The present invention relates to a method and to an apparatus for changing drill wire or cable in a hoisting system in a derrick on an installation (platform) offshore or onshore.
Onshore or offshore drilling rigs are used in exploration, drilling and production of hydrocarbons. The drilling rigs include a derrick or a mast with a hoisting system for lifting and lowering of pipes and other equipment into or out of the well. The hoisting system typically consists of a wire or cable, a so-called drill-line, a crown block at the top of the derrick or mast, and a traveling block both with a number of sheaves, a drawworks, a deadline anchor, and a drilling storage drum for wire or cable. The storage drum and the deadline anchor in such a hoisting system will usually be arranged on one side of a derrick or mast, while the drawworks will be arranged on the opposite side of the derrick or mast, where a wire or cable then will run from the storage drum and deadline anchor on one side of the derrick, over a number of sheaves in the derrick or mast, and onwards to the drawworks on the other side of the derrick or mast.
One challenge with such a hoisting system is that individual sections of the wire or cable will, after a period of use, be exposed to more wear than other sections. This is due to the fact that, due to reciprocating motion, the wire or cable comes into contact with the sheaves in the crown block and the traveling block along the same wire sections a large fraction of the operating time. The wear is greatest where the wire or cable rolls on and off the sheaves in the crown block and traveling block with large loads, especially at the lower position for the traveling block due to high load from the acceleration and retardation force. This wear leads to the entire wire or cable needing to be replaced after a time in use in order to avoid the risk of the system crashing or a major breakdown of the hoisting system as a result of wireline or cable breakage. An alternative to replacing the entire wire or cable is to perform a so-called “cut and slip” operation. In such an operation or procedure, a predetermined length of wire or cable is manually reeled off from the drawworks drum and stored temporarily on the drillfloor or another nearby area, and the reeled off wire or cable is cut close to the drawworks drum. The remaining length of wire or cable left on drawworks drum, is then removed for disposal. The reeled off, temporararily stored wire or cable is then reeled onto the drawworks drum, and the wire or cable can be loosened from its locking clamp on the deadline anchor so that new wire or cable is reeled off from the storage drum, over the deadline anchor and sheaves, and onto the drawworks drum with a length corresponding to the length of the wire or cable which was cut and disposed of. The deadline wire or cable is then locked onto the deadline anchor.
When the wire or cable must be replaced, which must occur after a certain number of ton-miles (ton-miles being the sum of all loads in tons and the distance hoisted or lowered in miles) to prevent fatigue and/or too high wear of the wire or cable, this is currently done manually and involves a large number of the drilling crew.
Depending on the type of operation, replacement of sections of wire or cable is done approximately on a weekly basis in order to ensure that all possible high-stress wireline sections or vulnerable points on the wire or cable are moved along the drill line wire or cable to a less exposed location. The most highly stressed locations for such fatigue or high wear are in the curve of the respective sheaves when a traveling block in the hoisting system is in one of its two end positions, i.e., when the block is close to a drill floor or near the derrick top.
The present manual operation requires that a large number of people (typically around six persons) must manually pull/tension the wire or cable during reeling off or on to thereby replace wire or cable on one or more drums of the drawworks.
A need therefore exists for an improved method and apparatus to change the wire or cable in a hoisting apparatus, in particular for “cut and slip” operations in order to reduce personnel involved in the operation and at the same time to increase safety and efficiency.
An aspect of the present invention is to prevent personal injuries on a drill floor and to enable a more efficient and more secure execution of “cut and slip” operations.
Another aspect of the present invention is to reduce the need for manual labor during “cut and slip” operations, and to obtain a more protective handling of the wire or cable,
A further aspect of the present invention is to provide the most correct reeling of the wire or cable on both the drawworks drum and storage drum without requiring a manual handling of the wire or cable on the respective drums and/or temporary storage areas for the wire or cable.
In an embodiment, the present invention provides a method for replacing a length of a wire or cable in a hoisting system. The wire or cable extends from a storage drum at a first end to a winch at a second end. The method includes removing at least one lock which prevents a deadline anchor arranged between the storage drum and the winch from rotating, reeling onto the storage drum a first length of the wire or cable with a simultaneous coordinated operation of the deadline anchor and the storage drum, the simultaneous coordinated operation being controlled so that the wire or cable is in a continuous tension between the deadline anchor and the storage drum, securing the wire or cable to an attachment point, cutting a section of the wire or cable between the attachment point and the winch and removing the cut section of the wire or cable, reattaching the wire or cable remaining to the winch, reeling out a second length of the wire or cable from the storage drum, and securing the wire or cable to the deadline anchor.
