All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Embodiments of the invention relate generally to neuromodulation of the vagus nerve for the treatment of inflammation, and more specifically to neuromodulation of the vagus nerve involving feedback and/or stimulation from the central nervous system.
Neurostimulation has been used to treat a variety of diseases, including inflammatory diseases such as rheumatoid arthritis. Electrical stimulation to a nerve, such as the vagus nerve, can be delivered using, for example, an implanted stimulator. The stimulator can be patient controlled, meaning the patient controls delivery of the electrical stimulations, or the stimulator can deliver the stimulation automatically. In patient controlled systems, compliance with the prescribed dosing regimen can be inconsistent and/or poor due to the patient forgetting to deliver the stimulation, for example.
In systems where the stimulation is delivered automatically by the stimulator, the stimulation may cause some undesirable short term side effects, such as voice change or loss. This voice change or loss can be inconvenient during various activities, such as at work or during social engagements.
Therefore, in order to improve compliance with the dose schedule prescribed by the patient's physician, it would be desirable to provide the patient a reminder to deliver a therapeutic stimulation when the patient is using a patient controlled stimulator. For patients using an automated stimulator, it would be desirable to provide a warning in advance of the stimulation so that the patient can delay the stimulation if inconvenient or prepare himself for the stimulation.
Described herein are implanted apparatuses (including devices and systems) including implantable therapeutic devices (e.g., neurostimulators) that may be used to treat patients suffering from medical disorders, and particularly inflammatory medical disorders, by delivering therapeutic neurostimulator doses. In particular, described herein are apparatuses and methods for communicating directly from an implanted therapeutic device (such as a neurostimulator) to a patient into which the therapeutic device has been implanted by delivering stimulation to the patient from the implant as a warning, notice or alert; the stimulation is therefore detectable by the patient, yet is less than a therapeutic dose.
These apparatuses and methods may be adapted to provide notice, alerts, or other forms of communication about the stimulation (or otherwise). For example, in systems in which the patient is automatically dosed, the apparatus may include a warning or alert some (e.g., predetermined) time before delivering the dose by providing a low level, patient-detectable stimulation so that the patient can anticipate, prepare for (or in some variations, cancel) the treatment dosage. In variations in which the patient manually applies the dosage, one or more alerts can be provided to remind the patient to deliver the dose (if the dose is not triggered by the patient, additional reminders can be provided from the implanted therapeutic device). Finally, it may also be particularly useful to communicate to the patient (in whom the therapeutic device such as a neurostimulator has been implanted) that the implant requires attention of some sort, and that they should therefore attend to the implant in some appropriate manner, e.g., to charge the implant (e.g., by external inductive charging, etc.), perform a maintenance check on the implant, etc. Different types of alerts, comprising a patient-detectable stimulations, may be correlated to different messages. For example a “charge device” alert may feel differently (have a different frequency and/or intensity and/or duration component) than a “trigger dose” alert.
Thus, described herein are methods to alert a patient prior to a scheduled stimulation, or remind the patient to manually trigger a therapeutic stimulate dose, and/or to otherwise prompt the patient to interact with the implant. A reminder, alert, or prompt may generally be a patient-detectable stimulation, e.g., electrical stimulation, and may consist of a stimulation train that is of lower magnitude than a therapy dose. The magnitude is lowered based upon patient perception and is reduced by either lowering the current or duration.
In general, any of the methods described herein may include prompting (e.g., warning, alerting, reminding, etc.) the patient by administering a patient detectable stimulation that is below the threshold for a therapeutic dose (e.g., having a lower amplitude, frequency, and/or duration, etc. than the therapeutic dose). The apparatus may determine when to deliver the prompt based on a timer, an internal status (e.g., the charge of the implant, etc.), or based on detection of an environmental trigger (e.g., wireless signal from remote device, etc.).
For example, a method for prompting a patient to interact with a therapy device implanted in the patient may include: determining, in a processor, if the patient should interact with the therapy device; and delivering a patient-detectable stimulation from the implanted therapy device when the processor determines that the patient should interact with the therapy device, wherein the patient-detectable prompting stimulation is different from a therapeutic dose for the implanted therapy device.
As used herein, a “patient” may refer to any human or animal implanted with a therapy device, and may alternatively be referred to as a patient, subject, or the like. A therapy device may be any implanted therapy device, including in particular electrical stimulation devices, including neurostimulators and microstimulators. Examples of such implantable neurostimulators include those previously incorporated by reference, such as described, for, example, in US-2011-0190849, for vagal nerve stimulation. The therapeutic device may be referred to as an implant, and may be implanted in any appropriate body region, including the neck, chest, abdomen, etc. The apparatuses described herein may be just the implantable device (therapeutic device) or they may also include one or more additional components, including a handheld (or desktop) remote computing device that can wirelessly communicate with the implanted therapeutic device. For example, in some variations, the apparatus includes a remote device controlled by software, hardware and/or firmware for wirelessly communicating with the implant. The remote device may be configured to transmit commands (e.g., stimulation parameters and/or dosing regimens, may activate delivery of a dose, etc.) and may include a processor. The implant may also include a processor. Either or both processor may determine if the patient should interact with the therapy device. For example, any of the implants described herein may also include a clock which may be used to determine when to deliver a scheduled dose, and/or to countdown time between doses, etc.
In general, a patient-detectable stimulation from the implanted therapy device (or patient-detectable prompting stimulation, patient-detectable altering stimulation, patient-detectable warning stimulation, patient-detectable reminding stimulation, etc.) may be similar to a dosing stimulation but different in intensity and/or duration. For example, a neurostimulator (e.g., vagus nerve stimulator) implant may deliver a therapeutic dosage of electrical energy (e.g., current and/or voltage with therapeutic bounds) to the vagus nerve and may also be configured to deliver a patient-detectable stimulation comprising electrical stimulation that is outside of, and typically less than, the lowest therapeutic dose. Thus, the patient may feel the patient-detectable stimulation but it may not trigger a therapeutic effect.
For example, described herein are methods for prompting a patient to interact with a therapy device implanted in the patient, for example: determining, in a processor, if the patient should interact with the therapy device based on a prompting event selected from the group comprising: the implant requires charging, the implant requires maintenance, or it is time to prompt the patient to manually activate the implanted therapy device to deliver a therapeutic dose; and delivering a patient-detectable prompting stimulation from the implanted therapy device when the processor determines that the patient should interact with the therapy device, wherein the patient-detectable stimulation is different from a therapeutic dose for the implanted therapy device.
For example, a method for prompting a patient to interact with a therapy device implanted in the patient may include: determining that the patient should interact with the therapy device to manually activate the implanted therapy device to deliver a therapeutic stimulation, wherein determining comprises comparing a current time with a scheduled stimulation time; and delivering a patient-detectable prompting stimulation from the implanted therapy device to remind the patient to manually activate the implanted therapy device to apply therapeutic stimulation from the implanted therapy device when the current time falls within a reminder time period prior to the scheduled stimulation time.
A method for alerting a patient that an implanted therapy device will be delivering a therapeutic dose prior to delivery of the dose may include: determining, in a processor, that the therapeutic device is scheduled to deliver a therapeutic dose within a predetermined reminder time period from a current time; and delivering a patient-detectable stimulation from the implanted therapy device prior to delivery of the therapeutic dose when the processor determines that the therapeutic dose will be delivered within the predetermine reminder time period, wherein the patient-detectable prompting stimulation is different from a therapeutic dose for the implanted therapy device.
In any of these methods, delivering a patient-detectable prompting stimulation may include delivering electrical stimulation to the subject's vagus nerve from the implanted therapy device.
Determining if the patient should interact with the therapy device may include determining if a prompting event has occurred, wherein the prompting event is selected from the group comprising: the implant requires charging, the implant requires maintenance, or it is time to prompt the patient to manually activate the implanted therapy device to deliver a therapeutic dose.
For example, when delivering an alert/notification to manually trigger a therapeutic dose, any of the methods and apparatuses described herein may be configured to determine whether the patient has delivered the therapeutic stimulation by the scheduled stimulation time. If not, additional (and in increasing, sub-therapeutic, intensities) alert may be delivered. As mentioned, delivering a patient-detectable prompting stimulation may include delivering a stimulation that has a lower amplitude, frequency, and/or duration than the therapeutic dose from the implanted therapy device. In variations in which the implanted therapy device is an electrical vagus nerve stimulator (microstimulator), delivering a patient-detectable prompting stimulation may include delivering electrical stimulation to the patient's vagus nerve from the implanted therapy device at a lower amplitude than the therapeutic dose applied to the patient's vagus nerve from the implanted therapy device.
The apparatuses described herein typically include the implantable microstimulator (implanted therapy device), which may be configured to provide the sub-therapy notification stimulation described. For example, and of the devices for delivering the notification (and methods of delivering notification as described herein) may include a controller that is adapted to deliver the sub-therapeutic stimulation(s). These apparatuses may also include a timer, a memory, and any additional circuitry that is adapted to perform the functions (methods) described herein. In general, these apparatuses may be configured so that the implant may, by itself or in conjunction with an additional (e.g., handheld or remote computing device) determine when to deliver a patient-detectable but sub-therapeutic prompting stimulation, and the signaling parameters for the patient-detectable but sub-therapeutic prompting stimulation should be.
As mentioned above, delivering the patient-detectable prompting stimulation may comprise delivering a patient-detectable prompting stimulation that is characteristic of the prompting event. For example prompting stimulation indicating a warning of an imminent therapeutic dosage may be different (e.g., feeling different to the subject, such as having different current amplitude, duration, frequency, etc.) from prompting stimulation indicating that the device should be charged, etc., allowing the subject to interpret the signal from the implant. In some variations the patient may be select the different prompting stimulations of sub-therapeutic stimulation (e.g., from a menu of choices).
In variations in which the methods and apparatuses adapted to perform them are configured to remind a patient that a dose is going to be delivered (or alternatively, that a dose should be delivered if manually triggered), the reminder period may be any appropriate time (e.g., 20 minutes, 15 minutes, 10 minutes, 8 minutes, 5 minutes, 2 minutes, 1 minute, etc., such as 20 minutes or less, 15 minutes or less, 10 minute or less, etc.) before the scheduled dose. The reminder period may be predetermined by the device (or set by a physician, technician, etc.), or in some variations the reminder period may be set and/or modified by the subject.
In general, the apparatuses described in here may be vagus nerve stimulation systems, which may include an implantable microstimulator adapted to deliver electrical (and/or mechanical) stimulation to the vagus nerve. As mentioned, in variations in which the implant is a vagus nerve stimulator, the therapeutic stimulation may be electrical stimulation to the vagus nerve.
For example, a vagus nerve stimulation system that communicates with the subject by sub-therapeutic stimulation and/or prompts a patient to interact with the system may include: an implantable neurostimulator configured to electrically stimulate a vagus nerve of the patient to deliver a therapeutic dose; and a processor, wherein the processor is programmed to: determine if a prompting event has occurred, and trigger delivery of a patient-detectable prompting stimulation from the neurostimulator when the processor determines that the patient should interact with the neurostimulator, wherein the patient-detectable stimulation is different from the therapeutic dose.
A vagus nerve stimulation system as described herein may include: an implantable neurostimulator configured to electrically stimulate a vagus nerve of the patient to deliver a therapeutic dose; and a processor in communication with the neurostimulator, wherein the processor is programmed to: determine if the patient should interact with the neurostimulator based on a prompting event selected from the group comprising: the implant requires charging, the implant requires maintenance, or it is time to prompt the patient to manually activate the implanted neurostimulator to deliver the therapeutic dose, and trigger delivery of a patient-detectable prompting stimulation from the neurostimulator when the processor determines that the patient should interact with the neurostimulator, wherein the patient-detectable stimulation is different from the therapeutic dose.
A vagus nerve stimulation system that communicates with the patient (e.g., to prompt the patient prior to providing a scheduled therapeutic dose) may include: an implantable neurostimulator configured to electrically stimulate a vagus nerve of the patient to deliver a therapeutic dose at a dosing schedule; and a processor, wherein the processor is programmed to: determine if the neurostimulator is scheduled to deliver the therapeutic dose within a predetermined reminder time period from a current time, and trigger delivery of a patient-detectable prompting stimulation from the neurostimulator when the processor determines that the therapeutic dose will be delivered within the predetermine reminder time period, wherein the patient-detectable stimulation is different from the therapeutic dose.
For example, the processor may be programmed to determining if the prompting event has occurred wherein the prompting event is selected from the group comprising: the implant requires charging, the implant requires maintenance, or it is time to prompt the patient to manually activate the implanted therapy device to deliver the therapeutic dose. The processor may be programmed to determine whether the patient has interacted with the system by a predetermined time after triggering delivery and to trigger a second patient-detectable prompting stimulation from the neurostimulator if the patient has not.
The neurostimulator may be configured to be triggered by the processor to deliver the patient-detectable stimulation. The neurostimulator may be configured to be triggered by the processor to deliver the patient-detectable stimulation, wherein the patient-detectable stimulation has a lower amplitude and duration than the therapeutic dose from the neurostimulator. The neurostimulator may be configured to be triggered by the processor to deliver the patient-detectable stimulation, wherein the patient-detectable stimulation has a lower amplitude than the therapeutic dose. The processor may be housed within the implantable neurostimulator.
In general, described herein are methods and apparatuses for performing these methods, of applying a communication to a patient from an implanted therapeutic device. This communication may be referred to as a notice, warning, alert, reminder, or prompt, and typically includes a stimulation that is detectable by the patient, but is distinct from a therapeutic dose from the implant. The methods and apparatuses described herein, including the example, are directed primarily to vagus nerve stimulation apparatuses and methods; however, it should be understood that these methods and apparatuses may be used with virtually any implanted therapeutic stimulation device, including microstimulators that are not connected to the vagus nerve.
In general, the communication may be referred to herein as a prompt, notice, warning, alert, reminder, or the like, which may be used interchangeable and/or may refer to the goal or function of the communication; they may otherwise have similar or identical characteristics. For example, a prompt, notice, warning, alert, or reminder (referred to for convenience as a prompt) may be patient-detectable stimulation that is of the same mode (e.g., electrical, mechanical, etc.) as the therapeutic stimulation (dose) provided by the implant. In some variations, but not all, the prompt has stimulation parameters that are sub-therapeutic compared to a therapeutic dose. For example, the prompt may have stimulation parameters that are lower in intensity (e.g., current amplitude, voltage, etc.), frequency, and/or duration than the therapeutic dose being delivered to that patient. In some variations, the prompt stimulation range (also referred to below as “reminder stimulation range”) may be within the same range limits as therapeutic doses (e.g., between 1-5000 μA, etc.). The prompt stimulation may be adjusted separately (by a user, clinician, technician, etc.), so that it is noticeable by the patient (whereas in some variations the dose stimulation may not be immediately noticeable). For example, for a particular patient with an implanted therapy device, a dose may be set at an effective stimulation dose (amplitude, frequency, duration, etc.), and the prompting dose may be selected so that it is distinct from the stimulation dose and detectable by the patient. In some variations the prompt stimulation may have a greater amplitude (e.g. current amplitude) but may have a shorter duration and/or different frequency.
