Not Applicable
This invention concerns apparatuses and a method for reducing residual solvent levels, especially following “extraction” of biomass. This is the extraction of flavors, fragrances or pharmaceutically active ingredients from materials of natural origin (these materials being referred to as “biomass” in the body of this text).
Examples of biomass materials include but are not limited to flavorsome or aromatic substances such as coriander, cloves, star anise, coffee, orange juice, fennel seeds, cumin, ginger and other kinds of bark, leaves, flowers, fruit, roots, rhizomes and seeds. Biomass may also be extracted in the form of biologically active substances such as pesticides and pharmaceutically active substances or precursors thereto, obtainable, e.g., from plant material, a cell culture or a fermentation broth.
There is growing technical and commercial interest in using near-critical solvents in such extraction processes. Examples of such solvents include liquified carbon dioxide or, of particular interest, a family of chlorine-free solvents based on organic hydrofluorocarbon (HFC) species.
By the term “hydrofluorocarbon” we are referring to materials which contain carbon, hydrogen and fluorine atoms only and which are thus chlorine-free.
Preferred hydrofluorocarbons are the hydrofluoroalkanes and particularly the C1-4 hydrofluoroalkanes. Suitable examples of C1-4 hydrofluoralkanes which may be used as solvents include, inter alia, trifluoromethane (R-23), fluoromethane (R-41), difluoromethane (R-32), pentafluoroethane (R-125), 1,1,1-trifluoroethane (R-143a), 1,1,2,2-tetrafluoroethane (R-134), 1,1,1,2-tetrafluoroethane (R-134a), 1,1-difluoroethane (R-152a), heptrafluoropropanes and particularly 1,1,1,2,3,3-heptafluoropropane (R-227ea), 1,1,1,2,3,3-hexafluoropropane (R-236ea), 1,1,1,2,2,3-hexafluoropropane (R-236cb), 1,1,1,3,3,3-hexafluoropropane (R-236fa), 1,1,1,3,3-pentafluoropropane (R-245fa), 1,1,2,2,3-pentafluoropropane (R-245ca), 1,1,1,2,3-pentafluoropropane (R-245eb), 1,1,2,3,3-pentafluoropropane (R-245ea) and 1,1,1,3,3-pentafluorobutane (R-365mfc). Mixtures of two or more hydrofluorocarbons may be used if desired.
R-134a, R-227ea, R-32, R-125, R-245ca and R-245fa are preferred.
An especially preferred hydrofluorocarbon for use in the present invention is 1,1,1,2-tetrafluoroethane (R-134a).
It is possible to carry out biomass extraction using other solvents, such as chlorofluorocarbons (“CFC's”) or hydrochlorofluorocarbons (“HCFC's”) and/or mixtures of solvents.
Known extraction processes using these solvents are normally carried out in closed-loop extraction equipment. A typical example 10 of such a system is shown schematically in FIG. 1.
In this typical system, liquefied solvent is allowed to percolate by gravity in downflow through a bed of biomass held in vessel 11. Thence it flows to evaporator 12 where the volatile solvent vapor is vaporized by heat exchange with a hot fluid. The vapor from evaporator 12 is then compressed by compressor 13. The compressed vapor is next fed to a condenser 14 where it is liquified by heat exchange with a cold fluid. The liquified solvent is then optionally collected in intermediate storage vessel (receiver) 15 or returned directly to the extraction vessel 1 to complete the circuit.
The extraction of flavors, fragrances or pharmaceutically active components from materials of natural origin using chlorine-free solvents based on HFC's and other solvents as noted is of growing technical and commercial interest. One reason for use of the closed loop extraction circuit of Figure is to avoid the undesirable release of HFC or other solvents to atmosphere.
Residual solvent levels in extracts to be used in foodstuffs are governed by legislation in many countries. The levels of residual solvents in extracts for other applications are generally less strictly defined. Even where legislation does not dictate a specific level of solvent residue, it is generally desirable to minimize the residue levels where economic and practicable to do so. In the prior art, residual solvent residues have been reduced through a combination of heating and evacuation, or in the case of CO2 solvents by relatively mild evacuation alone. Unfortunately the process of heating and evacuation often has a detrimental effect on the aroma of the finished extract, many of the volatile “top note” components having been removed along with the solvent.
One of the key benefits of using a solvent such as 1,1,1,2-tetrafluoroethane (R-134a) for extraction of materials of biological origin is its ability to capture the relatively volatile flavor and fragrance components. In order to maintain the high quality of the extracts obtained with R-134a, a method of reducing the residual solvent levels that does not impact significantly on the organoleptic behavior of the extract is required.
