:75-83 (December 1999)), the receiver first detects the presence of the preamble, using a correlator, whose output should produce a large magnitude when the preamble is present. It then estimates the symbol timing. If the sampling frequency error is small, the total change of the timing phase from the start of the short preamble to the end is negligible. Next, it estimates the initial carrier frequency and phase. The above steps assume that the impairment caused by the channel is small enough that the modem can successfully track the timing carrier phase prior to equalization. Otherwise, equalizer training prior to the timing and carrier recovery is needed.
With a typical preamble of 8 to 32 symbols, depending on the required system performance, for QPSK modulation, rapid acquisition is desired. Feedforward timing estimation is known to have rapid acquisition, since it produces a one-shot estimate instead of tracking the initial timing through a feedback loop.
A well-known method, digital square timing recovery (Oerder M., and Meyr, H., IEEE Trans. Comm. 36:605-612 (1988)), has shown rapid acquisition, but it requires oversampling of the signal at, typically, four times the symbol rate, which imposes a demand for higher processing speed on the subsequent digital operations. Moreover, it does not work well for signals employing small excess bandwidth. However, pulses with small excess bandwidth are of interest for bandwidth-efficient modulation.
For applications where low power and low complexity are the major requirements, such as in personal communications, it is desirable to sample the signal at the lowest possible rate and to have the synchronizer be as simple as possible. In this section, a synchronizer is proposed that needs just two samples per symbol period. In addition, it has been shown to work well for small excess bandwidth, which is important for spectral efficiency. Using this method, the estimations of the symbol timing and the carrier phase can be carried out independently of each other. Hence, they can be carried out in parallel. Using the proposed structure, the timing and carrier-phase estimators can be implemented efficiently by means of direct computation (instead of a search, as is employed, for example, by (Sabel, L., and Cowley, W., “A recursive algorithm for the estimation of symbol timing in PSK burst modems,” in Proc. Globecom 1992, vol. 1(1992), pp. 360-364) using an efficient rectangular-to-polar converter (to be discussed in Section 7). This yields a very small computation load. Thus, this structure is well suited for low-power, low-complexity and high-data-rate applications, such as those in multimedia mobile communications.
6.2 Background Information
The system model 5900 used in developing the symbol timing and carrier phase recovery algorithm described in this section is shown in FIG. 59.
Here h(t) is a real-valued, unit-energy square-root Nyquist pulse and w(t) is complex white Gaussian noise with independent real and imaginary components, each having power spectral density N0/2.
As mentioned in Section 6.1, a typical data packet for a burst modem consists of a short preamble 5802 followed by user data 5804. According to the approach of (Gardner, S., Electron. Eng. 71:85-92 (September 1999)), the matched filter output is sampled every T1=T/2 seconds, i.e., at twice the symbol rate. The receiver then detects the presence of the preamble in the received signal by correlating the conjugate of the known preamble sequence am, whose length is L, with the sampled data x(nT) as
The correlator output rxx(n) should produce a large magnitude |rxx(n)| when the preamble is encountered. It then estimates the initial synchronization parameters, namely the symbol timing and the carrier phase, assuming the transmitter/receiver frequency mismatches are insignificant.
The complex envelope x(t) of the received signal, after the matched filter, is
where {αk} is a sequence of independent equally-probable symbols with E[|αk|2]=1. We also have that v(t)=w(t){circle around (×)}h(−t) and that g(t)=h(t){circle around (×)}h(−t) is a Nyquist pulse. The time delay τ and the carrier phase θ are both unknown.
To estimate the data sequence αk we want sample values of x(t) at t=mT+τ, with m an integer, whereas only the samples x(nT1) are available after sampling x(t) by a fixed clock.
Now let us examine how the correlator output relates to symbol timing and carrier phase. Inserting (6.2) into (6.1) yields
Since the data are independent, and they are independent of the noise, we have
According to (6.4) and (6.5), and because T=2T, the expectation of rxx(n) with respect to the data and the noise is (for simplicity, we omit the constant real scale factor L)
E[rxx(n)]=ejθg(nTs−τ). (6.6)
Thus, the mean value of the complex preamble correlator output actually equals the sample of the delayed signaling pulse g(t), with delay being τ, rotated by the angle θ. This is shown in
τ=n0Ts+μ (6.7)
where the integer n0 represents the portion of τ that corresponds to an integer multiple of the sampling interval Ts and 0≦μ≦Ts is the sampling time mismatch.
Most practical signaling pulses g(t) are symmetrical and their peak value occurs at g(0). If θ is known, using these properties, we can estimate the sampling time mismatch μ from the correlator output rxx(n). In the next section we will discuss such an algorithm. We will derive this algorithm by first assuming that θ=0. Then we will discuss how the method can be carried out independently of the carrier phase. Simultaneously, we also derive a phase estimation algorithm that is independent of the symbol timing.
6.3 Symbol Timing Estimation Assuming 0=0
From (6.6), with θ=0, we have
E[rxx(n)]=g(nTs−τ). (6.8)
According to (6.7) and (6.8), if the transmission delay τ is exactly an integer multiple of Ts we must have μ=0, and thus rxx(n0) must correspond to the peak g(0). Otherwise, we have μ≠0, with rxx(n0) and rxx(n0+1) being the two correlator output values nearest the peak value g(0), as shown in FIG. 60. That is, rxx(n0) and rxx(n0+1) must be the two largest correlator outputs. Therefore, once the largest correlator output is located, we can obtain n0, the integer part of τ.
We now turn to finding 11. Without loss of generality, let us assume Ts=1. Replacing n by n0+n we have, according to (6.8) and (6.7),
E[rxx(n0+n)]=g((n0+n)−τ)=g(n−μ). (6.9)
For simplicity in our discussion on finding the fractional delay μ, we henceforth drop the index n0, which corresponds to an integer multiple of sample delays, from our notation. Next we define R(ejω) as the Fourier transform of rxx(n):
The expectation of R(ejω) can be expressed as
E[R(ejω)]=E[FT(rxx(n))]=FT(E[rxx(n)]). (6.11)
According to (6.9), and (C.4) in Appendix C, we have
E[R(ejω)]=FT(g(n−μ))=ejωμG(ejω) (6.12)
where G(ejω) is the Fourier transform of g(n). Since g(n) is symmetrical, G(ejω) must have zero phase. Thus, according to (6.12),
arg(E[R(ejω)])=arg(ejωμG(ejω))=ωμ. (6.13)
Evaluating (6.13) at X=π/2, we can obtain an estimate of μ as
Therefore, the unknown sampling mismatch p can be obtained by taking the Fourier transform of rxx(n) and evaluating the phase corresponding to X=π/2.