Vagus Nerve Stimulation System
Systems for electrically stimulating one or more nerves to treat chronic inflammation may include an implantable, wireless microstimulator such as those described herein and an external charging device (which may be referred to as a charging wand, charger, or energizer). In some variations the system also includes a controller such as a “prescription pad” that helps control and regulate the dose delivered by the system. The microstimulator may be secured in position using a securing device (which may be referred to as a “POD”) to hold the microstimulator in position around or adjacent to a nerve. These microstimulators are designed and adapted for treatment of chronic inflammation, and may be configured specifically for such use. Thus, an implantable microstimulator may be small, and adapted for the low duty-cycle stimulation to modulate inflammation. For example, the implantable microstimulator may hold a relatively small amount of power over weeks or even months and discharge it at a rate sufficient to modulate the anti-inflammatory pathway without significantly depressing heart rate or triggering any number of unwanted effects from the vagus nerve or other neural connections. Any of the nerves of the inflammatory reflex, including the vagus nerve, may be treated as described herein using the systems described.
For example,
In general, the systems described herein may be configured to apply electrical stimulation at a minimum level necessary to modulate the inflammatory reflex (e.g., modulating cytokine release) characterized by the Chronaxie and rheobase. Chronaxie typically refers to the minimum time over which an electric current double the strength of the rheobase needs to be applied in order to stimulate the neuron. Rheobase is the minimal electrical current of infinite duration that results in an action potential. As used herein, cytokines refer to a category of signaling proteins and glycoproteins that, like hormones and neurotransmitters, are used extensively in cellular communication.
The NCAP Systems described herein are typically intended for the treatment of chronic inflammation through the use of implanted neural stimulation devices (microstimulators) to affect the Neural Stimulation of the Cholinergic Anti-inflammatory Pathway (NCAP) as a potential therapeutic intervention for rheumatologic and other inflammation-mediated diseases and disorders. Neurostimulation of the Cholinergic Anti-inflammatory Pathway (NCAP) has been shown to modulate inflammation. Thus, the treatment and management of symptoms manifested from the onset of disease (e.g., inflammatory disease) is based upon the concept of modulating the Cholinergic Anti-inflammatory Pathway. The NCAP pathway normally maintains precise restraint of the circulating immune cells. As used herein, the CAP is a reflex that utilizes cholinergic nerve signals traveling via the Vagus nerve between the brain, chemoreceptors, and the reticuloendothelial system (e.g., spleen, liver). Local release of pro-inflammatory cytokines (e.g., tumor necrosis factor or TNF) from resident immune cells is inhibited by the efferent, or indirectly by afferent vagus nerve signals. NCAP causes important changes in the function and microenvironment of the spleen, liver and other reticuloendothelial organs. Leukocytes which circulate systemically become “educated” as they traverse the liver and spleen are thereby functionally down regulated by the affected environment of the reticuloendothelial system. This effect can potentially occur even in the absence of an inflammatory condition.
Under this model, remote inflammation is then dampened by down-regulated cytokine levels. Stimulation of the vagus nerve with a specific regiment of electrical pulses regulates production of pro-inflammatory cytokines. In-turn, the down regulation of these cytokines may reduce localized inflammation in joints and other organs of patients with autoimmune and inflammatory disorders.
The NCAP System includes a neurostimulator that may trigger the CAP by stimulating the cervical vagus nerve. The NCAP System issues a timed burst of current controlled pulses with sufficient amplitude to trigger the CAP at a particular interval. These two parameters, Dose Amplitude and Dose Interval, may be used by a clinician to adjust the device. For example, the clinician may set the Dose Amplitude by modifying the current level. The Dose Interval may be set by changing the duration between Doses (e.g. 12, 24, 48 hours).
In some variations, dose amplitude may be set to within the Therapy Window. The Therapy window is defined as the lower limit of current necessary to trigger the CAP, and the upper limit is the level at which the Patient feels uncomfortable. The lower limit is called the Threshold (T), and the uncomfortable level is called Upper Comfort Level (UCL).
Dose Amplitude thresholds are nonlinearly dependent upon Current (I), Pulse width (PW), Pulse Frequency (PF), and Burst Duration (BD). Amplitude is primarily set by charge (Q), that is Current (I)×Pulse width (PW). In neurostimulation applications current has the most linear relationship when determining thresholds and working within the therapy window. Therefore, the clinician may modify Dose Amplitude by modifying current. The other parameters are held to experimentally determined defaults. Pulse width is selected to be narrow enough to minimize muscle recruitment and wide enough to be well above the chronaxie of the targeted neurons. Stimulus duration and pulse frequency was determined experimentally in Preclinical work.
Dose Interval may be specific for particular diseases and the intensity of diseases experienced by a patient. Our initial research has indicated that the cervical portion of the vagus nerve may be an ideal anatomic location for delivery of stimulation. The nerve runs through the carotid sheath parallel to the internal jugular vein and carotid artery. At this location, excitation thresholds for the vagus are low, and the nerve is surgically accessible. We have not found any significant difference in biomarker modulation (e.g., modulation of cytokines) between right and left. Even though the right vagus is thought to have lower thresholds than the left in triggering cardiac dysrythmias, the thresholds necessary for NCAP are much lower than those expected to cause such dysrythmias. Therefore a device delivering NCAP can safely be applied to either the right or left vagus.
We have also found, surprisingly, that the Therapy Window is maximized on the cervical vagus through the use of a bipolar cuff electrode design. Key parameters of the cuff may be: spacing and shielding of the contacts. For example, the contact points or bands may be spaced 1-2 diameters of the vagus nerve apart, and it may be helpful to shield current from these contacts from other nearby structures susceptible to inadvertent triggering. The cuff may be further optimized by using bands which are as long and wide as possible to reduce neurostimulator power requirements.
Thus, any variations of the systems described herein (e.g., the NCAP system) may be implemented with a Cuff, Lead and Implantable Pulse Generation (IPG), or a Leadless Cuff. The preferred implementation is a leadless cuff implemented by a microstimulator with integral electrode contacts in intimate contact with the nerve and contained within a Position (or protection) and Orientation Device (POD). This is illustrated in
Referring back to
As described in more detail in U.S. patent application Ser. No. 12/874,171, filed on Sep. 1, 2010, titled “PRESCRIPTION PAD FOR TREATMENT OF INFLAMMATORY DISORDERS,” Publication No. US-2011-0054569-A1, previously incorporated by reference in its entirety, the Prescription Pad may incorporate workflows in a simplified interface and provide data collection facilities that can be transferred to an external database utilizing commercially robust and compliant methods and procedures. In use, the system may be recommended for use by a clinician after assessing a patient; the clinician may determine that treatment of chronic inflammation is warranted. The clinician may then refer the patient to an interventional doctor to implant the microstimulator. Thereafter then clinician (or another clinician) may monitor the patient and adjust the device via a wireless programmer (e.g. prescription pad). The clinician may be trained in the diagnosis and treatment procedures for autoimmune and inflammatory disorders; the interventional placement of the system may be performed by a surgeon trained in the implantation of active neurostimulation devices, with a sufficient depth of knowledge and experience regarding cervical and vagal anatomy, experienced in performing surgical dissections in and around the carotid sheath.
The system may output signals, including diagnostics, historical treatment schedules, or the like. The clinician may adjust the device during flares and/or during routine visits. Examples of implantation of the microstimulator were provided in U.S. patent application Ser. No. 12/874,171, filed on Sep. 1, 2010, titled “PRESCRIPTION PAD FOR TREATMENT OF INFLAMMATORY DISORDERS,” Publication No. US-2011-0054569-A1. For example, the implant may be inserted by making an incision in the skin (e.g., cm) along Lange's crease between the Facial Vein and the Omohyoid muscle, reflecting the Sternocleidomastoid and gaining access to the carotid sheath. The IJV may be displaced, and the vagus may be dissected from the carotid wall (≤2 cm). A sizing tool may be used to measure the vagus, and an appropriate Microstimulator and POD Kit (small, medium, large) may be selected. The POD may then be inserted under nerve with the POD opening facing the surgeon, so that the microstimulator can be inserted inside POD so that the microstimulator contacts capture the vagus. The POD may then be sutured shut. In some variations a Surgical Tester may be used to activate the microstimulator and perform system integrity and impedance checks, and shut the microstimulator off, during or after the implantation. In other variations the surgical tester may be unnecessary, as described in greater detail below.
A physician may use the Patient Charger to activate the microstimulator, perform integrity checks, and assure sufficient battery reserve exists. Electrodes may be conditioned with sub-threshold current and impedances may be measured. A Physician may charge the microstimulator. In some variations a separate charger (e.g., an “energizer”) may be used by the patient directly, separate from the controller the physician may use. Alternatively, the patient controller may include controls for operation by a physician; the system may lock out non-physicians (e.g., those not having a key, code, or other security pass) from operating or modifying the controls.
In general, a physician may establish safe dosage levels. The physician may slowly increment current level to establish a maximum limit (Upper Comfort Limit). This current level may be used to set the Dosage Level. The exact procedure may be determined during this clinical phase.
The Physician may also specify dosing parameters that specify dosage levels and dosage intervals. The device may contain several concurrent dosing programs which may be used to acclimate the patient to stimulus, gradually increase dosage until efficacy is achieved, reset tachyphylaxis, or deal with unique patient situations.
In some variations, the Prescription Pad may be configured to handle multiple patients and may index their data by the microstimulator Serial Number. For example, a Prescription Pad may handle up to 100,000 patients and 10,000 records per patient, and may store the data in its local memory and may be backed up on an external database. In some variations, during each charging session, accumulated even log contents will be uploaded to the Patient Charger for later transfer to Prescription Pad. The data may or may not be cleared from the microstimulator. For example,
The microstimulators described herein are configured for implantation and stimulation of the cholinergic anti-inflammatory pathway, and especially the vagus nerve. In particular the microstimulators described herein are configured for implantation in the cervical region of the vagus nerve to provide extremely low duty-cycle stimulation sufficient to modulate inflammation. These microstimulators may be adapted for this purpose by including one or more of the following characteristics, which are described in greater detail herein: the conductive capsule ends of the microstimulator may be routed to separate electrodes; the conductive capsule ends may be made from resistive titanium alloy to reduce magnetic field absorption; the electrodes may be positioned in a polymer saddle; the device includes a suspension (e.g., components may be suspended by metal clips) to safeguard the electronics from mechanical forces and shock; the device may include an H-bridge current source with capacitor isolation on both leads; the device may include a built in temperature sensor that stops energy absorption from any RF source by detuning the resonator; the device may include a built-in overvoltage sensor to stop energy absorption from any RF source by detuning resonator; the system may include DACs that are used to calibrate silicon for battery charging and protection; the system may include DACs that are used to calibrate silicon for precision timing rather than relying on crystal oscillator; the system may include a load stabilizer that maintains constant load so that inductive system can communicate efficiently; the system may include current limiters to prevent a current rush so that the microstimulator will power up smoothly from resonator power source; the system may extract a clock from carrier OR from internal clock; the device may use an ultra-low power accurate RC oscillator that uses stable temperature in body, DAC calibration, and clock adjustment during charging process; the device may use a solid state UPON battery that allows fast recharge, supports many cycles, cannot explode, and is easy to charge with constant voltage; and the device may include a resonator that uses low frequency material designed not to absorb energy by high frequency sources such as MRI and Diathermy devices.
Many of these improvements permit the device to have an extremely small footprint and power consumption, while still effectively modulating the vagus nerve.
In some variations, including those described above, the microstimulator consists of a ceramic body with hermetically sealed titanium-niobium ends and integral platinum-iridium electrodes attached. The microstimulator may be designed to fit within a POD 309, as shown in
As mentioned above, some of the device variations described herein may be used with a POD to secure the implant (e.g., the leadless/wireless microstimulator implant) in position within the cervical region of the vagus nerve so that the device may be programmed and recharged by the charger/programmer (e.g., “energizer”). For example,
In some variations, the microstimulator may have a bipolar stimulation current source that produce as stimulation dose with the characteristics shown in table 1, below. In some variation, the system may be configured to allow adjustment of the “Advanced Parameters” listed below; in some variations the parameters may be configured so that they are predetermined or pre-set. In some variations, the Advanced Parameters are not adjustable (or shown) to the clinician. All parameters listed in Table 1 are ±5% unless specified otherwise.
The Dosage Interval is defined as the time between Stimulation Doses. In some variations, to support more advanced dosing scenarios, up to four ‘programs’ can run sequentially. Each program has a start date and time and will run until the next program starts. Dosing may be suspended while the Prescription Pad is in Programming Mode. Dosing may typically continue as normal while charging. Programs may be loaded into one of four available slots and can be tested before they start running. Low, Typical, and High Dose schedules may be provided. A continuous application schedule may be available by charging every day, or at some other predetermined charging interval. For example, Table 2 illustrates exemplary properties for low, typical and high dose charging intervals:
The system may also be configured to limit the leakage and maximum and minimum charge densities, to protect the patient, as shown in Table 3:
In some variations, the system may also be configured to allow the following functions (listed in Table 4, below):
Stimulation Reminder and/or Warning Systems and Methods
In some embodiments, the therapeutic stimulation delivered by the microstimulator can be delivered manually by the patient according to a predetermined schedule, such as a stimulation every 4, 6, 8, 12, 24, or 48 hrs. In order to improve patient compliance to the stimulation delivery schedule, a patient detectable electrical stimulation, i.e. a reminder stimulation, can be automatically delivered by the microstimulator to remind or prompt a patient to apply a manual therapeutic stimulation. The patient detectable electrical stimulation can be delivered before the scheduled therapeutic stimulation by a predetermined amount of time, such as 0 seconds to 60 minutes before the scheduled therapeutic stimulation. In some embodiments, the patient detectable electrical stimulation can have an intensity or amplitude that is large enough to be detectable but is substantially less than the therapeutic stimulation. For example, the patient detectable electrical stimulation can have an amplitude that is less than the maximum stimulation below the pain or discomfort threshold stimulation (less than or equal to 0.5 mA, e.g., 0.6 mA, 0.7 mA, 0.8 mA, 0.9 mA, etc.), and a duration of about 10 seconds or less (e.g., 9 seconds, 8 seconds, 7 seconds, 6 seconds, 5 seconds, etc.). The frequency of the stimulation may be between 0.1 Hz and 1000 Hz (e.g., between 1-100 Hz, etc.).
In some variations the patient-detectable notification stimulation may be delivered using parameters that are distinct from the therapeutic stimulation parameters. For example, if, as described above, the therapeutic stimulation parameters are electrical stimulation of the vagus nerve at between about 1.0 to 5 mA, at between about 2-90 Hz (e.g., 10 Hz) for a dose period of between 30 sec and 400 sec, then the notification stimulation may be outside of any of these ranges but the same modality as the therapeutic stimulation (e.g., electrical stimulation of the vagus nerve at less than about 1.0 mA, between about 2-90 Hz, for less than 30 sec; electrical stimulation of the vagus nerve at less than about 1.0 mA, between about 2-90 Hz, for between about 1 sec and 2 min, etc.). In some variations the notification stimulation may be pulsed with these parameters at an envelope that is between about 0.01 to 2 Hz for a duration of between about 1 sec and 1 min, where the notification stimulation is applying current at the non-therapeutic range for an on time followed by an off-time, where the frequency of on-time and/or off-time is at the envelope frequency (e.g., 0.01 to 2 Hz).
