1. Field of the Invention
This invention relates to microelectromechanical systems for use as interferometric modulators. More particularly, this invention relates to systems and methods for improving the micro-electromechanical operation of interferometric modulators.
2. Description of the Related Technology
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate and the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
An embodiment provides an interferometric modulator that includes a substrate layer and a moveable layer. The substrate layer includes a first reflective surface and the movable layer includes a second reflective surface. The second reflective surface is spaced from the first reflective surface to thereby define a cavity. The interferometric modulator further includes a support structure positioned at a side of the cavity between the substrate layer and the moveable layer, and a bond between the support structure and at least one of the substrate layer and the moveable layer. The bond may be configured to increase adhesion between the support structure and at least one of the substrate layer and the moveable layer. Another embodiment provides a display device that includes such an interferometric modulator.
Another embodiment provides an interferometric modulator that includes a means for supporting a moveable layer over a fixed layer, and a means for bonding the support means to at least one of the fixed layer and the moveable layer. The bonding means may be configured to provide improved adhesion between the support means and at least one of the fixed layer and the moveable layer. The bonding means may include, for example, an adhesive and/or a roughened interface between the support means and at least one of the fixed layer and the moveable layer.
Another embodiment provides a method of making an interferometric modulator that includes forming a substrate layer, the substrate layer comprising a first reflective surface, and treating at least a portion of a support region of the substrate layer to form a treated support region. The method further includes forming a support structure on the treated support region. The treated support region may be configured to increase adhesion between the substrate layer and the support structure. Another embodiment provides an interferometric modulator made by such a method.
Another embodiment provides a method of making an interferometric modulator that includes forming a substrate layer and forming a support structure on the substrate layer. The method further includes treating the support structure to form a treated support structure and forming a moveable layer on the treated support structure. Another embodiment provides an interferometric modulator made by such a method.
These and other embodiments are described in greater detail below.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
An embodiment provides increased bond strengths between post structures and other structures (such as the substrate and/or the moveable layer) in an interferometric modulator. In certain embodiments, the increased bond strengths are achieved by providing a roughened surface and/or an adhesive layer at the interface between the post structure and the structures to which it is attached (such as the substrate and/or the moveable layer).
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as optical stack 16), as referenced herein, typically comprise of several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more of the above layers onto a transparent substrate 20. In some embodiments, the layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the movable reflective layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a panel or display array (display) 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding, and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including but not limited to plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and gray-scale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell, including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some implementations control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some cases control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimization may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
In embodiments such as those shown in
The process 800 illustrated in
The process 800 illustrated in
The process 800 illustrated in
The process 800 illustrated in
Interferometric modulators may be manufactured in accordance with various sets of processing parameters, and thus it will be understood that
The various bonds 1005, 1010, 1015, 1020, 1025, 1030 are illustrated in
The method 1100 continues at step 1110 by treating at least a portion of a support region of the substrate layer to form a treated support region. The support region of the substrate layer is typically the area that will underlie a support structure that will be formed in a subsequent step. The substrate layer may comprise the first reflective surface, and thus treatment of the support region of the substrate layer may include treatment of the support region of the substrate, e.g., treatment of the support region 1040 of the substrate 20 as illustrated in
The method 1100 continues at step 1115 by forming a support structure on the treated support region. The support structure may be formed in various ways. For example, in an embodiment, a configuration such as that illustrated in
It will be understood that additional steps (not illustrated in
The method 1200 continues at step 1210 by forming a support structure on the substrate layer. The support structure may be formed in various ways. For example, in an embodiment, a configuration such as that illustrated in
The method 1200 continues at step 1215 by treating the support structure to form a treated support structure. Preferably, the upper end of the support structure is treated to increase adhesion to a subsequently-formed moveable layer. Treating the support structure to form a treated support structure may include, for example, roughening the upper end of the support structure and/or applying an adhesive layer over the upper end of the support structure. Thus, the resulting treated support structure may include, for example, a roughened surface (such as the roughened surface included in the bond 1005 illustrated in
The method 1200 continues at step 1220 by forming a moveable layer on the treated support structure. The moveable reflective layer (e.g., the layer 14 as illustrated in
It will be understood that additional steps (not illustrated in
The methods 1100, 1200 discussed above make reference in certain embodiments to forming bonds to the support structure 18 of an interferometric modulator of the general type shown in
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.
