Claims
- 1. A method for reducing oscillations in an optical switch comprising:
(a) establishing a set of initial parameter values that shape an input command signal, the input command signal controlling input/output mirror actuators of the optical switch; (b) calculating a set of new parameter values of the input command signal in accordance with an algorithm that randomly varies each initial parameter value within certain constraints; (c) applying the input command signal to the input/output mirror actuators to produce a response by the optical switch; (d) calculating a cost function value indicative of oscillations present in the response; (e) comparing the cost function value to a previous cost function value, if the cost function value is less than the previous cost function value,
(i) storing the new parameter values in a memory; and (ii) designating the new parameter values as the initial parameter values; (f) iteratively repeating (b)-(e).
- 2. The method according to claim 1 wherein the new parameter values includes pre-filtering coefficients and a slope, R, of the input command signal.
- 3. The method of claim 2 wherein the cost function value, J(i), of an ith iteration is given as
- 4. The method of claim 1 wherein the response is an optical intensity feedback response of the optical switch.
- 5. The method of claim 2 wherein the algorithm is embodied as code for execution on a digital signal processor.
- 6. The method of claim 5 wherein the set of initial parameter values includes:
fn init=[fXi fYi fXo fYo]Qn init=[QnXi QnYi QnXo QnYo]Qd init=[QdXi QdYi QdXo QdYo]Rinit=[RXi RYi RXo RYo]where Xi, Yi and Xo, Yo represent position coordinates for the input/output mirror actuators, respectively, of the optical switch, fn is a resonance frequency, and Qn and Qd are respective numerator and denominator filter response parameters.
- 7. The method of claim 6 wherein the algorithm comprises a set of mathematical equations that includes:
- 8. The method of claim 7 wherein a, b, and c equal 1, 4, and 0.5, respectively.
- 9. A method for reducing oscillations in an optical switch comprising:
(a) generating an input command signal for controlling input/output mirror actuators of the optical switch, the input command signal being generated by a digital signal processor according to an algorithm that calculates a set of new parameter values to shape the input command signal by randomly varying a set of corresponding initial parameter values within certain constraints; (b) converting the input command signal to an analog signal; (c) applying the analog signal to the input/output mirror actuators; (d) capturing data points from a feedback response of the optical switch; (e) calculating a cost function value from the data points, the cost function value indicative of oscillations present in the feedback response; (f) comparing the cost function value to a previous cost function value, if the cost function value is less than the previous cost function value,
(i) storing the new parameter values in a memory; and (ii) designating the new parameter values as the corresponding initial parameter values for a next iteration; (e) iteratively repeating (a)-(f) N times, where N is an integer.
- 10. The method according to claim 9 wherein the new parameter values includes pre-filtering coefficients and a slope, R, of the input command signal.
- 11. The method of claim 10 wherein the cost function value, J(i), of an ith iteration is given as
- 12. The method of claim 9 wherein the output response is an optical intensity output of the optical switch.
- 13. The method of claim 9 wherein the set of corresponding initial parameter values includes:
fn init=[fXi fYi fXo fYo]Qn init=[QnXi QnYi QnXo QnYo]Qd init=[QdXi QdYi QdXo QdYo]Rinit=[RXi RYi RXo RYo]where Xi, Yi and Xo, Yo represent position coordinates for the input/output mirror actuators, respectively, of the optical switch, fn is a resonance frequency, and Qn and Qd are respective numerator and denominator filter response parameters.
- 14. The method of claim 13 wherein the algorithm comprises a set of mathematical equations that includes:
- 15. The method of claim 14 wherein a, b, and c equal 1, 4, and 0.5, respectively.
- 16. A control system for eliminating oscillations in an optical switch which includes input and output mirror-actuator assemblies, comprising:
a digital signal processor (DSP) to execute a program that generates an input command signal, the program calculating a set of new parameter values that shape the input command signal by randomly varying a set of corresponding initial parameter values within certain constraints; a digital-to-analog converter (DAC) to convert the input command signal to an analog signal; drivers coupled to receive the analog signal from the DAC and drive the input and output mirror-actuator assemblies in response thereto; sensors to produce an optical intensity feedback response of the optical switch; an analog-to-digital converter (ADC) to convert the optical intensity feedback response to a digital signal input to the DSP; wherein the DSP is further operative to calculate a cost function value from the digital signal, the cost function value being indicative of oscillations present in the optical intensity feedback response, the DSP comparing the cost function value to a previous cost function value, if the cost function value is less than the previous cost function value the DSP storing the new parameter values in a memory and designating the new parameter values as the corresponding initial parameter values for a next iterative cycle of the program.
- 17. The control system of claim 16 wherein the new parameter values includes pre-filtering coefficients and a slope, R, of the input command signal.
- 18. The control system of claim 16 wherein the cost function value, J(i), of an ith iterative cycle is given as
- 19. The control system of claim 16 wherein the set of corresponding initial parameter values includes:
fn init=[fXi fYi fXo fYo]Qn init=[QnXi QnYi QnXo QnYo]Qd init=[QdXi QdYi QdXo QdYo]Rinit=[RXi RYi RXo RYo]where Xi, Yi and Xo, Yo represent position coordinates for the input/output mirror actuators, respectively, of the optical switch, fn is a resonance frequency, and Qn and Qd are respective numerator and denominator filter response parameters.
- 20. The control system of claim 19 wherein the program calculates a set of mathematical equations that includes:
- 21. The control system of claim 20 wherein a, b, and c equal 1, 4, and 0.5, respectively.
RELATED APPLICATIONS
[0001] This application is a continuation-in-part application of Ser. No. 10/171,298 filed Jun. 13, 2002 entitled, “PHOTONIC SWITCHING APPARATUS FOR OPTICAL COMMUNICATION NETWORK”.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60298488 |
Jun 2001 |
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
10171298 |
Jun 2002 |
US |
Child |
10769160 |
Jan 2004 |
US |