In some embodiments, the reminder stimulation can be periodically resent after the scheduled therapeutic stimulation time has elapsed if the patient has not delivered the therapeutic stimulation by the scheduled time. For example, an additional reminder stimulation can be sent every 5 to 60 minutes until the patient delivers the therapeutic stimulation. In some embodiments, the patient can elect to delay, postpone or cancel the scheduled therapeutic stimulation. In some embodiments, the reminder stimulation intensity, such as the stimulation amplitude, can be increased by a predetermined amount, such as by 0.1, 0.2, or 0.3 mA up to a predetermined maximum, with each successive reminder when the patient fails to deliver the therapeutic stimulation.
In some embodiments, the reminders can be implemented in the microstimulator hardware and/or software, such as via a program stored in memory on the microstimulator. In some embodiments, the option to delay, postpone or cancel the therapeutic stimulation can be implemented on the charger, the prescription pad, or another external control device, such as a smartphone with an application for controlling the microstimulator.
If the system and method determines that the current time is not within the reminder period, the system and method loops back again to step 500 and continues to compare the current time to the treatment schedule. In some embodiments, the system and method can perform the comparison every minute, or every 5 minutes, every 10 minutes, or at some other interval of time. If the system and method determines that the current time is within the reminder period, then it proceeds to step 504 to generate a patient detectable stimulation to remind the patient to deliver the therapeutic stimulation.
Next, in step 506, the system and method waits a predetermined period of time and in step 508 checks whether the patient has delivered the therapeutic stimulation during this predetermined period of time. If the system and method determines that the patient has not delivered the therapeutic stimulation, it loops back to step 504 to generate another patient detectable stimulation to remind the patient again to deliver the therapeutic stimulation. If the system and method determines that the patient has delivered the therapeutic stimulation, it loops back to step 500 to compare the current time to the treatment schedule to determine whether the current time is within the next reminder period.
In some embodiments, such as a VNS system that automatically delivers the VNS according to a predetermined schedule or in accordance with a stimulation algorithm, the stimulator can deliver a warning stimulation before the therapeutic stimulation is delivered automatically by the stimulator. A warning stimulation is useful in this situation because electrical stimulation of the vagus nerve can result in various side effects, such as affecting the ability to speak, altering the patient's voice, and the like. For example, providing the warning allows the patient to excuse himself or delay the scheduled stimulation if those side effects would be inconvenient at the time.
Next, in step 606, the system and method determines whether the patient has elected to delay therapeutic stimulation. The patient can delay stimulation by, for example, selecting and/or imputing a command in a control device, such as a neck charger, a prescription pad, a mobile device, and the like that can communicate with the stimulation device. If the patient elects to delay the delivery of the therapeutic stimulation, then in step 610 the delivery of the therapeutic stimulation can be delayed by a predetermined amount of time. In some embodiments, the predetermined period of time can be about 1 to 120 minutes, or about 5 to 60 minutes. In some embodiments the predetermined period of time can be adjusted by the patient and/or health care provider. If the patient does not elect to delay the delivery of the therapeutic stimulation, then in step 608 the therapeutic stimulation is delivered to the patient and the system and method loops back to step 600 to again compare the current time to the treatment schedule to determine whether the current time is within the next warning period.
Although the patient detectable stimulations have been described as electrical stimulations, in some embodiments the patient detectable stimulation can be or include other types of stimuli, such as an audible sound, a vibration, a text message, an email, and/or a visual indicator. These other or addition stimuli can be implemented in some cases in the neurostimulator and in other cases on other devices such as a prescription pad, a wearable device on, for example, the wrist, a smartphone, and/or the charger. The alternative stimuli can be used instead of the electrical stimulation, or can be used in conjunction with the electrical stimulation, and can be used in any combination, which can be selected and modified by the patient and/or health care provider.
It is understood that this disclosure, in many respects, is only illustrative of the numerous alternative device embodiments of the present invention. Changes may be made in the details, particularly in matters of shape, size, material and arrangement of various device components without exceeding the scope of the various embodiments of the invention. Those skilled in the art will appreciate that the exemplary embodiments and descriptions thereof are merely illustrative of the invention as a whole. While several principles of the invention are made clear in the exemplary embodiments described above, those skilled in the art will appreciate that modifications of the structure, arrangement, proportions, elements, materials and methods of use, may be utilized in the practice of the invention, and otherwise, which are particularly adapted to specific environments and operative requirements without departing from the scope of the invention. In addition, while certain features and elements have been described in connection with particular embodiments, those skilled in the art will appreciate that those features and elements can be combined with the other embodiments disclosed herein.
This application claims priority to U.S. Provisional Application No. 62/111,587, filed Feb. 3, 2015, titled “APPARATUS AND METHOD FOR REMINDING, PROMPTING, OR ALERTING A PATIENT WITH AN IMPLANTED STIMULATOR,” which is herein incorporated by reference in its entirety. Some variations of the methods and apparatuses described in this patent application may be related to the following pending U.S. patent applications: U.S. patent application Ser. No. 12/620,413, filed on Nov. 17, 2009, titled “DEVICES AND METHODS FOR OPTIMIZING ELECTRODE PLACEMENT FOR ANTI-INFLAMATORY STIMULATION,” now U.S. Pat. No. 8,412,338; U.S. patent application Ser. No. 12/874,171, filed on Sep. 1, 2010, titled “PRESCRIPTION PAD FOR TREATMENT OF INFLAMMATORY DISORDERS,” Publication No. US-2011-0054569-A1; U.S. patent application Ser. No. 12/917,197, filed on Nov. 1, 2010, titled “MODULATION OF THE CHOLINERGIC ANTI-INFLAMMATORY PATHWAY TO TREAT PAIN OR ADDICTION,” Publication No. US-2011-0106208-A1; U.S. patent application Ser. No. 12/978,250, filed on Dec. 23, 2010, titled “NEURAL STIMULATION DEVICES AND SYSTEMS FOR TREATMENT OF CHRONIC INFLAMMATION,” now U.S. Pat. No. 8,612,002; U.S. patent application Ser. No. 12/797,452, filed on Jun. 9, 2010, titled “NERVE CUFF WITH POCKET FOR LEADLESS STIMULATOR,” now U.S. Pat. No. 8,886,339; U.S. patent application Ser. No. 13/467,928, filed on May 9, 2012, titled “SINGLE-PULSE ACTIVATION OF THE CHOLINERGIC ANTI-INFLAMMATORY PATHWAY TO TREAT CHRONIC INFLAMMATION,” now U.S. Pat. No. 8,788,034; and U.S. patent application Ser. No. 13/338,185, filed on Dec. 27, 2011, titled “MODULATION OF SIRTUINS BY VAGUS NERVE STIMULATION,” Publication No. US-2013-0079834-A1. Each of these patent applications is herein incorporated by reference in its entirety. Some variations of the methods and apparatuses described in this patent application may be related to the following pending PCT application: International Application No. PCT/US2014/033690, filed Apr. 10, 2014, titled “CLOSED-LOOP VAGUS NERVE STIMULATION,” Publication No. WO 2014/169145, which is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/016346 | 2/3/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/126807 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2164121 | Pescador | Jun 1939 | A |
3363623 | Atwell | Jan 1968 | A |
3631534 | Hirota et al. | Dec 1971 | A |
4073296 | McCall | Feb 1978 | A |
4098277 | Mendell | Jul 1978 | A |
4305402 | Katims | Dec 1981 | A |
4503863 | Katims | Mar 1985 | A |
4573481 | Bullara | Mar 1986 | A |
4590946 | Loeb | May 1986 | A |
4632095 | Libin | Dec 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4702254 | Zabara | Oct 1987 | A |
4840793 | Todd, III et al. | Jun 1989 | A |
4867164 | Zabara | Sep 1989 | A |
4929734 | Coughenour et al. | May 1990 | A |
4930516 | Alfano et al. | Jun 1990 | A |
4935234 | Todd, III et al. | Jun 1990 | A |
4979511 | Terry, Jr. | Dec 1990 | A |
4991578 | Cohen | Feb 1991 | A |
5019648 | Schlossman et al. | May 1991 | A |
5025807 | Zabara | Jun 1991 | A |
5038781 | Lynch | Aug 1991 | A |
5049659 | Cantor et al. | Sep 1991 | A |
5073560 | Wu et al. | Dec 1991 | A |
5106853 | Showell et al. | Apr 1992 | A |
5111815 | Mower | May 1992 | A |
5154172 | Terry, Jr. et al. | Oct 1992 | A |
5175166 | Dunbar et al. | Dec 1992 | A |
5179950 | Stanislaw | Jan 1993 | A |
5186170 | Varrichio et al. | Feb 1993 | A |
5188104 | Wernicke et al. | Feb 1993 | A |
5203326 | Collins | Apr 1993 | A |
5205285 | Baker, Jr. | Apr 1993 | A |
5215086 | Terry, Jr. et al. | Jun 1993 | A |
5215089 | Baker, Jr. | Jun 1993 | A |
5222494 | Baker, Jr. | Jun 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5235980 | Varrichio et al. | Aug 1993 | A |
5237991 | Baker et al. | Aug 1993 | A |
5251634 | Weinberg | Oct 1993 | A |
5263480 | Wernicke et al. | Nov 1993 | A |
5269303 | Wernicke et al. | Dec 1993 | A |
5299569 | Wernicke et al. | Apr 1994 | A |
5304206 | Baker, Jr. et al. | Apr 1994 | A |
5330507 | Schwartz | Jul 1994 | A |
5330515 | Rutecki et al. | Jul 1994 | A |
5335657 | Terry, Jr. et al. | Aug 1994 | A |
5344438 | Testerman et al. | Sep 1994 | A |
5351394 | Weinberg | Oct 1994 | A |
5403845 | Dunbar et al. | Apr 1995 | A |
5458625 | Kendall | Oct 1995 | A |
5472841 | Jayasena et al. | Dec 1995 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5496938 | Gold et al. | Mar 1996 | A |
5503978 | Schneider et al. | Apr 1996 | A |
5531778 | Maschino et al. | Jul 1996 | A |
5540730 | Terry, Jr. et al. | Jul 1996 | A |
5540734 | Zabara | Jul 1996 | A |
5567588 | Gold et al. | Oct 1996 | A |
5567724 | Kelleher et al. | Oct 1996 | A |
5571150 | Wernicke et al. | Nov 1996 | A |
5580737 | Polisky et al. | Dec 1996 | A |
5582981 | Toole et al. | Dec 1996 | A |
5604231 | Smith et al. | Feb 1997 | A |
5607459 | Paul et al. | Mar 1997 | A |
5611350 | John | Mar 1997 | A |
5618818 | Ojo et al. | Apr 1997 | A |
5629285 | Black et al. | May 1997 | A |
5637459 | Burke et al. | Jun 1997 | A |
5651378 | Matheny et al. | Jul 1997 | A |
5654151 | Allen et al. | Aug 1997 | A |
5683867 | Biesecker et al. | Nov 1997 | A |
5690681 | Geddes et al. | Nov 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5705337 | Gold et al. | Jan 1998 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709853 | Iino et al. | Jan 1998 | A |
5712375 | Jensen et al. | Jan 1998 | A |
5718912 | Thompson et al. | Feb 1998 | A |
5726017 | Lochrie et al. | Mar 1998 | A |
5726179 | Messer, Jr. et al. | Mar 1998 | A |
5727556 | Weth et al. | Mar 1998 | A |
5733255 | Dinh et al. | Mar 1998 | A |
5741802 | Kem et al. | Apr 1998 | A |
5773598 | Burke et al. | Jun 1998 | A |
5786462 | Schneider et al. | Jul 1998 | A |
5788656 | Mino | Aug 1998 | A |
5792210 | Wamubu et al. | Aug 1998 | A |
5824027 | Hoffer et al. | Oct 1998 | A |
5853005 | Scanlon | Dec 1998 | A |
5854289 | Bianchi et al. | Dec 1998 | A |
5902814 | Gordon et al. | May 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5916239 | Geddes et al. | Jun 1999 | A |
5919216 | Houben et al. | Jul 1999 | A |
5928272 | Adkins et al. | Jul 1999 | A |
5964794 | Bolz et al. | Oct 1999 | A |
5977144 | Meyer et al. | Nov 1999 | A |
5994330 | El Khoury | Nov 1999 | A |
6002964 | Feler et al. | Dec 1999 | A |
6006134 | Hill et al. | Dec 1999 | A |
6017891 | Eibl et al. | Jan 2000 | A |
6028186 | Tasset et al. | Feb 2000 | A |
6051017 | Loeb et al. | Apr 2000 | A |
6083696 | Biesecker et al. | Jul 2000 | A |