This application is a divisional of U.S. patent application Ser. No. 11/203,613, filed Aug. 12, 2005, which claims the benefit of U.S. Provisional Application No. 60/613,499, filed Sep. 27, 2004, the disclosure of each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2590906 | Tripp | Apr 1952 | A |
2677714 | Auwarter | May 1954 | A |
3247392 | Thelen | Apr 1966 | A |
3679313 | Rosenberg | Jul 1972 | A |
3728030 | Hawes | Apr 1973 | A |
3886310 | Guldberg | May 1975 | A |
3955190 | Teraishi | May 1976 | A |
4403248 | te Velde | Sep 1983 | A |
4421381 | Ueda et al. | Dec 1983 | A |
4441789 | Pohlack | Apr 1984 | A |
4441791 | Hornbeck | Apr 1984 | A |
4497974 | Deckman et al. | Feb 1985 | A |
4498953 | Cook et al. | Feb 1985 | A |
4560435 | Brown et al. | Dec 1985 | A |
4655554 | Armitage | Apr 1987 | A |
4779959 | Saunders | Oct 1988 | A |
4786128 | Birnbach | Nov 1988 | A |
4859060 | Katagiri et al. | Aug 1989 | A |
4925259 | Emmett | May 1990 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4973131 | Carnes | Nov 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5022745 | Zahowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5062689 | Koehler | Nov 1991 | A |
5091983 | Lukosz | Feb 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5170283 | O'Brien et al. | Dec 1992 | A |
5315370 | Bulow | May 1994 | A |
5381232 | Van Wijk | Jan 1995 | A |
5452138 | Mignardi et al. | Sep 1995 | A |
5471341 | Warde et al. | Nov 1995 | A |
5526172 | Kanack | Jun 1996 | A |
5535526 | White | Jul 1996 | A |
5550373 | Cole et al. | Aug 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5561523 | Blomberg et al. | Oct 1996 | A |
5597736 | Sampsell | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5636052 | Arney et al. | Jun 1997 | A |
5646729 | Koskinen et al. | Jul 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5661592 | Bornstein et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5699181 | Choi | Dec 1997 | A |
5710656 | Goosen | Jan 1998 | A |
5719068 | Suzawa et al. | Feb 1998 | A |
5734177 | Sakamoto | Mar 1998 | A |
5771116 | Miller et al. | Jun 1998 | A |
5786927 | Greywall et al. | Jul 1998 | A |
5808781 | Arney et al. | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5825528 | Goosen | Oct 1998 | A |
5838484 | Goossen et al. | Nov 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5870221 | Goossen | Feb 1999 | A |
5914804 | Goossen | Jun 1999 | A |
5920418 | Shiono et al. | Jul 1999 | A |
5961848 | Jacquet et al. | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
6028689 | Michalicek et al. | Feb 2000 | A |
6031653 | Wang | Feb 2000 | A |
6040937 | Miles | Mar 2000 | A |
6046659 | Loo et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6100861 | Cohen et al. | Aug 2000 | A |
6195196 | Kimura et al. | Feb 2001 | B1 |
6242932 | Hembree | Jun 2001 | B1 |
6262697 | Stephenson | Jul 2001 | B1 |
6297072 | Tilmans et al. | Oct 2001 | B1 |
6301000 | Johnson | Oct 2001 | B1 |
6327071 | Kimura | Dec 2001 | B1 |
6335235 | Bhekta et al. | Jan 2002 | B1 |
6351329 | Greywall | Feb 2002 | B1 |
6356378 | Huibers | Mar 2002 | B1 |
6377233 | Colgan et al. | Apr 2002 | B2 |
6381022 | Zavracky | Apr 2002 | B1 |
6384952 | Clark et al. | May 2002 | B1 |
6400738 | Tucker et al. | Jun 2002 | B1 |
6433917 | Mei et al. | Aug 2002 | B1 |
6438282 | Takeda et al. | Aug 2002 | B1 |
6452712 | Atobe et al. | Sep 2002 | B2 |
6466354 | Gudeman | Oct 2002 | B1 |
6519073 | Goossen | Feb 2003 | B1 |
6556338 | Han et al. | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6597490 | Tayebati | Jul 2003 | B2 |
6608268 | Goldsmith | Aug 2003 | B1 |