To make the implementation of (6.14) realistic, we should truncate the sequence rxx(n) before taking its Fourier transform. For example, using only the four samples rxx(−1), rxx(0), rxx(1), and rxx(2), we have
RT(ejπ/2)=[rxx(0)−rxx(2)]+j[rxx(−1)−rxx(1)]. (6.15)
Using the correlator output, the μ value can be obtained by first computing RT(ejπ/2) according to (6.15), and then from the following:
For low precision requirements, this operation can be accomplished using a small CORDIC processor (Chen, A., et al., “Modified CORDIC demodulator implementation for digital IF-sampled receiver,” in Proc. Globecom 1995, vol. 2 (November 1995), pp. 1450-1454) or a ROM lookup table (Boutin, N., IEEE Trans. Consumer Electron. CE-38:5-9 (1992)). With high accuracy requirements, however, the CORDIC processor will have long delays, while the table-lookup method will certainly require a very large ROM. In this case, we propose to use the rectangular-to-polar converter which will be discussed in Section 7. This rectangular-to-polar converter requires two small ROMs and it consolidates the operations into small array-multipliers, which can yield a smaller and faster circuit using well-known efficient multiplier implementation techniques.
A synchronizer 6100 for implementing the synchronization scheme described above is illustrated in FIG. 61. The synchronizer 6100 includes a correlator 6102, a Fourier Transform module 6104, and a rectangular-to-polar converter 6106. The Fourier transform module 6104 includes various delays and adders that are known to those skilled in the arts. The rectangular-to-polar converter is described further in Section 7.
The synchronizer 6100 receives data samples associated with sampling one or more received symbols and determines an offset πμ/2, where μ represents a synchronization offset of the data samples relative to the incoming symbols. The operation of synchronizer 6100 is described in reference to the flowchart 6200, as follows.
In step 6202, a set of complex data samples is received.
In step 6204, the correlator 6102 correlates the complex data samples with a complex conjugate of a preamble data set (am*), resulting in correlated complex data samples.
In step 6206, the Fourier transform module 6104 determines the Fourier transform of the correlated data samples signal, according to equations (6.10)-(6.13) and related equations;
In step 6208, the Fourier transform module 6104 evaluates the Fourier transform of the correlated data samples at n/2, generating a complex signal representing a complex number;
In step 6210, the rectangular-to-polar converter 6106 determines an angle in a complex plane associated with the complex number of step 6210, where the angle represents synchronization between the data samples and the incoming symbols.
In step 6212, the angle from step 6210 is scaled by 2/π to determine the synchronization offset.
6.4 Bias in Symbol Timing Estimation due to Truncating the Sequence
By truncating the sequence rxx(n) before taking the Fourier transform, we have produced a very simple structure to compute μ. However, since RT(ejω) differs from R(ejω) we must determine how this difference would affect the estimated μ value. The truncated sequence rT(n) is related to the original sequence rxx(n) as
rT(n)=rxx(n)w(n) (6.17)
where w(n) is a rectangular function whose Fourier transform W(ejω) is a sinc function. Thus,
RT(ejω)=R(ejω){circle around (×)}W(ejω). (6.18
Taking the expectation of (6.18) we have
Obviously, the μ value obtained using RT(ejω) in (6.16) would be different from that obtained using R(ejω). This will introduce a non-zero timing-jitter mean (bias) to the μ value obtained using RT(ejω) instead of R(ejω). But the phase difference of the expected values of RT(ejπ/2) and R(ejπ/2) can be computed for a given g(t).
The procedure is as follows:
From
Thus, for each of our symbol timing detector output samples, we can obtain the corresponding bias value from the ROM table, then subtract this bias from the original timing estimate to obtain an unbiased estimate.
We have thus far restricted our discussion to the timing recovery algorithm for θ=0. We now consider how this algorithm can be made to accommodate an arbitrary carrier phase 0.
6.5 Carrier-Independent Symbol Timing Recovery
According to (6.6), with the Ts=1 normalization, the complex correlator output rxx(n) is dependent on θ. Although the expectation of its magnitude
E[|rxx(n)|]=|g(n−τ)| (6.20)
does not depend on θ, it is non-trivial to compute the magnitude of rxx(n) from its real and imaginary components. Expressing rxx(n) in terms of its real and imaginary components, according to (6.6), we have
E[rxx(n)]=g(n−μ) cos θ+jg(n−μ) sin θ. (6.21)
Thus,
E[Re[rxx(n)]]=g(n−μ) cos θ (6.22)
E[Im[rxx(n)]]=g(n−μ) sin θ. (6.23)
Since the carrier phase 0 does not depend on μ we can treat it as a constant scale factor in Re[rxx(n)] and Im[rxx(n)] when we are only concerned with extracting the timing information.
Clearly, therefore, instead of using the magnitude of the complex rxx(n) value, we can use one of its real and imaginary parts, which are available at the output of the preamble correlator.
We, of course, must decide which of Re[rxx(n)] and Im[rxx(n)] to use. If the unknown phase θ is such that cos θ˜0 it is certainly desirable to use Im[rxx(n)] instead of Re[rxx(n)], and vise versa. But we don't know the θ value thus far. How do we decide which one to use?
From (6.22) and (6.23) we can see that the relative magnitudes of cos θ and sin θ can be obtained from the real and imaginary components of rxx(n). For example, if |Re[rxx(n)]|>|Im[rxx(n)]| we certainly have that |cos θ|>|sin θ|, thus we should use the real part of the correlator output to find μ. Henceforth we denote the appropriate (real or imaginary) part of rxx(n) by {circumflex over (r)}xx(n).
6.6 Carrier Phase Computation
Next, let us examine the problem of extracting the carrier phase. From (6.6) we can see that the phase of the complex number E[rxx(n)] does not depend on μ. Moreover, the carrier phase can simply be obtained by extracting the phase of rxx(n). In order to achieve the best precision, it is desirable to choose the rxx(n) value with the largest magnitude for carrier phase estimation. For example, if rxx(n0) is the correlator output with largest squared-magnitude, we choose rxx(n0) to compute
θ=arg(rxx(n0)). (6.24)
One advantage of this approach is that the symbol timing and carrier phase estimations are independent of each other. They can thus be carried out in parallel.