6083905 | Voorberg et al. | Jul 2000 | A |
6096728 | Collins et al. | Aug 2000 | A |
6104956 | Naritoku et al. | Aug 2000 | A |
6110900 | Gold et al. | Aug 2000 | A |
6110914 | Phillips et al. | Aug 2000 | A |
6117837 | Tracey et al. | Sep 2000 | A |
6124449 | Gold et al. | Sep 2000 | A |
6127119 | Stephens et al. | Oct 2000 | A |
6140490 | Biesecker et al. | Oct 2000 | A |
6141590 | Renirie et al. | Oct 2000 | A |
6147204 | Gold et al. | Nov 2000 | A |
6159145 | Satoh | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6166048 | Bencherif | Dec 2000 | A |
6168778 | Janjic et al. | Jan 2001 | B1 |
6171795 | Korman et al. | Jan 2001 | B1 |
6205359 | Boveja | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6208902 | Boveja | Mar 2001 | B1 |
6210321 | Di Mino et al. | Apr 2001 | B1 |
6224862 | Turecek et al. | May 2001 | B1 |
6233488 | Hess | May 2001 | B1 |
6266564 | Hill et al. | Jul 2001 | B1 |
6269270 | Boveja | Jul 2001 | B1 |
6304775 | Iasemidis et al. | Oct 2001 | B1 |
6308104 | Taylor et al. | Oct 2001 | B1 |
6337997 | Rise | Jan 2002 | B1 |
6339725 | Naritoku et al. | Jan 2002 | B1 |
6341236 | Osorio et al. | Jan 2002 | B1 |
6356787 | Rezai et al. | Mar 2002 | B1 |
6356788 | Boveja | Mar 2002 | B2 |
6381499 | Taylor et al. | Apr 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6407095 | Lochead et al. | Jun 2002 | B1 |
6428484 | Battmer et al. | Aug 2002 | B1 |
6429217 | Puskas | Aug 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6449507 | Hill et al. | Sep 2002 | B1 |
6473644 | Terry, Jr. et al. | Oct 2002 | B1 |
6479523 | Puskas | Nov 2002 | B1 |
6487446 | Hill et al. | Nov 2002 | B1 |
6511500 | Rahme | Jan 2003 | B1 |
6528529 | Brann et al. | Mar 2003 | B1 |
6532388 | Hill et al. | Mar 2003 | B1 |
6542774 | Hill et al. | Apr 2003 | B2 |
6556868 | Naritoku et al. | Apr 2003 | B2 |
6564102 | Boveja | May 2003 | B1 |
6587719 | Barrett et al. | Jul 2003 | B1 |
6587727 | Osorio et al. | Jul 2003 | B2 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6602891 | Messer et al. | Aug 2003 | B2 |
6609025 | Barrett et al. | Aug 2003 | B2 |
6610713 | Tracey | Aug 2003 | B2 |
6611715 | Boveja | Aug 2003 | B1 |
6615081 | Boveja | Sep 2003 | B1 |
6615085 | Boveja | Sep 2003 | B1 |
6622038 | Barrett et al. | Sep 2003 | B2 |
6622041 | Terry, Jr. et al. | Sep 2003 | B2 |
6622047 | Barrett et al. | Sep 2003 | B2 |
6628987 | Hill et al. | Sep 2003 | B1 |
6633779 | Schuler et al. | Oct 2003 | B1 |
6656960 | Puskas | Dec 2003 | B2 |
6668191 | Boveja | Dec 2003 | B1 |
6671556 | Osorio et al. | Dec 2003 | B2 |
6684105 | Cohen et al. | Jan 2004 | B2 |
6690973 | Hill et al. | Feb 2004 | B2 |
6718208 | Hill et al. | Apr 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6735471 | Hill et al. | May 2004 | B2 |
6735475 | Whitehurst et al. | May 2004 | B1 |
6760626 | Boveja | Jul 2004 | B1 |
6778854 | Puskas | Aug 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
RE38654 | Hill et al. | Nov 2004 | E |
6826428 | Chen et al. | Nov 2004 | B1 |
6832114 | Whitehurst et al. | Dec 2004 | B1 |
6838471 | Tracey | Jan 2005 | B2 |
RE38705 | Hill et al. | Feb 2005 | E |
6879859 | Boveja | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6901294 | Whitehurst et al. | May 2005 | B1 |
6904318 | Hill et al. | Jun 2005 | B2 |
6920357 | Osorio et al. | Jul 2005 | B2 |
6928320 | King | Aug 2005 | B2 |
6934583 | Weinberg et al. | Aug 2005 | B2 |
6937903 | Schuler et al. | Aug 2005 | B2 |
6961618 | Osorio et al. | Nov 2005 | B2 |
6978787 | Broniatowski | Dec 2005 | B1 |
7011638 | Schuler et al. | Mar 2006 | B2 |
7054686 | MacDonald | May 2006 | B2 |
7054692 | Whitehurst et al. | May 2006 | B1 |
7058447 | Hill et al. | Jun 2006 | B2 |
7062320 | Ehlinger, Jr. | Jun 2006 | B2 |
7069082 | Lindenthaler | Jun 2006 | B2 |
7072720 | Puskas | Jul 2006 | B2 |
7076307 | Boveja et al. | Jul 2006 | B2 |
7142910 | Puskas | Nov 2006 | B2 |
7142917 | Fukui | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7155279 | Whitehurst et al. | Dec 2006 | B2 |
7155284 | Whitehurst et al. | Dec 2006 | B1 |
7167750 | Knudson et al. | Jan 2007 | B2 |
7167751 | Whitehurst et al. | Jan 2007 | B1 |
7174218 | Kuzma | Feb 2007 | B1 |
7184828 | Hill et al. | Feb 2007 | B2 |
7184829 | Hill et al. | Feb 2007 | B2 |
7191012 | Boveja et al. | Mar 2007 | B2 |
7204815 | Connor | Apr 2007 | B2 |
7209787 | DiLorenzo | Apr 2007 | B2 |
7225019 | Jahns et al. | May 2007 | B2 |
7228167 | Kara et al. | Jun 2007 | B2 |
7238715 | Tracey et al. | Jul 2007 | B2 |
7242984 | DiLorenzo | Jul 2007 | B2 |
7269457 | Shafer et al. | Sep 2007 | B2 |
7345178 | Nunes et al. | Mar 2008 | B2 |
7373204 | Gelfand | May 2008 | B2 |
7389145 | Kilgore et al. | Jun 2008 | B2 |
7454245 | Armstrong et al. | Nov 2008 | B2 |
7467016 | Colborn | Dec 2008 | B2 |
7544497 | Sinclair et al. | Jun 2009 | B2 |
7561918 | Armstrong et al. | Jul 2009 | B2 |
7711432 | Thimineur et al. | May 2010 | B2 |
7729760 | Patel et al. | Jun 2010 | B2 |
7751891 | Armstrong et al. | Jul 2010 | B2 |
7776326 | Milbrandt et al. | Aug 2010 | B2 |
7797058 | Mrva et al. | Sep 2010 | B2 |
7819883 | Westlund et al. | Oct 2010 | B2 |
7822486 | Foster et al. | Oct 2010 | B2 |
7829556 | Bemis et al. | Nov 2010 | B2 |
7869885 | Begnaud et al. | Jan 2011 | B2 |
7937145 | Dobak | May 2011 | B2 |
7962220 | Kolafa et al. | Jun 2011 | B2 |
7974701 | Armstrong | Jul 2011 | B2 |
7974707 | Inman | Jul 2011 | B2 |
7996088 | Marrosu et al. | Aug 2011 | B2 |
7996092 | Mrva et al. | Aug 2011 | B2 |
8019419 | Panescu et al. | Sep 2011 | B1 |
8060208 | Kilgore et al. | Nov 2011 | B2 |
8103349 | Donders et al. | Jan 2012 | B2 |
8165668 | Dacey, Jr. et al. | Apr 2012 | B2 |
8180446 | Dacey, Jr. et al. | May 2012 | B2 |
8180447 | Dacey et al. | May 2012 | B2 |
8195287 | Dacey, Jr. et al. | Jun 2012 | B2 |
8214056 | Hoffer et al. | Jul 2012 | B2 |
8233982 | Libbus | Jul 2012 | B2 |
8391970 | Tracey et al. | Mar 2013 | B2 |
8412338 | Faltys | Apr 2013 | B2 |
8571654 | Libbus et al. | Oct 2013 | B2 |
8577458 | Libbus et al. | Nov 2013 | B1 |
8600505 | Libbus et al. | Dec 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8630709 | Libbus et al. | Jan 2014 | B2 |
8688212 | Libbus et al. | Apr 2014 | B2 |
8700150 | Libbus et al. | Apr 2014 | B2 |
8729129 | Tracey et al. | May 2014 | B2 |
8788034 | Levine et al. | Jul 2014 | B2 |
8843210 | Simon et al. | Sep 2014 | B2 |
8855767 | Faltys et al. | Oct 2014 | B2 |
8886339 | Faltys et al. | Nov 2014 | B2 |
8914114 | Tracey et al. | Dec 2014 | B2 |
8918178 | Simon et al. | Dec 2014 | B2 |
8918191 | Libbus et al. | Dec 2014 | B2 |
8923964 | Libbus et al. | Dec 2014 | B2 |
8983628 | Simon et al. | Mar 2015 | B2 |
8983629 | Simon et al. | Mar 2015 | B2 |
8996116 | Faltys et al. | Mar 2015 | B2 |
9114262 | Libbus et al. | Aug 2015 | B2 |
9162064 | Faltys et al. | Oct 2015 | B2 |
9174041 | Faltys et al. | Nov 2015 | B2 |
9211409 | Tracey et al. | Dec 2015 | B2 |
9211410 | Levine et al. | Dec 2015 | B2 |
9254383 | Simon et al. | Feb 2016 | B2 |
9272143 | Libbus et al. | Mar 2016 | B2 |
9358381 | Simon et al. | Jun 2016 | B2 |
9399134 | Simon et al. | Jul 2016 | B2 |
9403001 | Simon et al. | Aug 2016 | B2 |
9409024 | KenKnight et al. | Aug 2016 | B2 |
9415224 | Libbus et al. | Aug 2016 | B2 |
9452290 | Libbus et al. | Sep 2016 | B2 |
9504832 | Libbus et al. | Nov 2016 | B2 |
9511228 | Amurthur et al. | Dec 2016 | B2 |
9533153 | Libbus et al. | Jan 2017 | B2 |
9572983 | Levine et al. | Feb 2017 | B2 |
9662490 | Tracey et al. | May 2017 | B2 |
9700716 | Faltys et al. | Jul 2017 | B2 |
20010002441 | Boveja | May 2001 | A1 |
20010034542 | Mann | Oct 2001 | A1 |
20020026141 | Houben et al. | Feb 2002 | A1 |
20020040035 | Myers et al. | Apr 2002 | A1 |
20020077675 | Greenstein | Jun 2002 | A1 |
20020086871 | O'Neill et al. | Jul 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020099417 | Naritoku et al. | Jul 2002 | A1 |
20020138075 | Edwards et al. | Sep 2002 | A1 |
20020138109 | Keogh et al. | Sep 2002 | A1 |
20020193859 | Schulman et al. | Dec 2002 | A1 |
20020198570 | Puskas | Dec 2002 | A1 |
20030018367 | DiLorenzo | Jan 2003 | A1 |
20030032852 | Perreault et al. | Feb 2003 | A1 |
20030045909 | Gross et al. | Mar 2003 | A1 |
20030088301 | King | May 2003 | A1 |
20030191404 | Klein | Oct 2003 | A1 |
20030194752 | Anderson et al. | Oct 2003 | A1 |
20030195578 | Perron et al. | Oct 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20030229380 | Adams et al. | Dec 2003 | A1 |
20030236557 | Whitehurst et al. | Dec 2003 | A1 |
20030236558 | Whitehurst et al. | Dec 2003 | A1 |
20040002546 | Altschuler | Jan 2004 | A1 |
20040015202 | Chandler et al. | Jan 2004 | A1 |
20040015204 | Whitehurst | Jan 2004 | A1 |
20040015205 | Whitehurst et al. | Jan 2004 | A1 |
20040024422 | Hill et al. | Feb 2004 | A1 |
20040024428 | Barrett et al. | Feb 2004 | A1 |
20040024439 | Riso | Feb 2004 | A1 |
20040030362 | Hill et al. | Feb 2004 | A1 |
20040039427 | Barrett et al. | Feb 2004 | A1 |
20040048795 | Ivanova et al. | Mar 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040049240 | Gerber et al. | Mar 2004 | A1 |
20040059383 | Puskas | Mar 2004 | A1 |
20040111139 | McCreery et al. | Jun 2004 | A1 |
20040138517 | Osorio et al. | Jul 2004 | A1 |
20040138518 | Rise et al. | Jul 2004 | A1 |
20040138536 | Frei et al. | Jul 2004 | A1 |
20040146949 | Tan et al. | Jul 2004 | A1 |
20040153127 | Gordon et al. | Aug 2004 | A1 |
20040158119 | Osorio et al. | Aug 2004 | A1 |
20040162584 | Hill et al. | Aug 2004 | A1 |
20040172074 | Yoshihito | Sep 2004 | A1 |
20040172085 | Knudson et al. | Sep 2004 | A1 |
20040172086 | Knudson et al. | Sep 2004 | A1 |
20040172088 | Knudson et al. | Sep 2004 | A1 |
20040172094 | Cohen et al. | Sep 2004 | A1 |
20040176812 | Knudson et al. | Sep 2004 | A1 |
20040178706 | D'Orso | Sep 2004 | A1 |
20040193231 | David et al. | Sep 2004 | A1 |
20040199209 | Hill et al. | Oct 2004 | A1 |
20040199210 | Shelchuk | Oct 2004 | A1 |
20040204355 | Tracey et al. | Oct 2004 | A1 |
20040215272 | Haubrich et al. | Oct 2004 | A1 |
20040215287 | Swoyer et al. | Oct 2004 | A1 |
20040236381 | Dinsmoor et al. | Nov 2004 | A1 |
20040236382 | Dinsmoor et al. | Nov 2004 | A1 |
20040240691 | Grafenberg | Dec 2004 | A1 |
20040243182 | Cohen et al. | Dec 2004 | A1 |
20040254612 | Ezra et al. | Dec 2004 | A1 |
20040267152 | Pineda | Dec 2004 | A1 |
20050004621 | Boveja | Jan 2005 | A1 |
20050021092 | Yun et al. | Jan 2005 | A1 |
20050021101 | Chen et al. | Jan 2005 | A1 |
20050027328 | Greenstein | Feb 2005 | A1 |
20050043774 | Devlin et al. | Feb 2005 | A1 |
20050049655 | Boveja et al. | Mar 2005 | A1 |
20050065553 | Ben Ezra et al. | Mar 2005 | A1 |
20050065573 | Rezai | Mar 2005 | A1 |
20050065575 | Dobak | Mar 2005 | A1 |
20050070970 | Knudson et al. | Mar 2005 | A1 |
20050070974 | Knudson et al. | Mar 2005 | A1 |
20050075701 | Shafer | Apr 2005 | A1 |
20050075702 | Shafer | Apr 2005 | A1 |
20050095246 | Shafer | May 2005 | A1 |
20050096707 | Hill et al. | May 2005 | A1 |
20050103351 | Stomberg et al. | May 2005 | A1 |
20050113894 | Zilberman et al. | May 2005 | A1 |
20050131467 | Boveja | Jun 2005 | A1 |
20050131486 | Boveja et al. | Jun 2005 | A1 |
20050131487 | Boveja | Jun 2005 | A1 |
20050131493 | Boveja et al. | Jun 2005 | A1 |
20050137644 | Boveja et al. | Jun 2005 | A1 |
20050137645 | Voipio et al. | Jun 2005 | A1 |
20050143781 | Carbunaru et al. | Jun 2005 | A1 |
20050143787 | Boveja et al. | Jun 2005 | A1 |
20050149126 | Libbus | Jul 2005 | A1 |
20050149129 | Libbus et al. | Jul 2005 | A1 |
20050149131 | Libbus et al. | Jul 2005 | A1 |
20050153885 | Yun et al. | Jul 2005 | A1 |
20050154425 | Boveja et al. | Jul 2005 | A1 |
20050154426 | Boveja et al. | Jul 2005 | A1 |
20050165458 | Boveja et al. | Jul 2005 | A1 |
20050177200 | George et al. | Aug 2005 | A1 |
20050182288 | Zabara | Aug 2005 | A1 |
20050182467 | Hunter et al. | Aug 2005 | A1 |
20050187584 | Denker et al. | Aug 2005 | A1 |
20050187586 | David et al. | Aug 2005 | A1 |
20050187590 | Boveja et al. | Aug 2005 | A1 |
20050191661 | Gatanaga et al. | Sep 2005 | A1 |
20050192644 | Boveja et al. | Sep 2005 | A1 |
20050197600 | Schuler et al. | Sep 2005 | A1 |
20050197675 | David et al. | Sep 2005 | A1 |
20050197678 | Boveja et al. | Sep 2005 | A1 |
20050203501 | Aldrich et al. | Sep 2005 | A1 |
20050209654 | Boveja et al. | Sep 2005 | A1 |
20050216064 | Heruth et al. | Sep 2005 | A1 |
20050216070 | Boveja et al. | Sep 2005 | A1 |
20050216071 | Devlin et al. | Sep 2005 | A1 |
20050240229 | Whitehurst et al. | Oct 2005 | A1 |
20050240231 | Aldrich et al. | Oct 2005 | A1 |
20050240241 | Yun et al. | Oct 2005 | A1 |
20050240242 | DiLorenzo | Oct 2005 | A1 |
20050251220 | Barrett et al. | Nov 2005 | A1 |