6632698 | Ives | Oct 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6657832 | Williams et al. | Dec 2003 | B2 |
6661561 | Fitzpatrick et al. | Dec 2003 | B2 |
6674562 | Miles et al. | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6698295 | Sherrer | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6738194 | Ramirez et al. | May 2004 | B1 |
6768555 | Chen | Jul 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6813059 | Hunter et al. | Nov 2004 | B2 |
6836366 | Flanders et al. | Dec 2004 | B1 |
6841081 | Chang et al. | Jan 2005 | B2 |
6844959 | Huibers et al. | Jan 2005 | B2 |
6849471 | Patel et al. | Feb 2005 | B2 |
6862127 | Ishii | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870654 | Lin et al. | Mar 2005 | B2 |
6882458 | Lin et al. | Apr 2005 | B2 |
6882461 | Tsai et al. | Apr 2005 | B1 |
6912022 | Lin et al. | Jun 2005 | B2 |
6913942 | Patel et al. | Jul 2005 | B2 |
6940630 | Xie | Sep 2005 | B2 |
6947200 | Huibers | Sep 2005 | B2 |
6952303 | Lin et al. | Oct 2005 | B2 |
6958847 | Lin | Oct 2005 | B2 |
6960305 | Doan et al. | Nov 2005 | B2 |
6980350 | Hung et al. | Dec 2005 | B2 |
6982820 | Tsai | Jan 2006 | B2 |
7002726 | Patel et al. | Feb 2006 | B2 |
7006272 | Tsai | Feb 2006 | B2 |
7009754 | Huibers | Mar 2006 | B2 |
7027204 | Trisnadi et al. | Apr 2006 | B2 |
7034981 | Makigaki | Apr 2006 | B2 |
7046422 | Kimura et al. | May 2006 | B2 |
7072093 | Piehl et al. | Jul 2006 | B2 |
7113339 | Taguchi et al. | Sep 2006 | B2 |
7119945 | Kothari et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7126738 | Miles | Oct 2006 | B2 |
7198973 | Lin et al. | Apr 2007 | B2 |
7221495 | Miles et al. | May 2007 | B2 |
7236284 | Miles | Jun 2007 | B2 |
7245285 | Yeh et al. | Jul 2007 | B2 |
7372619 | Miles | May 2008 | B2 |
7459402 | Doan et al. | Dec 2008 | B2 |
7460291 | Sampsell et al. | Dec 2008 | B2 |
7476327 | Tung et al. | Jan 2009 | B2 |
7508566 | Feenstra et al. | Mar 2009 | B2 |
7532377 | Miles | May 2009 | B2 |
7554711 | Miles | Jun 2009 | B2 |
7852544 | Sampsell | Dec 2010 | B2 |
7898722 | Miles | Mar 2011 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20010028503 | Flanders et al. | Oct 2001 | A1 |
20010043171 | Van Gorkom et al. | Nov 2001 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020024711 | Miles | Feb 2002 | A1 |
20020054422 | Carr et al. | May 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020070931 | Ishikawa | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020146200 | Kurdle et al. | Oct 2002 | A1 |
20020149828 | Miles | Oct 2002 | A1 |
20020149834 | Mei et al. | Oct 2002 | A1 |
20020154422 | Sniegowski et al. | Oct 2002 | A1 |
20020197761 | Patel et al. | Dec 2002 | A1 |
20030011864 | Flanders | Jan 2003 | A1 |
20030016428 | Kato et al. | Jan 2003 | A1 |
20030021004 | Cunningham et al. | Jan 2003 | A1 |
20030035196 | Walker | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030053078 | Missey et al. | Mar 2003 | A1 |
20030053233 | Felton | Mar 2003 | A1 |
20030119221 | Cunningham et al. | Jun 2003 | A1 |
20030123125 | Little | Jul 2003 | A1 |
20030138669 | Kojima et al. | Jul 2003 | A1 |
20030173504 | Cole et al. | Sep 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20040008396 | Stappaerts | Jan 2004 | A1 |
20040008438 | Sato | Jan 2004 | A1 |
20040027671 | Wu et al. | Feb 2004 | A1 |
20040027701 | Ishikawa | Feb 2004 | A1 |
20040043552 | Strumpell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040066477 | Morimoto et al. | Apr 2004 | A1 |
20040075967 | Lynch et al. | Apr 2004 | A1 |
20040076802 | Tompkin et al. | Apr 2004 | A1 |
20040080035 | Delapierre | Apr 2004 | A1 |