As for symbol timing estimation in (6.16), the computation in (6.24) can be accomplished efficiently using the rectangular-to-polar converter to be discussed in Section 7.
A synchronizer 6400 for determining timing and phase offsets is shown in FIG. 64. Similar to synchronizer 6100, the synchronizer 6400 receives data samples associated with sampling one or more received symbols and determines a timing offset πμ/2, where μ represents a synchronization offset between the data samples and the incoming symbols. Additionally, the synchronizer 6400 determines a carrier phase offset represented by θ. The synchronizer 6400 includes the correlator 6102, sample selectors 6404 and 6406, the Fourier transform module 6104, and two rectangular-to-polar converters 6106. The operation of synchronizer 6400 is described in reference to the flowchart 6500 in
In step 6502, a set of complex data samples is received.
In step 6504, the correlator 6102 correlates the complex data samples with a complex conjugate of a preamble data set (am*), resulting in correlated complex data samples. Each correlated complex data sample includes a real sample and an imaginary sample.
In step 6506, the sample set selector 6404 selects either the set of real correlated samples or the set of imaginary correlated samples. In embodiments, the set with the larger magnitude is selected.
In step 6508, the Fourier transform module 6104 determines the Fourier transform of the selected real or imaginary data samples, according to equations (6.10)-(6.13) and related equations;
In step 6510, the Fourier transform module 6104 evaluates the Fourier transform at π/2, generating a complex signal representing a complex number;
In step 6512, the rectangular-to-polar converter 6106a determines an angle in a complex plane associated with the complex number of step 6510, where the angle represents synchronization between the data samples and the incoming symbols.
In step 6514, the angle from step 6512 is scaled by 2/π to determine the synchronization offset.
In step 6516, the selector 6406 selects the largest correlator complex output. This selection can be based on an examination of one of the parts (real, imaginary) of the data sequence.
In step 6518, the rectangular-to-polar converter 6106b determines an angle in a complex plane associated with complex output of step 6516, where the angle represents the carrier phase offset θ.
6.7 Simulation Result
We have used the above procedures to estimate the timing delay and the carrier phase of binary PAM symbols. The pulse shape was raised cosine with rolloff factor α=0.4. The block size was L=32 preamble symbols. To demonstrate its performance for signals with small excess bandwidth, we also tested this method with α=0.1. For a carrier phase offset θ=45°, we ran the simulation repeatedly using the synchronizer 6400, each time using a μ value randomly chosen between 0 and 1.
In addition to synchronizer 6400, we have also used the following two well-known methods to estimate the sampling mismatch:
The variances of the timing jitter using these estimation methods for α=0.4 and α=0.1 are plotted in FIG. 66 and
The variance of the phase estimation error is depicted in FIG. 68. It shows that, using the proposed method, the phase estimation error agrees quite well with the theoretical bound.
6.8 Conclusion
A synchronizer for initial symbol timing and carrier phase estimation using preambles has been presented. This synchronizer requires just two samples per symbol. Since the two estimations are independent of each other, they can be carried out simultaneously. These characteristics would ease the demand for computational speed for high-data-rate applications. Moreover, this synchronizer has demonstrated very good timing estimation performance even for signals with small excess bandwidth, which is essential for bandwidth efficient communications. The parameter estimations can be implemented very efficiently using the synchronizer 6400. Due to its simplicity, this method is attractive for applications where low power and low complexity are desired, such as in a hand-held transceiver.
7. A High-Speed Processor for Rectangular-to-Polar Conversion
As discussed previously, the rapid acquisition characteristic of feedforward symbol synchronizers is essential to symbol synchronization for burst modems. Many feedforward structures require the evaluation of the phase of a complex number. That is, an efficient implementation of the phase extraction process is crucial. In order to handle a wide range of communications problems (Section 8), a general rectangular-to-polar conversion problem is considered.
There are several well-known implementations for a rectangular to polar coordinate conversion, i.e. obtaining the magnitude and phase of a complex number. One method uses a ROM lookup table with both the real and imaginary components as input. This is practical only for low bit-accuracy requirements, as the ROM size grows exponentially with an increasing number of input bits. To reduce the ROM size, we can first divide the imaginary by the real component, then use the quotient to index the lookup table. But the hardware for a full-speed divider is very complicated and power consuming. An iterative divider implemented using shifting and subtraction requires less hardware, but it is usually quite slow. Recently, CORDIC has been applied in this coordinate conversion (Chen, A., and Yang, S., “Reduced complexity CORDIC demodulator implementation for D-AMPS and digital IF-sampled receiver,” in Proc. Globecom 1998, vol. 3 (1998), pp. 1491-1496). However, due to the sequential nature of CORDIC, it is difficult to pipeline, thus limiting the throughput rate.
In burst-mode communication systems, rapid carrier and clock synchronization is crucial (Andronico, M., et al., “A new algorithm for fast synchronization in a burst mode PSK demodulator,” in Proc. 1995 IEEE Int. Conf: Comm., vol. 3 (June 1995), pp. 1641-1646). Therefore, a fast rectangular-to-polar conversion is desired. In this section, we present an apparatus and method that implements the angle computation for rectangular-to-polar conversion with low latency and low hardware cost. This processor and the polar-to-rectangular processor presented in Section 5 (See rotator 3900 in FIG. 39), together, can perform the M-ary PSK modulation devised in (Critchlow, D., “The design and simulation of a modulatable direct digital synthesizer with non-iterative coordinate transformation and noise shaping filter,” M. S. thesis, University of California, San Diego (1989)).
7.1 Partitioning the Angle
φ=tan−1(Y0/X0) (7.1)
In deriving the core of our algorithm, we assume the dividend and divisor satisfy
X0≧Y0≧0. (7.2)
We will discuss how to extend the result to arbitrary values in Section 7.4. To achieve the highest precision for given hardware, the inputs X0 and Y0 should be scaled such that
1≦X0<2 (7.3)
A straightforward method for fast implementation of(7.1) can be devised as follows:
If we approximate 1/X0 by the reciprocal of the most significant bits (MSBs) of X0, denoted by [X0], then the required reciprocal table is much smaller. We can then multiply the table output by Y0 to yield Y0/[X0], which is an approximation of Y0/X0. This quotient can then be used to index an arctangent table. Similar to the reciprocal table, a much smaller arctangent table is needed if we use only the MSBs of Y0/[X0], denoted by [Y0/[X0]], to address the table, which returns φ1=tan−1([Y0/[X0]]). Obviously, this result is just an approximation to φ. We will subsequently refer to the computation of φ1 as the coarse computation stage.