According to a first aspect of the invention there is provided apparatus for reducing residual solvent levels in extracted biomass, comprising a vessel for containing liquid biomass extract contaminated with solvent. The apparatus also comprises a gas supply for sparging biomass extract in the vessel with a solvent stripping vapor.
According to a second aspect of the invention there is provided a method for reducing solvent levels in extracted biomass, comprising sparging liquid biomass extract, contaminated with solvent, with a solvent stripping vapor.
Preferred features of the apparatus and method are set out below and in the appended claims.
There now follows a description of preferred embodiments of the invention, by way of non-limiting example, with reference being made to the accompanying drawings in which:
The solvent vapor delivery line 12a exiting the upper part of the evaporator 12 is switchably connectable, by means of flow control valve 29, to compressor 13 (when the apparatus is in use to extract biomass); to a vacuum (for purging evaporator 12 at the end of the extraction process) or to a sparging gas disposal line 31.
Flow control valve 29 is controllable, e.g., manually or by means of a computer.
Wand 27 is a hollow elongated member having one or more apertures therein. Wand 27 is open at one end that is connected to a supply line 27a of pressurized sparging gas such as air or nitrogen.
Wand 27 may be inserted into evaporator 12, e.g., via an access plate or hatch and submerged under the surface of the extract 26. When sparging gas flows through line 27a and into the hollow interior 27 it exits via the apertures in wand 27 and perfuses through liquor 26.
An alternative arrangement is shown in
The proposed method of residual HFC solvent reduction is as follows. After the extraction process is complete, the collected extract is subject to mild evacuation, e.g., by means of the vacuum connection in
During sparging the evaporator or vessel outlet may be connected to sparging gas disposal line 31.
This process may be conducted within the evaporator/collector 13 of the extraction equipment (
The efficiency of the method of the invention is illustrated by the following non-limiting example:
The samples were subjected to a combination of heat (up to 40° C.) and vacuum for known periods of time as well as nitrogen sparging. Graphs were plotted which indicated the rate of removal of 1,1,1,2-tetrafluoroethane (“R-134a”).
Removal methods used:
In order to determine the amount of residual R-134a the extract (0.5 g) was weighted into a 30 mil Hypo-seal vial and crimp sealed with a PTFE coated silicone rubber septum. The vial was heated to 80° C. for 30 mins. to liberate the R-134a from the extract. The vial was removed from the oven and pressurized with 20 mls of air from a syringe. The syringe was then allowed to refill and immediately injected onto the GC via a gas sample valve. The GC had been previously calibrated.
The results were then calculated in % (or ppm) w/w R-134a/weight of biomass or extract. The limit of detection was around 50 ppm w/w R-134a in the extract.
Discussion
For the star anise extract used in this experiment the use of vacuum and heat (40° C.) will remove the relatively large quantities of residual R-134a in a relatively short space of time (i.e., 2,700 to 100 ppm w/w in less than 20 mins.) but with prolonged time required for further reduction. Similar results are expected from other extracts.
It can be seen from
Number | Date | Country | Kind |
---|---|---|---|
9920950 | Sep 1999 | GB | national |
This application is a division of application Ser. No. 09/654,816, filed Sep. 5, 2000 now U.S. Pat. No. 6,521,022.
Number | Name | Date | Kind |
---|---|---|---|
3113871 | Webster | Dec 1963 | A |
4510242 | Tedder | Apr 1985 | A |
4518502 | Burns et al. | May 1985 | A |
4772319 | Otsuka et al. | Sep 1988 | A |
4820457 | Jager | Apr 1989 | A |
5092983 | Eppig et al. | Mar 1992 | A |
5458789 | Dickerson et al. | Oct 1995 | A |
5490941 | Miyabe et al. | Feb 1996 | A |
5512285 | Wilde | Apr 1996 | A |
5516923 | Hebert et al. | May 1996 | A |
5599376 | Camp | Feb 1997 | A |
5678807 | Cooper | Oct 1997 | A |
5707673 | Prevost et al. | Jan 1998 | A |
5788844 | Olafson | Aug 1998 | A |
5976595 | Ganguli et al. | Nov 1999 | A |
6224847 | Powell et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
413307 | Jul 1934 | GB |
1994-287747 | Sep 1994 | GB |
2 288 522 | Oct 1995 | GB |
WO 9420486 | Sep 1994 | WO |
WO 8859607 | Nov 1999 | WO |
EP PCTGB0003355 | Jan 2000 | WO |
WO 0064555 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20030101870 A1 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09654816 | Sep 2000 | US |
Child | 10340810 | US |