20040100594 | Huibers et al. | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040125281 | Lin et al. | Jul 2004 | A1 |
20040125282 | Lin et al. | Jul 2004 | A1 |
20040145811 | Lin et al. | Jul 2004 | A1 |
20040147198 | Lin et al. | Jul 2004 | A1 |
20040175577 | Lin et al. | Sep 2004 | A1 |
20040184134 | Makigaki | Sep 2004 | A1 |
20040188599 | Viktorovitch et al. | Sep 2004 | A1 |
20040207897 | Lin | Oct 2004 | A1 |
20040209195 | Lin | Oct 2004 | A1 |
20040217919 | Pichl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20040259010 | Kanbe | Dec 2004 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050003667 | Lin et al. | Jan 2005 | A1 |
20050024557 | Lin | Feb 2005 | A1 |
20050035699 | Tsai | Feb 2005 | A1 |
20050036095 | Yeh et al. | Feb 2005 | A1 |
20050046919 | Taguchi et al. | Mar 2005 | A1 |
20050046922 | Lin et al. | Mar 2005 | A1 |
20050046948 | Lin | Mar 2005 | A1 |
20050068627 | Nakamura et al. | Mar 2005 | A1 |
20050078348 | Lin | Apr 2005 | A1 |
20050117190 | Iwauchi et al. | Jun 2005 | A1 |
20050117623 | Shchukin et al. | Jun 2005 | A1 |
20050128543 | Phillips et al. | Jun 2005 | A1 |
20050133761 | Thielemans | Jun 2005 | A1 |
20050168849 | Lin | Aug 2005 | A1 |
20050179378 | Oooka et al. | Aug 2005 | A1 |
20050195462 | Lin | Sep 2005 | A1 |
20050275930 | Patel et al. | Dec 2005 | A1 |
20060007517 | Tsai | Jan 2006 | A1 |
20060017379 | Su et al. | Jan 2006 | A1 |
20060017689 | Faase et al. | Jan 2006 | A1 |
20060038643 | Xu et al. | Feb 2006 | A1 |
20060056000 | Mignard | Mar 2006 | A1 |
20060066936 | Chui et al. | Mar 2006 | A1 |
20060082863 | Piehl et al. | Apr 2006 | A1 |
20060220160 | Miles | Oct 2006 | A1 |
20060262126 | Miles | Nov 2006 | A1 |
20070020948 | Piehl et al. | Jan 2007 | A1 |
20070153860 | Chang-Hasnain et al. | Jul 2007 | A1 |
20070177247 | Miles | Aug 2007 | A1 |
20070253054 | Miles | Nov 2007 | A1 |
20080037093 | Miles | Feb 2008 | A1 |
20080088904 | Miles | Apr 2008 | A1 |
20080088910 | Miles | Apr 2008 | A1 |
20080088911 | Miles | Apr 2008 | A1 |
20080088912 | Miles | Apr 2008 | A1 |
20080106782 | Miles | May 2008 | A1 |
20080297880 | Steckl et al. | Dec 2008 | A1 |
20090068781 | Tung et al. | Mar 2009 | A1 |
20090080060 | Sampsell et al. | Mar 2009 | A1 |
20100039370 | Miles | Feb 2010 | A1 |
20110019380 | Miles | Jan 2011 | A1 |
20110026096 | Miles | Feb 2011 | A1 |
20110038027 | Miles | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
0 668 490 | Aug 1995 | EP |
0 695 959 | Feb 1996 | EP |
0 879 991 | Nov 1998 | EP |
0 969 306 | Jan 2000 | EP |
0 986 077 | Mar 2000 | EP |
1 122 577 | Aug 2001 | EP |
1 205 782 | May 2002 | EP |
1 227 346 | Jul 2002 | EP |
1 275 997 | Jan 2003 | EP |
1 403 212 | Mar 2004 | EP |
1 473 581 | Nov 2004 | EP |
1 473 691 | Nov 2004 | EP |
56-088111 | Jul 1981 | JP |
5-49238 | Feb 1993 | JP |
5-281479 | Oct 1993 | JP |
08-051230 | Feb 1996 | JP |
11211999 | Aug 1999 | JP |
2002-062490 | Feb 2000 | JP |
2000 147262 | May 2000 | JP |
2001-221913 | Aug 2001 | JP |
2001 249283 | Sep 2001 | JP |
2002-221678 | Aug 2002 | JP |
2003-340795 | Feb 2003 | JP |
2003 177336 | Jun 2003 | JP |
2004-012642 | Jan 2004 | JP |
2004-212638 | Jul 2004 | JP |
2004-212680 | Jul 2004 | JP |
2005 279831 | Oct 2005 | JP |
2005-308871 | Nov 2005 | JP |
2007 027150 | Feb 2007 | JP |
WO 9814804 | Apr 1998 | WO |
WO 02024570 | Mar 2002 | WO |
WO 02086582 | Oct 2002 | WO |
WO 03069413 | Aug 2003 | WO |
WO 03105198 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20100080890 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
60613499 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11203613 | Aug 2005 | US |
Child | 12631194 | US |