Let φ2 be the difference between φ and φ1. Using the trigonometric identity
tan φ2=tan (φ−φ1)=(tan φ−tan φ1)/(1+tan φ×tan φ1) (7.4)
and the definitions tan φ=Y0X0 and tan φ1=[Y0/[X0]], we have
Using this relationship, φ2, can be determined from [Y0/[X0]], the coarse computation results. Therefore, the desired result φ can be obtained by adding the fine correction angle φ2 to the coarse approximation φ1. This procedure of finding φ2 will subsequently be referred to as the fine computation stage.
By partitioning the computation of (7.1) into two stages, the table size in the coarse stage can be reduced significantly at the expense of additional computations, which are handled by the fine stage. Let us now examine the complexity of the fine stage. To find φ2, we can first compute
X1=X0+Y0×[Y0/[X0]]
Y1=Y0−X0×[Y0/[X0]] (7.6)
and then find φ2 as
φ2=tan−1(Y1/Xl) (7.7)
The computation in (7.6) involves only adders and multipliers, while (7.7) requires lookup tables. Moreover, it seems we can't use the same coarse-stage tables because they have low resolution and thus can't satisfy the high precision requirements for the fine angle φ2 Now let us analyze φ2 to see if there is any property that can help in this situation.
If φ1 is a good approximation of φ, then φ2=(φ−φ1, is close to zero. In view of (7.7), Y1/X1, should be very small too. This property helps us in two respects: 1) The difference between Y1/X1 and Y1/[X1] is much smaller than that between 1/X1 and 1/[X1]. This suggests that if we use the same low resolution reciprocal table as in the coarse stage, the error contributed to the final result will be very small. We will demonstrate this in the next section. 2) If Y1/X1 is sufficiently small to satisfy
|Y1/X1|=|tan φ2|<2−N/3 (7.8)
where N denotes the desired number of bits in φ, then
φ2=tan−1(Y1/X1)˜Y1/X1 (7.9)
and we can compute φ2 without using an arctangent table. This is explained as follows:
From the Taylor expansion of tan−1(Y1/X1) near Y1/X1=0, we obtain
tan−1(Y1/X1)=Y1/X1−(Y1/X1)3/3+0((Y1/X1)5) (7.10)
Since 0((Y1/X1)5) is negligible in comparison to (Y1/X1)3/3, it can be omitted. Therefore, if Y1/X1 is used to approximate tan−1(Y1/X1), an error
Δtan=tan−1(Y1/X1)−Y1/X1=−(Y1/X1)3/3 (7.11)
will occur. However, according to (7.8), Δtan is bounded by
|Δtan|<2−N/3 (7.12)
which is very small. This indicates that the approximation (7.9) is quite accurate if (7.8) is satisfied.
From the above analysis, no additional tables are needed for the fine stage if φ1 is sufficiently close to φ. On the other hand, the better that φ1 approximates φ, the larger the tables required for its computation become. As mentioned previously, table size grows exponentially as the precision increases. A good trade-off is obtained when the result φ1 of the coarse stage is just close enough to φ that (7.8) is satisfied, thereby eliminating the additional tables in the fine stage. A detailed description of a rectangular-to-polar converter that implements the algorithm follows.
The converter 7100 includes: an input mux 7104, reciprocal ROM 7106, output demux 7108, an arctan ROM 7110, a multiplier 7112, a butterfly circuit 7114, a scaling shifter 7116, a fine angle computation stage 7124, and an adder 7126. The fine angle computation includes a multiplier set 7118, a one's complementer 7120, and a multiplier 7122.
The ROM 7106 stores reciprocal values of [X0], wherein [X0] is defined as the most significant bits (MSB) of X0 of the input signal 7102. The reciprocal of [X0] is represented as Z0, for ease of reference. As will be shown, the ROM 7106 is re-used to determine the reciprocal of [X1], where X1 is the real part of the intermediate complex number 7115 shown in FIG. 71 and FIG. 72. The reciprocal of [X1] is represented as Z1, for ease of reference. In embodiments, the ROM 7106 has 2N/3+1 storage spaces, where N is the number of bits that represents X0 (and Y0) of the input signal 7102.
The input mux 7104 chooses between [X0] and [X0] as an input to the reciprocal ROM 7106, according to the control 7128. The output demux 7108 couples an output of the ROM 7106 to Z0 or Z1 according to the control 7128. The control 7128 assures that Z0 receives the stored reciprocal value for [X0], and that Z1 receives the stored reciprocal value for [X1].
The arctan ROM 7110 stores the coarse approximation angle (p, based on a [Y0Z0] input. Therefore, a coarse stage can be described as including the ROM ROM 7110, the ROM 7106, and the multiplier 7112, as they are used in the coarse angle computation.
The operation of the converter 7100 is described further with reference to the flowchart 7300, as follows. The order of the steps in the flowchart 7300 is not limiting as one or more of the steps can be performed simultaneously, or in different order.
In step 7302, the input complex signal 7102 having a X0 component and a Y0 component is received. In embodiments, the X0 and Y0 components are N-bit binary numbers.
In step 7304, the control 7128 causes Z to be retrieved from the ROM 7106, where Z0 represents 1/[X0], and wherein [X0] is the MSBs of X0
In step 7306, the multiplier 7112 multiplies Y0 of the input complex number 7102 by Z0, resulting in a [Z0Y0] component. The [Z0Y,] component is an approximation of Y0/X0.
In step 7308, the coarse angle φ1 is retrieved from the ROM 7110 based on [Z0Y0], and is sent to the adder 7126. Note that the coarse stage can be described as including the ROM 7110, the ROM 7106, and the multiplier 7112, as they are used in the coarse angle computation.
In step 7310, the butterfly circuit 7114 multiplies the input complex signal 7102 by [Z0Y0]. This causes the input complex signal 7102 to be rotated in the complex plane toward the real axis to produce the intermediate complex signal 7115 (representing an intermediate complex number), having a real X, component and an imaginary Y, component.
In step 7312, the scaler 7116 scales the X1 component of the intermediate complex signal so that it is compatible with the reciprocal values stored in the ROM 7106. The scaler also scales the Y1 component by the same amount.
In step 7314, the control 7128 causes Z1 to be retrieved from the ROM 7106 based on [X1], where Z1 represents 1/[X1], and wherein [X1] is the MSBs of X1. Note, that the ROM 7106 is efficiently used twice to calculate two different reciprocals Z0 and Z1, thereby reducing overall memory size.