20050251222 | Barrett et al. | Nov 2005 | A1 |
20050267542 | David et al. | Dec 2005 | A1 |
20050267547 | Knudson et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050283198 | Haubrich et al. | Dec 2005 | A1 |
20060009815 | Boveja et al. | Jan 2006 | A1 |
20060015151 | Aldrich | Jan 2006 | A1 |
20060025828 | Armstrong et al. | Feb 2006 | A1 |
20060036293 | Whitehurst et al. | Feb 2006 | A1 |
20060052657 | Zabara | Mar 2006 | A9 |
20060052831 | Fukui | Mar 2006 | A1 |
20060052836 | Kim et al. | Mar 2006 | A1 |
20060058851 | Cigaina | Mar 2006 | A1 |
20060064137 | Stone | Mar 2006 | A1 |
20060064139 | Chung et al. | Mar 2006 | A1 |
20060074450 | Boveja et al. | Apr 2006 | A1 |
20060074473 | Gertner | Apr 2006 | A1 |
20060079936 | Boveja et al. | Apr 2006 | A1 |
20060085046 | Rezai et al. | Apr 2006 | A1 |
20060095081 | Zhou et al. | May 2006 | A1 |
20060095090 | De Ridder | May 2006 | A1 |
20060100668 | Ben-David et al. | May 2006 | A1 |
20060106755 | Stuhec | May 2006 | A1 |
20060111644 | Guttag et al. | May 2006 | A1 |
20060111754 | Rezai et al. | May 2006 | A1 |
20060111755 | Stone et al. | May 2006 | A1 |
20060116739 | Betser et al. | Jun 2006 | A1 |
20060122675 | Libbus et al. | Jun 2006 | A1 |
20060129200 | Kurokawa | Jun 2006 | A1 |
20060129202 | Armstrong | Jun 2006 | A1 |
20060135998 | Libbus et al. | Jun 2006 | A1 |
20060136024 | Cohen et al. | Jun 2006 | A1 |
20060142802 | Armstrong | Jun 2006 | A1 |
20060142822 | Tulgar | Jun 2006 | A1 |
20060149337 | John | Jul 2006 | A1 |
20060155495 | Osorio et al. | Jul 2006 | A1 |
20060161216 | John et al. | Jul 2006 | A1 |
20060161217 | Jaax et al. | Jul 2006 | A1 |
20060167497 | Armstrong et al. | Jul 2006 | A1 |
20060167498 | DiLorenzo | Jul 2006 | A1 |
20060167501 | Ben-David et al. | Jul 2006 | A1 |
20060173493 | Armstrong et al. | Aug 2006 | A1 |
20060173508 | Stone et al. | Aug 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060178703 | Huston et al. | Aug 2006 | A1 |
20060178706 | Lisogurski et al. | Aug 2006 | A1 |
20060190044 | Libbus et al. | Aug 2006 | A1 |
20060200208 | Terry, Jr. et al. | Sep 2006 | A1 |
20060200219 | Thrope et al. | Sep 2006 | A1 |
20060206155 | Ben-David et al. | Sep 2006 | A1 |
20060206158 | Wu et al. | Sep 2006 | A1 |
20060229677 | Moffitt et al. | Oct 2006 | A1 |
20060229681 | Fischell | Oct 2006 | A1 |
20060241697 | Libbus | Oct 2006 | A1 |
20060241699 | Libbus et al. | Oct 2006 | A1 |
20060247719 | Maschino et al. | Nov 2006 | A1 |
20060247721 | Maschino et al. | Nov 2006 | A1 |
20060247722 | Maschino et al. | Nov 2006 | A1 |
20060259077 | Pardo et al. | Nov 2006 | A1 |
20060259084 | Zhang et al. | Nov 2006 | A1 |
20060259085 | Zhang et al. | Nov 2006 | A1 |
20060259107 | Caparso et al. | Nov 2006 | A1 |
20060271115 | Ben-Ezra et al. | Nov 2006 | A1 |
20060282121 | Payne et al. | Dec 2006 | A1 |
20060282131 | Caparso et al. | Dec 2006 | A1 |
20060282145 | Caparso et al. | Dec 2006 | A1 |
20060287678 | Shafer | Dec 2006 | A1 |
20060287679 | Stone | Dec 2006 | A1 |
20060292099 | Milburn et al. | Dec 2006 | A1 |
20060293720 | DiLorenzo | Dec 2006 | A1 |
20060293721 | Tarver et al. | Dec 2006 | A1 |
20060293723 | Whitehurst et al. | Dec 2006 | A1 |
20070016262 | Gross et al. | Jan 2007 | A1 |
20070016263 | Armstrong et al. | Jan 2007 | A1 |
20070021785 | Inman et al. | Jan 2007 | A1 |
20070021786 | Parnis et al. | Jan 2007 | A1 |
20070021814 | Inman et al. | Jan 2007 | A1 |
20070025608 | Armstrong | Feb 2007 | A1 |
20070027482 | Parnis et al. | Feb 2007 | A1 |
20070027483 | Maschino et al. | Feb 2007 | A1 |
20070027484 | Guzman et al. | Feb 2007 | A1 |
20070027486 | Armstrong | Feb 2007 | A1 |
20070027492 | Maschino et al. | Feb 2007 | A1 |
20070027496 | Parnis et al. | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070027498 | Maschino et al. | Feb 2007 | A1 |
20070027499 | Maschino et al. | Feb 2007 | A1 |
20070027500 | Maschino et al. | Feb 2007 | A1 |
20070027504 | Barrett et al. | Feb 2007 | A1 |
20070055324 | Thompson et al. | Mar 2007 | A1 |
20070067004 | Boveja et al. | Mar 2007 | A1 |
20070083242 | Mazgalev et al. | Apr 2007 | A1 |
20070093434 | Rossetti et al. | Apr 2007 | A1 |
20070093870 | Maschino | Apr 2007 | A1 |
20070093875 | Chavan et al. | Apr 2007 | A1 |
20070100263 | Merfeld | May 2007 | A1 |
20070100377 | Armstrong et al. | May 2007 | A1 |
20070100378 | Maschino | May 2007 | A1 |
20070100380 | Fukui | May 2007 | A1 |
20070100392 | Maschino et al. | May 2007 | A1 |
20070106339 | Errico et al. | May 2007 | A1 |
20070112404 | Mann et al. | May 2007 | A1 |
20070118177 | Libbus et al. | May 2007 | A1 |
20070118178 | Fukui | May 2007 | A1 |
20070129767 | Wahlstrand | Jun 2007 | A1 |
20070129780 | Whitehurst et al. | Jun 2007 | A1 |
20070135846 | Knudson et al. | Jun 2007 | A1 |
20070135856 | Knudson et al. | Jun 2007 | A1 |
20070135857 | Knudson et al. | Jun 2007 | A1 |
20070135858 | Knudson et al. | Jun 2007 | A1 |
20070142870 | Knudson et al. | Jun 2007 | A1 |
20070142871 | Libbus et al. | Jun 2007 | A1 |
20070142874 | John | Jun 2007 | A1 |
20070150006 | Libbus et al. | Jun 2007 | A1 |
20070150011 | Meyer et al. | Jun 2007 | A1 |
20070150021 | Chen et al. | Jun 2007 | A1 |
20070150027 | Rogers | Jun 2007 | A1 |
20070156180 | Jaax et al. | Jul 2007 | A1 |
20070198063 | Hunter et al. | Aug 2007 | A1 |
20070239243 | Moffitt et al. | Oct 2007 | A1 |
20070244522 | Overstreet | Oct 2007 | A1 |
20070250145 | Kraus et al. | Oct 2007 | A1 |
20070255320 | Inman et al. | Nov 2007 | A1 |
20070255333 | Giftakis | Nov 2007 | A1 |
20070255339 | Torgerson | Nov 2007 | A1 |
20080021517 | Dietrich | Jan 2008 | A1 |
20080021520 | Dietrich | Jan 2008 | A1 |
20080046055 | Durand et al. | Feb 2008 | A1 |
20080051852 | Dietrich et al. | Feb 2008 | A1 |
20080058871 | Libbus et al. | Mar 2008 | A1 |
20080103407 | Bolea et al. | May 2008 | A1 |
20080140138 | Ivanova et al. | Jun 2008 | A1 |
20080183226 | Buras et al. | Jul 2008 | A1 |
20080183246 | Patel et al. | Jul 2008 | A1 |
20080195171 | Sharma | Aug 2008 | A1 |
20080208266 | Lesser et al. | Aug 2008 | A1 |
20080213331 | Gelfand et al. | Sep 2008 | A1 |
20080234790 | Bayer et al. | Sep 2008 | A1 |
20080281365 | Tweden et al. | Nov 2008 | A1 |
20080281372 | Libbus et al. | Nov 2008 | A1 |
20090012590 | Inman et al. | Jan 2009 | A1 |
20090048194 | Aerssens et al. | Feb 2009 | A1 |
20090082832 | Carbunaru et al. | Mar 2009 | A1 |
20090088821 | Abrahamson | Apr 2009 | A1 |
20090105782 | Mickle et al. | Apr 2009 | A1 |
20090112291 | Wahlstrand et al. | Apr 2009 | A1 |
20090123521 | Weber et al. | May 2009 | A1 |
20090125079 | Armstrong et al. | May 2009 | A1 |
20090143831 | Huston et al. | Jun 2009 | A1 |
20090171405 | Craig | Jul 2009 | A1 |
20090177112 | Gharib et al. | Jul 2009 | A1 |
20090187231 | Errico et al. | Jul 2009 | A1 |
20090210942 | Kowalczewski | Aug 2009 | A1 |
20090248097 | Tracey et al. | Oct 2009 | A1 |
20090254143 | Tweden et al. | Oct 2009 | A1 |
20090275997 | Faltys et al. | Nov 2009 | A1 |
20090276019 | Perez et al. | Nov 2009 | A1 |
20090281593 | Errico et al. | Nov 2009 | A9 |
20090312817 | Hogle et al. | Dec 2009 | A1 |
20100003656 | Kilgard et al. | Jan 2010 | A1 |
20100010556 | Zhao et al. | Jan 2010 | A1 |
20100010571 | Skelton et al. | Jan 2010 | A1 |
20100010581 | Goetz et al. | Jan 2010 | A1 |
20100010603 | Ben-David et al. | Jan 2010 | A1 |
20100016746 | Hampton et al. | Jan 2010 | A1 |
20100042186 | Ben-David et al. | Feb 2010 | A1 |
20100063563 | Craig | Mar 2010 | A1 |
20100074934 | Hunter | Mar 2010 | A1 |
20100191304 | Scott | Jul 2010 | A1 |
20100215632 | Boss et al. | Aug 2010 | A1 |
20100241183 | DiLorenzo | Sep 2010 | A1 |
20100241207 | Bluger | Sep 2010 | A1 |
20100249859 | DiLorenzo | Sep 2010 | A1 |
20100280562 | Pi et al. | Nov 2010 | A1 |
20100280569 | Bobillier et al. | Nov 2010 | A1 |
20110004266 | Sharma | Jan 2011 | A1 |
20110054569 | Zitnik et al. | Mar 2011 | A1 |
20110066208 | Pasricha et al. | Mar 2011 | A1 |
20110082515 | Libbus et al. | Apr 2011 | A1 |
20110092882 | Firlik et al. | Apr 2011 | A1 |
20110106208 | Faltys | May 2011 | A1 |
20110144717 | Burton et al. | Jun 2011 | A1 |
20110224749 | Ben-David et al. | Sep 2011 | A1 |
20110247620 | Armstrong et al. | Oct 2011 | A1 |
20110275927 | Wagner et al. | Nov 2011 | A1 |
20110307027 | Sharma et al. | Dec 2011 | A1 |
20120053657 | Parker et al. | Mar 2012 | A1 |
20120065706 | Vallapureddy et al. | Mar 2012 | A1 |
20120179219 | Kisker et al. | Jul 2012 | A1 |
20120185009 | Kornet et al. | Jul 2012 | A1 |
20120185020 | Simon et al. | Jul 2012 | A1 |
20130013016 | Diebold | Jan 2013 | A1 |
20130066392 | Simon et al. | Mar 2013 | A1 |
20130066395 | Simon et al. | Mar 2013 | A1 |
20130079834 | Levine | Mar 2013 | A1 |
20130245718 | Birkholz et al. | Sep 2013 | A1 |
20130317580 | Simon et al. | Nov 2013 | A1 |
20140046407 | Ben-Ezra et al. | Feb 2014 | A1 |
20140206945 | Liao | Jul 2014 | A1 |
20140257425 | Arcot-Krishnamurthy et al. | Sep 2014 | A1 |
20140277260 | Khalil et al. | Sep 2014 | A1 |
20140288551 | Bharmi et al. | Sep 2014 | A1 |
20140330335 | Errico et al. | Nov 2014 | A1 |
20150018728 | Gross et al. | Jan 2015 | A1 |
20150100100 | Tracey et al. | Apr 2015 | A1 |
20150119956 | Libbus et al. | Apr 2015 | A1 |
20150133717 | Ghiron | May 2015 | A1 |
20150180271 | Angara | Jun 2015 | A1 |
20150233904 | Nayak | Aug 2015 | A1 |
20150241447 | Zitnik et al. | Aug 2015 | A1 |
20160038745 | Faltys et al. | Feb 2016 | A1 |
20160067497 | Levine et al. | Mar 2016 | A1 |
20160096017 | Levine et al. | Apr 2016 | A1 |
20160114165 | Levine et al. | Apr 2016 | A1 |
20160250097 | Tracey et al. | Sep 2016 | A9 |
20160331952 | Faltys et al. | Nov 2016 | A1 |
20160367808 | Simon et al. | Dec 2016 | A9 |
20170113044 | Levine et al. | Apr 2017 | A1 |
20170197076 | Faltys et al. | Jul 2017 | A1 |
20170202467 | Zitnik et al. | Jul 2017 | A1 |
20170203103 | Levine et al. | Jul 2017 | A1 |
20170209705 | Faltys et al. | Jul 2017 | A1 |
20170266448 | Tracey et al. | Sep 2017 | A1 |
20180021217 | Tracey et al. | Jan 2018 | A1 |
20180021580 | Tracey et al. | Jan 2018 | A1 |
20190010535 | Pujol Onofre et al. | Jan 2019 | A1 |
20190192847 | Faltys et al. | Jun 2019 | A1 |
20200094055 | Manogue | Mar 2020 | A1 |
20200330760 | Levine et al. | Oct 2020 | A1 |
20210251848 | Tracey et al. | Aug 2021 | A1 |
20210315505 | Levine et al. | Oct 2021 | A1 |
20210353949 | Faltys et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
201230913 | May 2009 | CN |
101528303 | Sep 2009 | CN |
101578067 | Nov 2009 | CN |
101868280 | Oct 2010 | CN |
104220129 | Dec 2014 | CN |
2628045 | Jan 1977 | DE |
3736664 | May 1989 | DE |
20316509 | Apr 2004 | DE |
0438510 | Aug 1996 | EP |
0726791 | Jun 2000 | EP |
1001827 | Jan 2004 | EP |
2213330 | Aug 2010 | EP |
2073896 | Oct 2011 | EP |
04133 A.D. 1909 | Feb 1910 | GB |
2073428 | Oct 1981 | GB |
20050039445 | Apr 2005 | KR |
WO9301862 | Feb 1993 | WO |
WO9730998 | Aug 1997 | WO |
WO9820868 | May 1998 | WO |
WO0027381 | May 2000 | WO |
WO0047104 | Aug 2000 | WO |
WO0100273 | Jan 2001 | WO |
WO0108617 | Feb 2001 | WO |
WO0189526 | Nov 2001 | WO |
WO0244176 | Jun 2002 | WO |
WO02057275 | Jul 2002 | WO |
WO03072135 | Sep 2003 | WO |
WO2004000413 | Dec 2003 | WO |
WO2004064918 | Aug 2004 | WO |
WO2006073484 | Jul 2006 | WO |
WO2006076681 | Jul 2006 | WO |
WO2007133718 | Nov 2007 | WO |
WO2010005482 | Jan 2010 | WO |
WO2010067360 | Jun 2010 | WO |
WO2010118035 | Oct 2010 | WO |
WO2016134197 | Aug 2016 | WO |
Entry |
---|
US 6,184,239 B1, 02/2001, Puskas (withdrawn) |
Levine et al.; U.S. Appl. No. 15/853,350 entitled “Extremely low duty-cycle activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation,” filed Dec. 22, 2017. |
Manta et al.; Optimization of vagus nerve stimulation parameters using the firing activity of serotonin neurons in the rat dorsal raphe; European Neuropsychopharmacology; vol. 19; pp. 250-255; Jan. 2009 (doi: 10.1016/j.euroneuro.2008.12.001). |
Pongratz et al.; The sympathetic nervous response in inflammation; Arthritis Research and Therapy; 16(504); 12 pages; retrieved from the internet (http://arthritis-research.eom/content/16/6/504); Jan. 2014. |
Faltys et al.; U.S. Appl. No. 16/005,191 entitled “Neural stimulation devices and systems for treatment of chronic inflammation,” filed Jun. 11, 2018. |
Tracey et al., U.S. Appl. No. 16/231,581 entitled “Inhibition of inflammatory cytokine production by cholinergic agnostics and vagus nerve stimulation,” filed Dec. 23, 2018. |
Abraham, Coagulation abnormalities in acute lung injury and sepsis, Am. J. Respir. Cell Mol. Biol., vol. 22(4), pp. 401-404, Apr. 2000. |