In step 7316, the fine angle computation stage 7124 determines the fine angle φ2 based on Z1 and the scaled intermediate complex number 7115. In doing so the Newton-Raphson method is emulated in hardware to estimate φ2, which is the arctan of Z1Y1. More specifically, multiplier set 7118 multiples X1Y1 by Z1. The ones' (approximating two's) complement 7120 is then determined for X1Z1. After which, the multiplier 7127 multiplies (2−X1Z1) by Y1Z1, to determine tan φ2. Since φ2 is a small angle, the value tan φ2 is used as an approximation of φ2.
In step 7316, the φ1 and φ2 are added together to get φ.
A more detailed description of the algorithm follows.
7.2 The Two-Stage Algorithm
In this section we first analyze how the coarse approximation error φ2=φ−φ1 depends upon the precision of the tables 7106 and 7110, in order to determine the amount of hardware that must be allocated to the coarse stage. Next we explore ways to simplify the computations in the fine stage.
7.2.1 Simplification in the Coarse Computation Stage
The main concern in the coarse stage design is how the lookup table values are generated to produce as precise results as possible for a given table size. As mentioned previously, there are two lookup tables:
7.2.1.1 The Reciprocal Table 7106
The input to this table, 1≦X0<2, can be expressed as
X0=1.x1x2 . . . xm . . . xN (7.13)
where only bits x1 through xm are used to index the table. To generate the table value, if we merely truncate X0 as
[X0]=1.x1x2 . . . xm (7.14)
then the quantization error ΔX
0<ΔX
Thus, the difference between the table value and 1/X0,
1/X0−1/[X0]=([X0]−X0)/([X0]X0)˜−ΔX
is bounded by
−2−m<1/X0−1/[X0]≦0. (7.17)
But if we generate the table value corresponding to
[X0]=1.x1x2 . . . xm1 (7.18)
with a bit “1” appended as the LSB, then the quantization error in (7.15) is centered around zero:
−2−m−1<ΔX
hence, the error in the reciprocal is also centered around zero:
−2−m−1<1/X0−1/[X0]≦2−m−1. (7.20)
Comparing (7.20) to (7.17), the maximum absolute error is reduced. This is the technique introduced in (Fowler, D. L., and Smith, J. E., “An accurate high speed implementation of division by reciprocal approximation,” in Proc. 9th Symp. on Computer Arithmetic (1989), pp. 60-67).
Since the output of the table will be multiplied by Y0, the fewer the bits in the table value, the smaller the required multiplier hardware. Let the table value Z0 be generated by rounding 1/[X0] to n bits:
ZO=0.1z2z3 . . . zn. (7.21)
The quantization error ΔZ
−2−n−1<ΔZ
Once we have obtained Z0 from the reciprocal table, we can get an approximation to the quotient Y0/X0 by computing Y0Z0. This result is then used to address the arctangent table for φ1.
7.2.1.2 The Arctangent Table 7110
In order to use a very small table, Y0 Z0 is rounded to k bits to the right of the radix point to become [Y0Z0], with the rounding error bounded by
−2−k−1<ΔY
Then, [Y0Z0] is used to index the arctangent table, which returns the coarse angle φ1=tan−1([Y0Z0]).
Now we must determine the minimum m, n and k values such that (7.8) is satisfied. First, let us examine X1 and Y1 which are computed using [Y0Z0] as
X1=X0+Y0[Y0Z0]
Y1=Y0−X0[Y0Z0]. (7.24)
Dividing (7.25) by (7.24), and then dividing both the numerator and denominator by X0, we have
The inequality is true because X0≧Y0≧0 and [Y0Z0]≧0. Taking into account all the quantization errors in (7.20), (7.22) and (7.23), we can express Y0/X0 in terms of [Y0Z0] as
Substituting this result into (7.26), we have
|Y1/X1|≦|ΔY
Since Y0(ΔX
−2−m−1<Y0(ΔX
Also, according to (7.2) and (7.22), we have
−2−n<Y0ΔZ
Applying (7.23), (7.29) and (7.30) to (7.28), we obtain |Y1X1|<2−m−1+2−n+2−k−1. If we choose m≧N/3+1, n≧N/3+2and k≧N/3+1, then
|Y1/X1|<0.75×2−N/3. (7.31)
Therefore, since the inputs X1 and Y1 to the fine stage satisfy (7.8), no additional tables are needed for the fine stage. Henceforth we choose m=N/3+1, n=N/3+2 and k=N/3+1.
7.2.2 Hardware Reduction in the Fine Computation Stage 7124
Since (7.8) is satisfied, we can obtain the fine angle Φ2 by computing the quotient Y1/X1. From (7.24), we have X0≦X1≦X0+Y0, hence 1<X1<4. In order to use the same reciprocal table as in the coarse stage, X1 should be scaled such that
1≦X1<2. (7.32)
This can be satisfied by shifting X1 to the right if X1≧2. Of course Y1 should also be shifted accordingly so that Y1/X1 remains unchanged.
As in the coarse stage, the reciprocal table accepts N/3+1 MSBs of X1 and returns Z1. We define the reciprocal error δ1=1/X1−Z1. Since the same reciprocal table is used as in the coarse stage, δ1 and δ0 must have the same bound. Since
δ1=δ0=1/X0−Z0=1/X0−1/[X0]+ΔZ
we can use (7.20) and (7.22) to obtain
−0.75×2−N/3−1<δ1<0.75×2−N/3−1. (7.34)
The bound on Y1 can be found using (7.31) and (7.32):
|Y1|<0.75×2−N/3+1. (7.35)
Now we can obtain the final error bound in approximating X1/Y1 by Y1Z1, according to (7.34) and (7.35), as
|Y1/X1−Y1X1|=Y1δ1|<(0.75)2×2−2N/3. (7.36)
Clearly, this approximation error is too large. To reduce the maximum error below 2−N, the bound on |δ1| should be approximately 2−2N/3, which would require the reciprocal table to accept 2N/3 bits as input. That is, the table needed for such a high-resolution input would be significantly larger than the one already employed by the coarse stage.