Aekerlund et al., Anti-inflammatory effects of a new tumour necrosis factor-alpha (TNF-Alpha) inhibitor (CNI-1493) in collagen-induced arthritis (CIA) in rats, Clinical & Experimental Immunology, vol. 115, No. 1, pp. 32-41, Jan. 1, 1999. |
Anderson et al.; Reflex principles of immunological homeostasis; Annu. Rev. Immunol.; 30; pp. 313-335; Apr. 2012. |
Antonica, A., et al., Vagal control of lymphocyte release from rat thymus, J. Auton. Nerv. Syst., vol. 48(3), pp. 187-197, Aug. 1994. |
Asakura et al., Non-surgical therapy for ulcerative colitis, Nippon Geka Gakkai Zasshi, vol. 98, No. 4, pp. 431-437, Apr. 1997 (abstract only). |
Beliavskaia et al.,“On the effects of prolonged stimulation of the peripheral segment of the vagus nerve . . . ,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova., vol. 52(11); p. 1315-1321, Nov. 1966. |
Ben-Noun et al.; Neck circumference as a simple screening measure for identifying overweight and obese patients; Obesity Research; vol. 9; No. 8; pp. 470-477; Aug. 8, 2001. |
Benoist, et al., “Mast cells in autoimmune disease” Nature., vol. 420(19): pp. 875-878, Dec. 2002. |
Benthem et al.; Parasympathetic inhibition of sympathetic neural activity to the pancreas; Am.J.Physiol Endocrinol.Metab; 280(2); pp. E378-E381; Feb. 2001. |
Bernik et al., Vagus nerve stimulation attenuates cardiac TNF production in endotoxic shock, (supplemental to Shock, vol. 15, 2001, Injury, inflammation and sepsis: laboratory and clinical approaches, Shock, Abstracts, 24th Annual Conference on Shock, Marco Island, FL, Jun. 9-12, 2001), Abstract No. 81. |
Bernik et al., Vagus nerve stimulation attenuates endotoxic shock and cardiac TNF production, 87th Clinical Congress of the American College of Surgeons, New Orleans, LA, Oct. 9, 2001. |
Bernik et al., Vagus nerve stimulation attenuates LPS-induced cardiac TNF production and myocardial depression IN shock, New York Surgical Society, New York, NY, Apr. 11, 2001. |
Bernik, et al., Pharmacological stimulation of the cholinergic anti-inflammatory pathway, The Journal of Experimental Medicine, vol. 195, No. 6, pp. 781-788, Mar. 18, 2002. |
Besedovsky, H., et al., Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones, Science, vol. 233, No. 4764, pp. 652-654, Aug. 1986. |
Bhattacharya, S.K. et al., Central muscarinic receptor subtypes and carrageenin-induced paw oedema in rats, Res. Esp. Med. vol. 191(1), pp. 65-76, Dec. 1991. |
Bianchi et al., Suppression of proinflammatory cytokines in monocytes by a tetravalent guanylhydrazone, Journal of Experimental Medicine, vol. 183, pp. 927-936, Mar. 1996. |
Biggio et al.; Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus; Int. J. Neurpsychopharmacol.; vol. 12; No. 9; pp. 1209-1221; Oct. 2009. |
Blackwell, T. S. et al., Sepsis and cytokines: current status, Br. J. Anaesth., vol. 77(1), pp. 110-117, Jul. 1996. |
Blum, A. et al., Role of cytokines in heart failure, Am. Heart J., vol. 135(2), pp. 181-186, Feb. 1998. |
Boldyreff, Gastric and intestinal mucus, its properties and physiological importance, Acta Medica Scandinavica (journal), vol. 89, Issue 1-2, pp. 1-14, Jan./Dec. 1936. |
Borovikova et al., Acetylcholine inhibition of immune response to bacterial endotoxin in human macrophages, Abstracts, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL, (Abs. No. 624.6); Oct. 23-28, 1999. |
Borovikova et al., Efferent vagus nerve activity attenuates cytokine-mediated inflammation, Society for Neuroscience Abstracts, vol. 26, No. 102, Nov. 4-9, 2000 (abstract only). |
Borovikova et al., Intracerebroventricular CNI-1493 prevents LPS-induced hypotension and peak serum TNF at a four-log lower dose than systemic treatment, 21st Annual Conference on Shock, San Antonio, TX, Jun. 14-17, 1998, Abstract No. 86. |
Borovikova et al., Role of the efferent vagus nerve signaling in the regulation of the innate immune response to LPS, (supplemental to Shock, vol. 13, 2000, Molecular, cellular, and systemic pathobiological aspects and therapeutic approaches, abstracts, 5th World Congress on Trauma, Shock inflammation and sepsis-pathophysiology, immune consequences and therapy, Feb. 29, 2000—Mar. 4, 2000, Munich, DE), Abstract No. 166. |
Borovikova et al., Role of the vagus nerve in the anti-inflammatory effects of CNI-1493, the FASEB journal, vol. 14, No. 4, 2000 (Experimental Biology 2000, San Diego, CA, Apr. 15-18, 2000, Abstract No. 97.9). |
Borovikova et al., Vagotomy blocks the protective effects of I.C.V. CNI-1493 against LPS-induced shock, (Supplemental to Shock, vol. 11, 1999, Molecular, cellular, and systemic pathobioloigal aspects and therapeutic approaches, abstacts and program, Fourth International Shock Congress and 22nd Annual Conference on Shock, Philadelphia, PA, Jun. 12-16, 1999), Abstract No. 277. |
Borovikova, L. V., et al., Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation, Autonomic Neuroscience, vol. 85, No. 1-3, pp. 141-147, Dec. 20, 2000. |
Borovikova, L. V., et al., Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin, Nature, vol. 405, No. 6785: pp. 458-462, May 25, 2000. |
Bruchfeld et al.; Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis; J. Int. Med.; 268(1); pp. 94-101; Jul. 2010. |
Bulloch et al.; Characterization of choline O-acetyltransferase (ChAT) in the BALB/C mouse spleen; Int.J.Neurosci.; 76(1-2); pp. 141-149; May 1994. |
Bumgardner, G. L. et al., Transplantation and cytokines, Seminars in Liver Disease, vol. 19, No. 2, Thieme Medical Publishers; pp. 189-204, © 1999. |
Burke et al., Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase, J. Mol. Biol., vol. 264(4); pp. 650-666, Dec. 1996. |
Bushby et al.; Centiles for adult head circumference; Archives of Disease in Childhood; vol. 67(10); pp. 1286-1287; Oct. 1992. |
Cano et al.; Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing; J.Comp Neurol.; 439(1); pp. 1-18; Oct. 2001. |
Carteron, N. L., Cytokines in rheumatoid arthritis: trials and tribulations, Mol. Med. Today, vol. 6(8), pp. 315-323, Aug. 2000. |
Cavaillon et al.; The pro-inflammatory cytokine casade; Immune Response in the Critically Ill; Springer-Verlag Berlin Hiedelberg; pp. 37-66; Jan. 21, 2002. |
Cheyuo et al.; The parasympathetic nervous system in the quest for stroke therapeutics; J. Cereb. Blood Flow Metab.; 31(5); pp. 1187-1195; May 2011. |
Cicala et al., “Linkage between inflammation and coagulation: An update on the molecular basis of the crosstalk,” Life Sciences, vol. 62(20); pp. 1817-1824, Apr. 1998. |
Clark et al.; Enhanced recognition memory following vagus nerve stimulation in human subjects; Nat. Neurosci.; 2(1); pp. 94-98; Jan. 1999. |
Cohen, “The immunopathogenesis of sepsis,” Nature., vol. 420(6917): pp. 885-891, Dec. 2002. |
Corcoran, et al., The effects of vagus nerve stimulation on pro- and anti-inflammatory cytokines in humans: a preliminary report, NeuroImmunoModulation, vol. 12(5), pp. 307-309, Sep. 2005. |
Dake; Chronic cerebrospinal venous insufficiency and multiple sclerosis: Hostory and background; Techniques Vasc. Intervent. Radiol.; 15(2); pp. 94-100; Jun. 2012. |
Das, Critical advances in spticemia and septic shock, Critical Care, vol. 4, pp. 290-296, Sep. 7, 2000. |
Del Signore et al.; Nicotinic acetylcholine receptor subtypes in the rat sympathetic ganglion: pharmacological characterization, subcellular distribution and effect of pre- and postganglionic nerve crush; J.Neuropathol.Exp.Neurol.; 63(2); pp. 138-150; Feb. 2004. |
Diamond et al.; Mapping the immunological homunculus; Proc. Natl. Acad. Sci. USA; 108(9); pp. 3461-3462; Mar. 1, 2011. |
Dibbs, Z., et al., Cytokines in heart failure: pathogenetic mechanisms and potential treatment, Proc. Assoc. Am. Physicians, vol. 111, No. 5, pp. 423-428, Sep.-Oct. 1999. |
Dinarello, C. A., The interleukin-1 family: 10 years of discovery, FASEB J., vol. 8, No. 15, pp. 1314-1325, Dec. 1994. |
Dorr et al.; Effect of vagus nerve stimulation on serotonergic and noradrenergic transmission; J. Pharmacol. Exp. Ther.; 318(2); pp. 890-898; Aug. 2006. |
Doshi et al., Evolving role of tissue factor and its pathway inhibitor, Crit. Care Med., vol. 30, suppl. 5, pp. S241-S250, May 2002. |
Elenkov et al.; Stress, corticotropin-releasing hormone, glucocorticoids, and the immune /inflammatory response: acute and chronic effects; Ann. N.Y. Acad. Sci.; 876; pp. 1-13; Jun. 22, 1999. |
Ellington et al., In vitro selection of RNA molecules that bind specific ligands, Nature, vol. 346, pp. 818-822, Aug. 30, 1990. |
Ellrich et al.; Transcutaneous vagus nerve stimulation; Eur. Neurological Rev.; 6(4); pp. 254-256; Winter 2011. |
Engineer et al.; Directing neural plasticity to understand and treat tinnitus; Hear. Res.; 295; pp. 58-66; Jan. 2013. |
Engineer et al.; Reversing pathological neural activity using targeted plasticity; Nature; 470(7332); pp. 101-104; Feb. 3, 2011 (Author Manuscript). |
Esmon, The protein C pathway, Crit. Care Med., vol. 28, suppl. 9, pp. S44-S48, Sep. 2000. |
Fields; New culprits in chronic pain; Scientific American; pp. 50-57; Nov. 2009. |
Fleshner, M., et al., Thermogenic and corticosterone responses to intravenous cytokines (IL-1? and TNF-?) are attenuated by subdiaphragmatic vagotomy, J. Neuroimmunol., vol. 86(2), pp. 134-141, Jun. 1998. |
Fox, D. A., Cytokine blockade as a new strategy to treat rheumatoid arthritis, Arch. Intern. Med., vol. 160, pp. 437-444, Feb. 28, 2000. |
Fox, et al., Use of muscarinic agonists in the treatment of Sjorgren' syndrome, Clin. Immunol., vol. 101, No. 3; pp. 249-263, Dec. 2001. |
Fujii et al.; Simvastatin regulates non-neuronal cholinergic activity in T lymphocytes via CD11a-mediated pathways; J. Neuroimmunol.; 179(1-2); pp. 101-107; Oct. 2006. |
Gao et al.; Investigation of specificity of auricular acupuncture points in regulation of autonomic function in anesthetized rats; Autonomic Neurosc.; 138(1-2); pp. 50-56; Feb. 29, 2008. |
Gattorno, M., et al., Tumor necrosis factor induced adhesion molecule serum concentrations in henoch-schoenlein purpura and pediatric systemic lupus erythematosus, J. Rheumatol., vol. 27, No. 9, pp. 2251-2255, Sep. 2000. |
Gaykema, R. P., et al., Subdiaphragmatic vagotomy suppresses endotoxin-induced activation of hypothalamic corticotropin-releasing hormone neurons and ACTH secretion, Endocrinology, vol. 136, No. 10, pp. 4717-4720, Oct. 1995. |
Ghelardini et al., S-(-)-ET 126: A potent and selective M1 antagonist in vitro and in vivo, Life Sciences, vol. 58, No. 12, pp. 991-1000, Feb. 1996. |
Ghia, et al., The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model, Gastroenterology, vol. 131, No. 4, pp. 1122-1130, Oct. 2006. |
Giebelen, et al., Stimulation of ?7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor ?-independent mechanism, SHOCK, vol. 27, No. 4, pp. 443-447, Apr. 2007. |
Goyal et al., Nature of the vagal inhibitory innervation to the lower esophageal sphincter, Journal of Clinical Investigation, vol. 55, pp. 1119-1126, May 1975. |
Gracie, J. A., et al., A proinflammatory role for IL-18 in rheumatoid arthritis, J. Clin. Invest., vol. 104, No. 10, pp. 1393-1401, Nov. 1999. |
Granert et al., Suppression of macrophage activation with CNI-1493 increases survival in infant rats with systemic haemophilus influenzae infection, Infection and Immunity, vol. 68, No. 9, pp. 5329-5334, Sep. 2000. |
Green et al., Feedback technique for deep relaxation, Psycophysiology, vol. 6, No. 3, pp. 371-377, Nov. 1969. |
Gregory et al., Neutrophil-kupffer-cell interaction in host defenses to systemic infections, Immunology Today, vol. 19, No. 11, pp. 507-510, Nov. 1998. |
Groves et al.; Recordings from the rat locus coeruleus during acute vagal nerve stimulation in the anaesthetised rat; Neuroscience Letters; 379(3); pp. 174-179; May 13, 2005. |
Guarente, Leonard, Ph. D.; Sirtuins, Aging, and Medicine; N Engl J Med ; vol. 364:pp. 2235-2244; Jun. 2011. |
Guslandi, M., Nicotine treatment for ulcerative colitis, Br. J. Clin. Pharmacol., vol. 48(4), pp. 481-484, Oct. 1999. |
Hansson, E.; Could chronic pain and spread of pain sensation be induced and maintained by glial activation?. Acta Physiologica, vol. 187, Issue 1-2; pp. 321R327, May/Jun. 2006. |
Harrison's Principles of Internal Medicine, 13th Ed., pp. 511-515 and 1433-1435, Mar. 1994. |
Hatton et al.; Vagal nerve stimulation: overview and implications for anesthesiologists; Int'l Anesthesia Research Society; vol. 103; No. 5; pp. 1241-1249; Nov. 2006. |
Hirano, T., Cytokine suppresive agent improves survival rate in rats with acute pancreatitis of closed duodenal loop, J. Surg. Res., vol. 81, No. 2, pp. 224-229, Feb. 1999. |
Hirao et al., The limits of specificity: an experimental analysis with RNA aptamers to MS2 coat protein variants, Mol. Divers., vol. 4, No. 2, pp. 75-89, 1999 (Accepted Jan. 13, 1999). |
Hoffer et al.; Implantable electrical and mechanical interfaces with nerve and muscle; Annals of Biomedical Engineering; vol. 8; pp. 351-360; Jul. 1980. |
Holladay et al., Neuronal nicotinic acetylcholine receptors as targets for drug discovery, Journal of Medicinal Chemistry, 40(26), pp. 4169-4194, Dec. 1997. |
Hommes, D. W. et al., Anti- and Pro-inflammatory cytokines in the pathogenesis of tissue damage in Crohn's disease, Current Opinion in Clinical Nutrition and Metabolic Care, vol. 3(3), pp. 191-195, May 2000. |
Hsu, et al., Analysis of efficiency of magnetic stimulation, IEEE Trans. Biomed. Eng., vol. 50(11), pp. 1276-1285, Nov. 2003. |
Hsu, H. Y., et al., Cytokine release of peripheral blood monoculear cells in children with chronic hepatitis B virus infection, J. Pediatr. Gastroenterol., vol. 29, No. 5, pp. 540-545, Nov. 1999. |
Hu, et al., The effect of norepinephrine on endotoxin-mediated macrophage activation, J. Neuroimmunol., vol. 31(1), pp. 35-42, Jan. 1991. |
Huston et al.; Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis; J. Exp. Med. 2006; vol. 203, No. 7; pp. 1623-1628; Jun. 19, 2006. |
Huston et al.; Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis; Crit. Care Med.; 35(12); pp. 2762-2768; Dec. 2007. |
Hutchinson et al.; Proinflammatory cytokines oppose opioid induced acute and chronic analgesia; Brain Behav Immun.; vol. 22; No. 8; pp. 1178-1189; Nov. 2008. |
Ilton et al., “Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass” Journal of Thoracic and Cardiovascular Surgery, Mosby—Year Book, inc., St. Louis, Mo, US, pp. 930-937, Nov. 1, 1999. |
Jaeger et al., The structure of HIV-1 reverse transcriptase complexed with an RNA pseudoknot inhibitor, The EMBO Journal, 17(15), pp. 4535-4542, Aug. 1998. |
Jander, S. et al., Interleukin-18 is induced in acute inflammatory demyelinating polymeuropathy, J. Neuroimmunol., vol. 114, pp. 253-258, Mar. 2001. |
Joshi et al., Potent inhibition of human immunodeficiency virus type 1 replection by template analog reverse transcriptase , J. Virol., 76(13), pp. 6545-6557, Jul. 2002. |
Kawahara et al.; SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span.; Cell. ; vol. 136; No. 1; pp. 62-74; Jan. 2009. |
Kalishevskaya et al. “The character of vagotomy-and atropin-induced hypercoagulation,” Sechenov Physiological Journal of the USSR, 65(3): pp. 398-404, Mar. 1979. |
Kalishevskaya et al.; Nervous regulation of the fluid state of the blood; Usp. Fiziol. Nauk;,vol. 13; No. 2; pp. 93-122; Apr.-Jun. 1982. |
Kanai, T. et al., Interleukin-18 and Crohn's disease, Digestion, vol. 63, suppl. 1, pp. 37-42, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2001. |
Katagiri, M., et al., Increased cytokine production by gastric mucosa in patients with helicobacter pylori infection, J. Clin, Gastroenterol., vol. 25, Suppl. 1, pp. S211-S214, 1997. |
Kawashima, et al., Extraneuronal cholinergic system in lymphocytes, Pharmacology & Therapeutics, vol. 86, pp. 29-48, Apr. 2000. |
Kees et al.; Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen; J.Neuroimmunol.; 145(1-2); pp. 77-85; Dec. 2003. |
Kensch et al., HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity, J. Biol. Chem., 275(24), p. 18271-18278, Jun. 16, 2000. |
Khatun, S., et al., “Induction of hypercoagulability condition by chronic localized cold stress in rabbits,” Thromb. and Haemost., 81(3): pp. 449-455, Mar. 1999. |
Kimball, et al., Levamisole causes differential cytokine expression by elicited mouse peritoneal macrophases, Journal of Leukocyte Biology, vo. 52, No. 3, pp. 349-356, Sep. 1992 (abstract only). |
Kimmings, A. N., et al., Systemic inflammatory response in acute cholangitis and after subsequent treatment, Eur. J. Surg., vol. 166, pp. 700-705, Sep. 2000. |
Kirchner et al.; Left vagus nerve stimulation suppresses experimentally induced pain; Neurology; vol. 55; pp. 1167-1171; Oct. 2000. |
Kokkula, R. et al., Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity, Arthritis Rheum., 48(7), pp. 2052-2058, Jul. 2003. |
Koopman et al.; Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis; Arth. Rheum.; 64(10 suppl.); pp. S195; Oct. 2012. |
Krarup et al.; Conduction studies in peripheral cat nerve using implanted electrodes: I. methods and findings in controls; Muscle & Nerve; vol. 11; pp. 922-932; Sep. 1988. |
Kudrjashov, et al. “Reflex nature of the physiological anticoagulating system,” Nature, vol. 196(4855): pp. 647-649; Nov. 17, 1962. |
Kumins, N. H., et al., Partial hepatectomy reduces the endotoxin-induced peak circulating level of tumor necrosis factor in rats, SHOCK, vol. 5, No. 5, pp. 385-388, May 1996. |
Kuznik, “Role of the vascular wall in the process of hemostatis,” Usp Sovrem Biol., vol. 75(1): pp. 61-85, 1973. |
Kuznik, et al., “Blood Coagulation in stimulation of the vagus nerve in cats,” Biull. Eskp. Biol. Med., vol. 78(7): pp. 7-9, 1974. |
Kuznik, et al., “Heart as an efferent regulator of the process of blood coagulation and fibrinolysis,” Kardiologiia, vol. 13(3): pp. 10-17, 1973. |
Kuznik, et al., “Role of the heart and vessels in regulating blood coagulation and fibrinolysis,” Kagdiologiia, vol. 13(4): pp. 145-154, 1973. |
Kuznik, et al., “Secretion of blood coagulation factors into saliva under conditions of hypo-and hypercoagulation,” Voprosy Meditsinskoi Khimii, vol. 19(1): pp. 54-57; 1973. |
Kuznik, et al., “The dynamics of procoagulatible and fibrinolytic activities during electrical stimulation of peripheral nerves,” Sechenov Physiological Journal of the USSR, vol. 65; No. 3: pp. 414-420, Mar. 1979. |
Kuznik, et al., “The role of the vascular wall in the mechanism of control of blood coagulation and fibrinolysis on stimulation of the vagus nerve,” Cor Vasa, vol. 17(2): pp. 151-158, 1975. |
Lang, et al., “Neurogienic control of cerebral blood flow,” Experimental Neurology, 43(1): pp. 143-161, Apr. 1974. |
Lee, H. G., et al.. Peritoneal lavage fluids stimulate NIH3T3 fibroblast proliferation and contain increased tumour necrosis factor and IL6 in experimental silica-induced rat peritonitis, Clin. Exp. Immunol., vol. 100, pp. 139-144, Apr. 1995. |
LeNovere, N. et al., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells, J. Mol. Evol., 40, pp. 155-172, Feb. 1995. |
Leonard, S. et al., Neuronal nicotinic receptors: from structure to function, Nicotine & Tobacco Res. 3:203-223, Aug. 2001. |
Lips et al.; Coexpression and spatial association of nicotinic acetylcholine receptor subunits alpha7 and alpha10 in rat sympathetic neurons; J.Mol.Neurosci.; 30; pp. 15-16; Feb. 2006. |
Lipton, J. M. et al.; Anti-inflammatory actions of the neuroimmunomodulator ?-MSH, Immunol. Today, vol. 18, pp. 140-145, Mar. 1997. |
Loeb et al.; Cuff electrodes for chronic stimulation and recording of peripheral nerve activity; Journal of Neuroscience Methods; vol. 64; pp. 95-103; Jan. 1996. |
Madretsma, G. S., et al., Nicotine inhibits the in vitro production of interleukin 2 and tumour necrosis factor-alpha by human monocuclear cells, Immunopharmacology, vol. 35, No. 1, pp. 47-51, Oct. 1996. |
Martindale: The Extra Pharmacopoeia; 28th Ed. London; The Pharmaceutical Press; pp. 446-485; © 1982. |
Martiney et al., Prevention and treatment of experimental autoimmune encephalomyelitis by CNI-1493, a macrophage-deactivating agent, Journal of Immunology, vol. 160, No. 11, pp. 5588-5595, Jun. 1, 1998. |
McGuinness, P. H., et al., Increases in intrahepatic CD68 positive cells, MAC387 positive cells, and proinflammatory cytokines (particulary interleukin 18) in chronic hepatitis C infection, Gut, vol. 46(2), pp. 260-269, Feb. 2000. |
Miguel-Hidalgo, J.J.; The role of glial cells in drug abuse; Current Drug Abuse Reviews; vol. 2; No. 1; pp. 76-82; Jan. 2009. |
Milligan et al.; Pathological and protective roles of glia in chronic pain; Nat Rev Neurosci.; vol. 10; No. 1; pp. 23-26; Jan. 2009. |
Minnich et al.; Anti-cytokine and anti-inflammatory therapies for the treatment of severe sepsis: progress and pitfalls; Proceedings of the Nutrition Society; vol. 63(3); pp. 437-441; Aug. 2004. |
Mishchenko, et al., “Coagulation of the blood and fibrinolysos in dogs during vagal stimulation,” Sechenov Physiological Journal of the USSR, vol. 61(1): pp. 101-107, 1975. |
Mishchenko, “The role of specific adreno-and choline-receptors of the vascular wall in the regulation of blood coagulation in the stimulation of the vagus nerve,” Biull. Eskp. Biol. Med., vol. 78(8): pp. 19-22, 1974. |
Molina et al., CNI-1493 attenuates hemodynamic and pro-inflammatory responses to LPS, Shock, vol. 10, No. 5, pp. 329-334, Nov. 1998. |
Nadol et al., “Surgery of the Ear and Temporal Bone,” Lippinkott Williams & Wilkins, 2nd Ed., 2005, (Publication date: Sep. 21, 2004), p. 580. |
Nagashima et al., Thrombin-activatable fibrinolysis inhibitor (TAFI) deficiency is compatible with murine life, J. Clin. Invest., 109, pp. 101-110, Jan. 2002. |
Nathan, C. F., Secretory products of macrophages, J. Clin. Invest., vol. 79 (2), pp. 319-326, Feb. 1987. |
Navalkar et al.; Irbesartan, an angiotensin type 1 receptor inhibitor, regulates markers of inflammation in patients with premature atherosclerosis; Journal of the American College of Cardiology; vol. 37; No. 2; pp. 440-444; Feb. 2001. |
Navzer et al.; Reversing pathological neural activity using targeted plasticity; Nature; 470(7332); pp. 101-104; Feb. 3, 2011. |
Neuhaus et al.; P300 is enhanced in responders to vagus nerve stimulation for treatment of major depressive disorder; J. Affect. Disord.; 100(1-3); pp. 123-128; Jun. 2007. |
Noguchi et al., Increases in Gastric acidity in response to electroacupuncture stimulation of hindlimb of anesthetized rats, Jpn. J. Physiol., 46(1), pp. 53-58, Feb. 1996. |
Norton, Can ultrasound be used to stimulate nerve tissue, BioMedical Engineering OnLine, 2(1), pp. 6, Mar. 4, 2003. |
Olofsson et al.; Rethinking inflammation: neural circuits in the regulation of immunity; Immunological Reviews; 248(1); pp. 188-204; Jul. 2012. |
Oshinsky et al.; Non-invasive vagus nerve stimulation as treatment for trigeminal allodynia; Pain; 155(5); pp. 1037-1042; May 2014. |
Palmblad et al., Dynamics of early synovial cytokine expression in rodent collagen-induced arthritis: a thereapeutic study unding a macrophage-deactivation compound, American Journal of Pathology, vol. 158, No. 2, pp. 491-500, Feb. 2, 2001. |
Pateyuk, et al., “Treatment of Botkin's disease with heparin,” Klin. Med., vol. 51(3): pp. 113-117, Mar. 1973. |
Pavlov et al.; Controlling inflammation: the cholinergic anti-inflammatory pathway; Biochem. Soc. Trans.; 34(Pt 6); pp. 1037-1040; Dec. 2006. |
Payne, J. B. et al., Nicotine effects on PGE2 and IL-1 beta release by LPS-treated human monocytes, J. Perio. Res., vol. 31, No. 2, pp. 99-104, Feb. 1996. |
Peuker; The nerve supply of the human auricle; Clin. Anat.; 15(1); pp. 35-37; Jan. 2002. |
Prystowsky, J. B. et al., lnterleukin-1 mediates guinea pig gallbladder inflammation in vivo, J. Surg. Res., vol. 71, No. 2, pp. 123-126, Aug. 1997. |
Pulkki, K. J., Cytokines and cardiomyocyte death, Ann. Med., vol. 29(4), pp. 339-343, Aug. 1997. |
Pullan, R. D., et al., Transdermal nicotine for active ulceratiive colitis, N. Engl. J. Med., vol. 330, No. 12, pp. 811-815, Mar. 24, 1994. |
Pulvirenti et al.; Drug dependence as a disorder of neural plasticity:focus on dopamine and glutamate; Rev Neurosci.; vol. 12; No. 2; pp. 141-158; Apr./Jun. 2001. |
Rahman et al.; Mammalian Sirt 1: Insights on its biological functions; Cell Communications and Signaling; vol. 9; No. 11; pp. 1-8; May 2011. |
Rayner, S. A. et al., Local bioactive tumour necrosis factor (TNF) in corneal allotransplantation, Clin. Exp. Immunol., vol. 122, pp. 109-116, Oct. 2000. |
Reale et al.; Treatment with an acetylcholinesterase inhibitor in alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines; J. Neuroimmunology; 148(1-2); pp. 162-171; Mar. 2004. |
Rinner et al.; Rat lymphocytes produce and secrete acetylcholine in dependence of differentiation and activation; J.Neuroimmunol.; 81(1-2); pp. 31-37; Jan. 1998. |
Robinson et al.; Studies with the Electrocardiograph on the Action of the Vagus Nerve on the Human Heart; J Exp Med; 14(3):217-234; Sep. 1911. |
Romanovsky, A. A., et al., The vagus nerve in the thermoregulatory response to systemic inflammation, Am. J. Physiol., vol. 273, No. 1 (part 2), pp. R407-R413, Jul. 1, 1997. |
Saghizadeh et al.; The expression of TNF? by human muscle; J. Clin. Invest.; vol. 97; No. 4; pp. 1111-1116; Feb. 15, 1996. |