To overcome this difficulty, we can apply the Newton-Raphson iteration method (Koren, I., Computer Arithmetic Algorithms, Prentice Hall Englewood Cliffs, N.J. (1993)) to reduce the initial approximation error 81. We DOW briefly explain how this method works. First, let us define the following function:
f(Z)=1/Z−X1 (7.37)
Obviously, we can obtain Z=1/X1 by solving f(Z)=0. In other words, we can find 1/X1 by searching for the Z value such that f(Z) intersects the Z-axis, as shown in FIG. 70A.
Shifting the Z-axis down by X1, we obtain a new function
shown in FIG. 70B. At Z1=1/[X1], Z1 being the initial guess, the slope of f1(Z)=1/Z is
The tangent, shown as the dashed line 7102, intersects the f1(Z)=X1 line at a new point Z2. From
Expressing Z2 in terms of Z1 and X1 we have
Z2=Z1(2−X1Z1). (7.40)
Thus, we can obtain Z2, a more accurate approximation of 1/X1, from Z1. One may wonder how accurate Z2 is in approximating 1/X1. Let us now examine the approximation error bound.
Substituting Z1=1/X1−δ1 into (7.40), we have
According to (7.32), (7.34) and (7.35), after one Newton-Raphson iteration, the error in Y1Z1 is reduced to
|Y1/X1−Y1Z2|=Y1X1δ12|<(0.75)3×2−N. (7.42)
Thus, a rather accurate result is obtained with just one iteration.
Finally, the fine angle can be computed by multiplying Z2 by Y1:
φ2˜Y1Z2=Y1Z1(2−X1Z1) (7.43)
Although there are three multipliers involved in (7.43), the size of these multipliers can be reduced with just a slight accuracy loss by truncating the data before feeding them to the multipliers. The computational procedure of (7.43) is as follows:
1) The inputs to the fine stage, X1 and Y1 are truncated to 2N/3+2 and N+3 bits to the right of their radix points, respectively. Since the N/3−1 MSBs in Y1 are just sign bits, as indicated by (7.35), they do not influence the complexity of the multiplier that produces Y1Z1. The corresponding quantization errors are bounded by
0≦ΔX
0≦ΔY
2) Both quantized X1 and Y1 are multiplied by Z1.
3) To form 2−X1Z1 instead of generating the two's complement of X1Z1, we can use the ones complement with only an insignificant error. Since this error is much smaller, in comparison to the truncation error in the next step, we can neglect it.
4) The product Y1Z1 is truncated to N+3 bits. We would also truncate the ones complement of X1Z1. But since the inverted LSBs of X1Z1 will be discarded, we can truncate X1Z1 to 2N/3+2 bits and then take its ones vcomplement. The corresponding quantization errors, as discussed above, are:
0≦ΔX
0≦Δt
After including all the error sources due to simplification, we now analyze the effects of these errors on the final result φ2. Taking the errors into account, we can rewrite (7.43) as:
φ2˜((Y1−Δy
Expanding this product and neglecting terms whose magnitudes are insignificant, we have
φ2˜Y1/X1−Y1X1δ12+(Y1X12)ΔX
As mentioned in Section 7.1, Y1/X1 is an approximation of tan−1(Y1/X1). Its approximation error, defined in (7.8), is bounded by
|Δtan|=|(Y1/X1)3/3|<(0.75)3×2−N/3. (7.50)
Replacing Y1/X1 by tan−1(Y1/X1)+(Y1/X1)3/3 in (7.49), we have
φ2˜tan−1(Y1/X1)+(Y1/X1)3/3−Y1X1δ12+(Y1/X12ΔX
The total error, ε=φ2−tan−1(Y1/X1), is
ε=(Y1/X1){(Y1/X1)2/3−(X1δ1)2+ΔX
All terms in the subtotal (Y1/X1)2/3−(X11δ1)2+ΔX
Finally, we can obtain the total error bound as:
|ε|<0.75×2−N/3×0.68×2−2N/3+2−N−3+2−N−3=0.76×2−N. (7.53)
7.3 Magnitude Calculation
Once the angle of the vector (X0,Y0) is known, its magnitude can be obtained by multiplying X0 by 1/cos φ, whose values can be precalculated and stored in a ROM thereby requiring only a single multiplication. However, if we use all the available bits to index the ROM table, it is likely that a very large ROM will be needed.
As we know from the preceding discussion, the coarse angle φ1 is an approximation of φ. Similarly 1/cos φ1 approximates 1/cos φ. Therefore, we can expand the coarse-stage ROM 7110 to include also the 1/cos φ1 values. That is, for each input [Y0Z0], the coarse-stage ROM would output both φ1=tan−1([Y0Z0]) and 1/cos φ1. Since X0 and Y0 satisfy (7.2) and (7.3), the 1/cos φ value is within the interval [1, √{square root over (2)}].
For many applications, the magnitude value is used only to adjust the scaling of some signal level, and high precision is not necessary. For applications where a higher precision is desired, we propose the following approach:
First, instead of using the above-mentioned table of 1/cos φ1 values, we pre-calculate and store in ROM the 1/cos φM values, where φM contains only the m MSBs of φ. Obviously a small table, one of comparable size to the 1/cos φ1 table, is needed. Then, we can look up the table entries for the two nearest values to φ, namely φ′M and φM1=φM+2−m. Then a better approximation of 1/cos φcan be obtained by interpolating between the table values 1/cos φM and 1/cos φ′M1 as
Let φL=φ−φM. Obviously, φL simply contains the LSBs of φ. We can now rewrite (7.54) as
1/cos φ˜1/cos φM+(1/cos φ′M−1/cos φM)×φL×2m (7.55)
which involves only a multiplication and a shift operation, in addition to two adders.
7.4 Converting Arbitrary Inputs
In previous sections we have restricted the input values to lie within the bounds of (7.2) and (7.3). However, if the coordinates of (X0, Y0) do not satisfy that condition, we must map the given point to one whose coordinates do. Of course, the resulting angle must be modified accordingly. To do that, we replace X0 and Y0 by their absolute values. This maps (X0,Y0) into the first quadrant. Next, the larger of |X0| and |Y0| is used as the denominator in (7.1) and the other as the numerator. This places the corresponding angle in the interval [0, π/4]. We can now use the procedure discussed previously to obtain φ. Once we get φ, we can find the angle φ that corresponds to the original coordinates from φ. First, if originally |X0|<|Y0| we should map φ to [π/4, π/2] using φ′=π/2−φ. Otherwise φ′=φ. We then map this result to the original quadrant according to Table 7.1.
Next, let us examine the affect of the above-mentioned mapping on the magnitude calculation. Since the negation and exchange of the original X0 and Y0 values do not change the magnitude, whose value is (X02+Y02)1/2, the result obtained using the X0 and Y0 values after the mapping needs no correction. However, if the input values were scaled to satisfy (7.3), we then need to scale the computed magnitude to the original scale of X0 and Y0.
7.5 Test Result
We have verified our error bound estimation by a bit-level simulation of the rectangular-to-polar converter 7100. To test the core algorithm described in Section 7.2, we generated the pair of inputs X0 and Y0 randomly within the range described by (7.2) and (7.3). This test was run repeatedly over many different values of X0 and Y0, and the maximum error value was recorded. Choosing N=9 for this simulation, the error bound estimate according to (7.53) is 0.0015. Our test results yielded the error bounds [0.00014, 0.000511, well within the calculated bound.
7.6 Conclusion
An efficient rectangular-to-polar converter is described. The angle computation of a complex number is partitioned into coarse and fine computational stages. Very small arctangent and reciprocal tables are used to obtain a coarse angle. These tables should provide just enough precision such that the remaining fine angle is small enough to approximately equal its tangent value. Therefore the fine angle can be obtained without a look-up table. The computations are consolidated into a few small multipliers, given a precision requirement. While a low-precision magnitude can be obtained quite simply, a high-precision result can be achieved by combining the angle computation with the angle rotation processor 3900 of Section 5.
The applications of this converter include the implementation of the converter 6106 in the symbol synchronizer 6100 and the synchronizer 6400. However, the converter is not limited to symbol synchronization. It also provides efficient implementation of computational tasks for many communication systems, such as constant-amplitude FSK and PSK modems (Chen, A, and Yang, S., “Reduced complexity CORDIC demodulator implementation for D-AMPS and digital IF-sampled receiver,” in Proc. Globecom 1998, vol. 3 (1998), pp. 1491-1496; Boutin, N., IEEE Trans. Consumer Electron 38:5-9 (1992)), DMT modems (Arivoli, T., et al., “A single chip DMT modem for high-speed WLANs,” in Proc. 1998 Custom Integrated Circuits Conf. (May 1998), pp. 9-11), as well as carrier synchronization (Andronico, M., et al., “A new algorithm for fast synchronization in a burst mode PSK demodulator,” in Proc. 1995 IEEE Int Conf Comm., vol. 3 (June 1995), pp. 1641-1646; Fitz, M.P., and Lindsey, W. C., IEEE Trans. Comm. 40:1644-1653 (1992) where the computation of phase and magnitude from the rectangular coordinates is essential.
8. Exemplary Computer System
Embodiments of invention may be implemented using hardware, software or a combination thereof and may be implemented in a computer system or other processing system. In fact, in one embodiment, the invention is directed toward a software and/or hardware embodiment in a computer system. An example computer system 7702 is shown in FIG. 77. The computer system 7702 includes one or more processors, such as processor 7704. The processor 7704 is connected to a communication bus 7706. The invention can be implemented in various software embodiments that can operate in this example computer system. After reading this description, it will become apparent to a person skilled in the relevant art how to implement the invention using other computer systems and/or computer architectures.
Computer system 7702 also includes a main memory 7708, preferably a random access memory (RAM), and can also include a secondary memory or secondary storage 7710. The secondary memory 7710 can include, for example, a hard disk drive 7712 and a removable storage drive 7714, representing a floppy disk drive, a magnetic tape drive, an optical disk drive, etc. The removable storage drive 7714 reads from and/or writes to a removable storage unit 7716 in a well known manner. Removable storage unit 7716, represents a floppy disk, magnetic tape, optical disk, etc. which is read by and written to by removable storage drive 7714. As will be appreciated, the removable storage unit 7716 includes a computer usable storage medium having stored therein computer software and/or data.
In alternative embodiments, secondary memory 7710 may include other similar means for allowing computer software and data to be loaded into computer system 7702. Such means can include, for example, a removable storage unit 7720 and an storage interface 7718. Examples of such can include a program cartridge and cartridge interface (such as that found in video game devices), a removable memory chip (such as an EPROM, or PROM) and associated socket, and other removable storage units 7720 and interfaces 7718 which allow software and data to be transferred from the removable storage unit 7720 to the computer system 7702.
Computer system 7702 can also include a communications interface 7722. Communications interface 7722 allows software and data to be transferred between computer system 7702 and external devices 7726. Examples of communications interface 7722 can include a modem, a network interface (such as an Ethernet card), a communications port, a PCMCIA slot and card, etc. Software and data transferred via communications interface 7722 are in the form of signals, which can be electronic, electromagnetic, optical or other signals capable of being received by the communications interface 7722. These signals are provided to the communications interface 7722 via a channel 7724. This channel 7724 can be implemented using wire or cable, fiber optics, a phone line, a cellular phone link, an RF link and other communications channels.
Computer system 7702 may also include well known peripherals 7703 including a display monitor, a keyboard, a printers and facsimile, and a pointing device such a computer mouse, track ball, etc.
In this document, the terms “computer program medium” and “computer usable medium” are used to generally refer to media such as the removable storage devices 7716 and 7718, a hard disk installed in hard disk drive 7712, semiconductor memory devices including RAM and ROM, and associated signals. These computer program products are means for providing software (including computer programs that embody the invention) and/or data to computer system 7702.
Computer programs (also called computer control logic or computer program logic) are generally stored in main memory 7708 and/or secondary memory 7710 and executed therefrom. Computer programs can also be received via communications interface 7722. Such computer programs, when executed, enable the computer system 7702 to perform the features of the present invention as discussed herein. In particular, the computer programs, when executed, enable the processor 7704 to perform the features of the present invention. Accordingly, such computer programs represent controllers of the computer system 7702.
In an embodiment where the invention is implemented using software, the software may be stored in a computer program product and loaded into computer system 7702 using removable storage drive 7714, hard drive 7712 or communications interface 7722. The control logic (software), when executed by the processor 7704, causes the processor 7704 to perform the functions of the invention as described herein.
In another embodiment, the invention is implemented primarily in hardware using, for example, hardware components such as application specific integrated circuits (ASICs), stand alone processors, and/or digital signal processors (DSPs). Implementation of the hardware state machine so as to perform the functions described herein will be apparent to persons skilled in the relevant art(s). In embodiments, the invention can exist as software operating on these hardware platforms.
In yet another embodiment, the invention is implemented using a combination of both hardware and software.
9. Appendices
The following Appendices are included.