Saindon et al.; Effect of cervical vagotomy on sympathetic nerve responses to peripheral interleukin-1beta; Auton.Neuroscience Basic and Clinical; 87; pp. 243-248; Mar. 23, 2001. |
Saito, Involvement of muscarinic M1 receptor in the central pathway of the serotonin-induced bezold-jarisch reflex in rats, J. Autonomic Nervous System, vol. 49, pp. 61-68, Sep. 1994. |
Sandborn, W. J., et al., Transdermal nicotine for mildly to moderately active ulcerative colitis, Ann. Intern. Med, vol. 126, No. 5, pp. 364-371, Mar. 1, 1997. |
Sato, E., et al., Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemotactic activity, Am. J. Physiol., vol. 274, pp. L970-L979, Jun. 1998. |
Sato, K.Z., et al., Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukosytes and leukemic cell lines, Neuroscience Letters, vol. 266, pp. 17-20, Apr. 30, 1999. |
Scheinman, R. I., et al., Role of transcriptional activation of I?B? in mediation of immunosuppression by glucocorticoids, Science, vol. 270, No. 5234, pp. 283-286, Oct. 13, 1995. |
Schneider et al., High-affinity ssDNA inhibitors of the review transcriptase of type 1 human immunodeficiency virus, Biochemistry, 34(29), pp. 9599-9610, Jul. 1995. |
Shafer, Genotypic testing for human immunodeficiency virus type 1 drug resistance, Clinical Microbiology Reviews, vol. 15, pp. 247-277, Apr. 2002. |
Shapiro et al.; Prospective, randomised trial of two doses of rFVlla (NovoSeven) in haemophilia patients with inhibitors undergoing surgery; Thromb Haemost; vol. 80(5); pp. 773-778; Nov. 1998. |
Sher, M. E., et al., The influence of cigarette smoking on cytokine levels in patients with inflammatory bowel disease, Inflamm. Bowel Dis., vol. 5, No. 2, pp. 73-78, May 1999. |
Shi et al.; Effects of efferent vagus nerve excitation on inflammatory response in heart tissue in rats with endotoxemia; vol. 15, No. 1; pp. 26-28; Jan. 2003 (Eng. Abstract). |
Snyder et al., Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors; Nature Medicine, 5(1), pp. 64-70, Jan. 1999. |
Sokratov, et al. “The role of choline and adrenegic structures in regulation of renal excretion of hemocoagulating compounds into the urine,” Sechenov Physiological Journal of the USSR, vol. 63(12): pp. 1728-1732, 1977. |
Stalcup et al., Endothelial cell functions in the hemodynamic responses to stress, Annals of the New York Academy of Sciences, vol. 401, pp. 117-131, Dec. 1982. |
Steinlein, New functions for nicotine acetylcholine receptors?, Behavioural Brain Res., vol. 95(1), pp. 31-35, Sep. 1998. |
Sternberg, E. M., Perspectives series: cytokines and the brain ‘neural-immune interactions in health and disease,’ J. Clin. Invest., vol. 100, No. 22, pp. 2641-2647, Dec. 1997. |
Stevens et al.; The anti-inflammatory effect of some immunosuppressive agents; J. Path.; 97(2); pp. 367-373; Feb. 1969. |
Strojnik et al.; Treatment of drop foot using and implantable peroneal underknee stimulator; Scand. J. Rehab. Med.; vol. 19(1); pp. 37R43; Dec. 1986. |
Sugano et al., Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaβ activation, Biochemical and Biophysical Research Communications, vol. 252, No. 1, pp. 25-28, Nov. 9, 1998. |
Suter et al.; Do glial cells control pain?; Neuron Glia Biol.; vol. 3; No. 3; pp. 255-268; Aug. 2007. |
Swick et al.; Locus coeruleus neuronal activity in awake monkeys: relationship to auditory P300-like potentials and spontaneous EEG. Exp. Brain Res.; 101(1); pp. 86-92; Sep. 1994. |
Sykes, et al., An investigation into the effect and mechanisms of action of nicotine in inflammatory bowel disease, Inflamm. Res., vol. 49, pp. 311-319, Jul. 2000. |
Takeuchi et al., A comparision between Chinese blended medicine “Shoseiryuto” tranilast and ketotifen on the anit-allergic action in the guinea pigs, Allergy, vol. 34, No. 6, pp. 387-393, Jun. 1985 (eng. abstract). |
Tekdemir et al.; A clinico-anatomic study of the auricular branch of the vagus nerve and arnold's ear-cough reflex; Surg. Radiol. Anat.; 20(4); pp. 253-257; Mar. 1998. |
Toyabe, et al., Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice, Immunology, vol. 92(2), pp. 201-205, Oct. 1997. |
Tracey et al., Mind over immunity, Faseb Journal, vol. 15, No. 9, pp. 1575-1576, Jul. 2001. |
Tracey, K. J. et al., Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia; Nature, 330: pp. 662-664, Dec. 23, 1987. |
Tracey, K. J. et al., Physiology and immunology of the cholinergic antiinflammatory pathway; J Clin Invest.; vol. 117: No. 2; pp. 289-296; Feb. 2007. |
Tracey, K. J.; Reflex control of immunity; Nat Rev Immunol; 9(6); pp. 418-428; Jun. 2009. |
Tracey, K. J. et al., Shock and tissue injury induced by recombinant human cachectin, Science, vol. 234, pp. 470-474, Oct. 24, 1986. |
Tracey, K.J., The inflammatory reflex, Nature, vol. 420, pp. 853-859, Dec. 19-26, 2002. |
Tsutsui, H., et al., Pathophysiolocical roles of interleukin-18 in inflammatory liver diseases; Immunol. Rev., 174:192-209, Apr. 2000. |
Tuerk et al., RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase; Proc. Natl. Acad. Sci. USA, 89, pp. 6988-6992, Aug. 1992. |
Tuerk et al., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase; Science, 249(4968), pp. 505-510, Aug. 3, 1990. |
Van Dijk, A. P., et al., Transdermal nictotine inhibits interleukin 2 synthesis by mononuclear cells derived from healthy volunteers, Eur. J. Clin. Invest, vol. 28, pp. 664-671, Aug. 1998. |
Van Der Horst et al.; Stressing the role of FoxO proteins in lifespan and disease; Nat Rev Mol Cell Biol.; vol. 8; No. 6; pp. 440-450; Jun. 2007. |
Vanhoutte, et al., Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall, Gen Pharmac., vol. 14(1), pp. 35-37, Jan. 1983. |
VanWesterloo, et al., The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis, The Journal of Infectious Diseases, vol. 191, pp. 2138-2148, Jun. 15, 2005. |
Ventureyra, Transcutaneous vagus nerve stimulation for partial onset seizure therapy, Child's Nerv Syst, vol. 16(2), pp. 101-102, Feb. 2000. |
Vijayaraghavan, S.; Glial-neuronal interactions-implications for plasticity anddrug addictionl AAPS J.; vol. 11; No. 1; pp. 123-132; Mar. 2009. |
Villa et al., Protection against lethal polymicrobial sepsis by CNI-1493, an inhibitor of pro-inflammatory cytokine synthesis, Journal of Endotoxin Research, vol. 4, No. 3, pp. 197-204, Jun. 1997. |
Von Känel, et al., Effects of non-specific ?-adrenergic stimulation and blockade on blood coagulation in hypertension, J. Appl. Physiol., vol. 94, pp. 1455-1459, Apr. 2003. |
Von Känel, et al., Effects of sympathetic activation by adrenergic infusions on hemostasis in vivo, Eur. J. Haematol., vol. 65: pp. 357-369, Dec. 2000. |
Walland et al., Compensation of muscarinic brochial effects of talsaclidine by concomitant sympathetic activation in guinea pigs; European Journal of Pharmacology, vol. 330(2-3), pp. 213-219, Jul. 9, 1997. |
Wang et al.; Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation; Nature; 421; 384-388; Jan. 23, 2003. |
Wang, H., et al., HMG-1 as a late mediator of endotoxin lethality in mice, Science, vol. 285, pp. 248-251, Jul. 9, 1999. |
Waserman, S. et al., TNF-? dysregulation in asthma: relationship to ongoing corticosteroid therapy, Can. Respir. J., vol. 7, No. 3, pp. 229-237, May-Jun. 2000. |
Watanabe, H. et al., The significance of tumor necrosis factor (TNF) levels for rejection of joint allograft, J. Reconstr. Microsurg., vol. 13, No. 3, pp. 193-197, Apr. 1997. |
Wathey, J.C. et al., Numerical reconstruction of the quantal event at nicotinic synapses; Biophys. J., vol. 27: pp. 145-164, Jul. 1979. |
Watkins, L.R. et al., Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication, Neurosci. Lett., vol. 183(1-2), pp. 27-31, Jan. 1995. |
Watkins, L.R. et al., Implications of immune-to-brain communication for sickness and pain, Proc. Natl. Acad. Sci. U.S.A., vol. 96(14), pp. 7710-7713, Jul. 6, 1999. |
Webster's Dictionary, definition of “intrathecal”, online version accessed Apr. 21, 2009. |
Weiner, et al., “Inflammation and therapeutic vaccination in CNS diseases,” Nature., vol. 420(6917): pp. 879-884, Dec. 19-26, 2002. |
Westerheide et al.; Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1.; Science; Vo. 323; No. 5717; pp. 1063-1066; Feb. 2009. |
Whaley, K. et al., C2 synthesis by human monocytes is modulated by a nicotinic cholinergic receptor, Nature, vol. 293, pp. 580-582, Oct. 15, 1981. |
Woiciechowsky, C. et al., Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury, Nature Med., vol. 4, No. 7, pp. 808-813, Jul. 1998. |
Yeh, S.S. et al., Geriatric cachexia: the role of cytokines, Am. J. Clin. Nutr., vol. 70(2), pp. 183-197, Aug. 1999. |
Yu et al.; Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a non-invasive approach to treat the initial phase of atrial fibrillation; Heart Rhythm; 10(3); pp. 428-435; Mar. 2013. |
Zamotrinsky et al.; Vagal neurostimulation in patients with coronary artery disease; Auton. Neurosci.; 88(1-2); pp. 109-116; Apr. 2001. |
Zhang et al., Tumor necrosis factor, The Cytokine Handbook, 3rd ed., Ed. Thompson, Academic Press, pp. 517-548, Jul. 1, 1998. |
Zhang et al.; Roles of SIRT1 in the acute and restorative phases following induction of inflammation.; J Biol Chem.; vol. 285; No. 53; pp. 41391-41401; Dec. 2010. |
Zhang et al.; Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model; Circulation Heart Fail.; 2; pp. 692-699; Nov. 2009. |
Zhao et al.; Transcutaneous auricular vagus stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation; Evid. Based Complement Alternat. Med.; vol. 2012; Article ID 627023; 10 pages; Dec. 29, 2012. |
Faltys et al.; U.S. Appl. No. 15/645,996 entitled “Nerve cuff with pocket for leadless stimulator,” filed Jul. 10, 2017. |
Zitnik et al.; U.S. Appl. No. 16/356,906 entitled “Batteryless Implantable Microstimulators,” filed Mar. 18, 2019. |
Levine et al.; U.S. Appl. No. 16/103,873 entitled “Vagus nerve stimulation pre-screening test,” filed Aug. 14, 2018. |
Levine et al.; U.S. Appl. No. 16/157,222 entitled “Vagus nerve stimulation to treat neurodegenerative disorders,” filed Oct. 11, 2018. |
Faltys et al.; U.S. Appl. No. 16/544,805 entitled “Nerve cuff with pocket for leadless stimulator,” filed Aug. 19, 2019. |
Faltys et al.; U.S. Appl. No. 16/544,882 entitled “Neural stimulation devices and systems for treatment of chronic inflammation,” filed Aug. 19, 2019. |
Crusz et al.; Inflammation and cancer; advances and new agents; Nature reviews Clinical Oncology; 12(10); pp. 584-596; doi: 10.1038/nrclinonc.2015.105; Jun. 30, 2015. |
Strowig et al.; Inflammasomes in health and disease; Nature; vol. 481; pp. 278-286; doi: 10.1038/nature10759; Jan. 19, 2012. |
Faltys et al., U.S. Appl. No. 16/728,880 entitled “Implantable neurostimulator having power control and thermal regulation and methods of use,” filed Dec. 27, 2019. |
Faltys et al.; U.S. Appl. No. 16/785,400 entitled “Systems and methods for establishing a nerve block,” filed Feb. 7, 2020. |
Koopman et al., Pilot study of stimulation of the cholinergic anti-inflammatory pathway with an implantable vagus nerve stimulation device in patients with rheumatoid arthritis: 2012 ACR/ARHP Annual Meeting; Abstract No. 451; 4 pages; retrieved from the internet (https://acrabstracts.org/abstract/pilot-study-of-stimulation-of-the-cholinergic-anti-inflammatory-pathway-with-an-implantable-vagus-nerve-stimulation-device-in-patients-with-rheumatoid-arthritis); (Abstract Only); on Sep. 24, 2020. |
Pavlov et al.; The cholinergic anti-inflammatory pathway; Brain, Behavior, and Immunity; 19; p. 493-499; Nov. 2005. |
Zitnik et al.; Treatment of chronic inflammatory diseases with Implantable medical devices; Cleveland Clinic Journal of Medicine; 78(Suppl 1); pp. S30-S34; Aug. 2011. |
Palov et al.; The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation; Molecular Medicine; 9(5); pp. 125-134; May 2003. |
Koopman et al.; THU0237 first-in-human study of vagus nerve stimulation for rheumatoid arthritis: clinical and biomarker results through day 84; Annals of the Rheumatic Diseases; 72(Suppl 3):A245: Jun. 1, 2013 (Abstract Only). |
Koopman et al.; Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis; Proceedings of the National Academy of Sciences; 113(29); pp. 8284-8289; Jul. 19, 2016. |
Mayo Clinic; The factsheet of vagus nerve stimulation from the Mayo Clinic website: www.mayoclinic.org/tests-procedures/vagus-nerve-sti mulation/about/pac-20384565; retrieved from the internet on Sep. 28, 2021. |
Levine et al.; U.S. Appl. No. 17/599,594 entitled “Vagus nerve stimulation to treat neurodegenerative disorders,” filed Sep. 29, 2021. |
Number | Date | Country | |
---|---|---|---|
20180001096 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
62111587 | Feb 2015 | US |