9.1 Appendix A: Proof of the Zero ISI Condition.
In Section 3.4 we have examined the condition for a real-valued function f(t) to have zero crossings at integer multiples of the sampling period, i.e., for satisfying (3.16). We have stated that f(t) satisfies (3.16) if and only if {circumflex over (F)}(k), defined as samples of F(Ω) in (3.8) (F is the frequency response of f), satisfy (3.18). Here, −∞<k<∞ is an integer. We now provide the proof.
Proof: First let us define a periodic, of period N, extension of f(t) as
Its Fourier transform consists of a sequence of impulses
Next, consider an impulse chain.
whose Fourier transform is
The convolution Fc{circle around (×)}C can be expressed as
Substituting (A.2) into (A.5) yields:
Therefore, we have the following relationships
This concludes the proof.
9.2 Appendix B: Impulse Response of the Simplified Interpolators
In Section 2, after introducing a preliminary interpolation method, we have shown that we can trade one angle rotator for a multiplier by conceptually modifying the input samples, then by “correcting” the interpolated value obtained from the “modified” samples. A simpler implementation structure as well as better performance in interpolating most practical signals have been facilitated. We now derive the impulse response of this interpolation filter. As discussed in Section 2, the interpolated sample is computed as
where K is defined in (2.30), and
where k=0, . . . , N/2−1.
Substituting (2.30) into (B.2), we have
Replacing K and ck in (B.1) by (2.30) and (B.3), respectively, we have
where f(t), the impulse response of the simplified interpolation filter discussed in Section 2.6.1, is now defined as
for −m≦t≦1−m, m=−N/2+1, . . . , N/2. Otherwise, f(t)=0.
The frequency response, of course, can be obtained by taking the Fourier transform of f(t). To modify the frequency response of f(t), we can multiply the ck coefficient in (B.3) by a value denoted by {circumflex over (F)}μ(k). In designing an optimal interpolation filter as discussed in Section 4, we search for the {circumflex over (F)}μ(k) value that minimizes (4.4), i.e., Fμ(ω) most accurately approximates the desired response (4.3).
9.3 Appendix C: Fourier Transform of g(nTs−μ)
Since, in Section 6, the g(nTs) are samples of the continuous time pulse g(t), assuming, without loss of generality, that Ts=1, it is well-known (Freeman, H., Discrete-Time Systems, Wiley, New York, N.Y. (1965)) that the Fourier transforms are related as
where G(ejω) and Ĝ(ω) are the Fourier transforms of g(n) and g(t), respectively. Since g(t) is bandlimited, i.e., |Ĝ(ω)|=0 for |ω|>π, we have
G(ejω)=Ĝ(ω), −π≦ω≦π. (C.2)
Using the Fourier transform's time-shifting property, the Fourier transform of g(t−μ) is
ej ωμĜ(ω). (C.3)
Since the g(n-μ) are samples of g(t-μ), for the sane reason as the above, their Fourier transforms are the same in the interval −π≦ω≦π, as in (C.2). Thus, according to (C.2) and (C.3) we have
FT(g(n−μ))=ejωμG(ejω), −π≦ω≦π. (C.4)
9.4 Appendix D: Interpolation on Non-Center Intervals
When we first discussed the interpolation problem in Section 2, we focused on interpolating between the two samples in the middle of the set of samples used to generate a synchronized sample. What is the impact on interpolation performance when we interpolate in an interval not at the center of the samples being used?
Using the procedure described in Section 2, given N samples y(n), n=−N+2, . . . , 1, we first compute the Fourier coefficients as
Comparing (D.1) to (2.9), their only difference is the range of the summation. As in Section 2, for a given offset 0 μl<1, the synchronized sample y(g) can be computed as:
We can express y(μ) in terms of y(n) by substituting (D.2) into (D. 1), as
is the impulse response of the corresponding interpolation filter. For N=4, f(t) is plotted in FIG. 75A. Taking the Fourier transform of f(t), we obtain the corresponding frequency response, which is shown in FIG. 76A.
Comparing the
However, using the optimization method discussed in Section 4, we can “reshape” the impulse response At) such that the corresponding frequency response is a better approximation to the ideal interpolation frequency response.
The impulse response of an optimized interpolation filter for a non-center interval is illustrated in FIG. 75B. The corresponding frequency response is shown in
Using samples y(−N+2), . . . , y(−1), and y(0), to interpolate obviously reduces the latency in generating synchronized samples, as compared to using samples y(−N/2+1), . . . , y(0), . . . , y(N/2), since the interpolator does not have to wait until samples y(1), . . . , y(N/2), become available. In applications where low latency takes a higher priority than interpolation accuracy, this approach will be useful.
9.5 Appendix E
The following documents are incorporated by reference in their entireties:
Example implementations of the methods, systems and components of the invention have been described herein. As noted elsewhere, these example implementations have been described for illustrative purposes only, and are not limiting. Other implementation embodiments are possible and covered by the invention, such as but not limited to software and software/hardware implementations of the systems and components of the invention. Such implementation embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein.
While various application embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments.
This application claims the benefit of U.S. Provisional Application No. 60/162,391, filed on Oct. 29, 1999, which is incorporated herein by reference. The following applications of common assignee are related to the present application, have the same filing date as the present application, and are herein incorporated by reference in their entireties: “Apparatus and Method for Trigonometric Interpolation,” U.S. patent application Ser. No. 09/699,088, filed Oct. 30, 2000; and“Apparatus and Method for Angle Rotation,” U.S. patent application Ser. No. 09/698,246, filed Oct. 30, 2000.
This invention was made with Government support under grant no. MIP 9632698 awarded by the National Science Foundation. The U.S. Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
3646337 | Bifulco, Jr. | Feb 1972 | A |
3952187 | Robinson et al. | Apr 1976 | A |
3974367 | Mayer | Aug 1976 | A |
4340939 | Mayer | Jul 1982 | A |
4719833 | Katoh et al. | Jan 1988 | A |
4935905 | Gassaway | Jun 1990 | A |
5051734 | Lake, Jr. | Sep 1991 | A |
5276633 | Fox et al. | Jan 1994 | A |
5373236 | Tsui et al. | Dec 1994 | A |
5500874 | Terrell | Mar 1996 | A |
6144712 | Samueli et al. | Nov 2000 | A |
6178271 | Maas, III | Jan 2001 | B1 |
6477867 | Collecutt et al. | Nov 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
60162391 | Oct 1999 | US |