The present invention is described in greater detail below on the basis of embodiments and of the drawings in which:
The present invention relates to a method and to an apparatus for the replacement of a wire or cable of a hosting system. The described method and apparatus are applicable both to upgrade existing hoisting systems and for new hoisting systems which are installed on a drilling installation (platform) offshore or onshore.
A “cut and slip” procedure according to the present invention may typically include at least some of the following steps:
The hoisting system is operative.
The present invention also relates to an arrangement for a winch, the arrangement comprising a storage drum and a deadline anchor where the storage drum and the deadline anchor are arranged on a deadline side of an hoisting system and wherein a winch is further provided on a fastline side of the hoisting system, where a wire or cable, via the hoisting system, extends from the winch and to the storage drum, via the deadline anchor, where the storage drum comprises a drive for reeling wire or cable on or off the storage drum, while the deadline anchor comprises a drive allowing rotation of the deadline anchor in both rotational directions for a coordinated operation with the reeling on or off the storage drum.
In an embodiment of the present invention, the storage drum can, for example, include a motorized drive to reel on and to reel off the wire or cable from the storage drum, while the deadline anchor may include a motorized drive allowing rotation of the deadline anchor in both rotational directions (clockwise and counter-clockwise) so as to provide a coordinated operation with reeling and unreeling of wire or cable from the storage drum.
In an embodiment of the present invention, the motorized drive for the drum and the deadline anchor can, for example, be connected to a common hydraulic system which may further be connected to a common control device.
The motorized drive for the storage drum and/or the deadline anchor can, for example, be one or more hydraulic motors, hydraulic brakes, or the like.
In an embodiment of the present invention, the deadline anchor can, for example comprise a drum, a base, and one or more locking devices.
The present invention provides a method of replacing at least parts of a wireline or cable length of a hoisting system, such as a drill line, where the wire or cable extends from a storage reel at one end and to a winch in the other end, comprising the steps of:
In an embodiment of the present invention, the method comprises in step b) an additional step of adjusting the hydraulic operation of the storage drum so that the wire or cable is held substantially tensioned between the deadline anchor and storage drum.
In an embodiment of the present invention, the method comprises in step f) a further step of adjusting the hydraulic operation of the storage drum so that the wire or cable is held substantially tensioned from the storage drum.
In an embodiment of the present invention, the method comprises in step d) a further step of reeling off remaining wire or cable from the winch.
A non-limiting embodiment of the present invention will now be described below under reference to the accompanying drawings wherein like items are given like reference numerals.
During normal use of the hoisting system, the deadline anchor 3 will be locked to prevent it from rotating, and the winch 4 is used for lifting and/or lowering pipes and/or other equipment in the well. Locking the deadline anchor 3 may, for example, be done by using locking bolts (not shown) etc., where the locking bolts then lock the drum 31 of the deadline anchor 3 to the deadline anchor foundation 32.
When the wire or cable has been in use for a number of ton-miles in a hoisting system as described above, a certain length of the wire or cable 5 is “replaced”, due to wear and/or bending of the wire or cable 5, whereby the replacement is performed via a so-called “cut and slip” procedure. Such wear or bending of the wire or cable 5 most often occurs near the sheaves 6, in the crown block, and the traveling block 7, and when entering the drum of the winch 4 etc.
A method for replacing at least a section of a wire or cable 5 in a hoisting system according to the present invention will now be described in relation to
In
Wire or cable 5 will be reeled from the winch 4 to the storage drum 2 until a minimum number of turns of wire or cable 5 is left on the drum of the winch 4. The length of reeled wire or cable 5 onto the storage drum 2 will be approximately 60 m, while approximately 30 m will be left on the drum of the winch 4.
Storage drum 2 comprises a tire 21 and a base 22. The deadline anchor 3 comprises a drum 31 and a base 32, where the drum 31 and the base 32 are designed so that the drum 31 can be locked to the base 32 when the hoisting system is operational (in normal operation).
The embodiments described herein are intended for illustrative purposes and are not be deemed to be in any way limiting. A person skilled in the art can make modifications or alterations to the invention without departing from the scope of the present invention as defined in the appended claims. The individual steps of the procedure may, for example, in some cases be performed in a different order than other steps. It is also understood that the specified lengths of wire or cable that is spooled on or off the storage drum and/or the winch may vary, depending on the hoisting system lifting height, the drum diameter of the storage drum and/or winch drum, the number of sheaves and lines and/or the traveling block and drilling machine size etc. Reference should also be had to the appended claims.
What is claimed is:
Number | Date | Country | Kind |
---|---|---|---|
20140991 | Aug 2014 | NO | national |
This application is a U.S. National Phase application under 35 U.S.C. §371 of International Application No. PCT/NO2015/050126, filed on July 8, 2015 and which claims benefit to Norwegian Patent Application No. 20140991, filed on Aug. 15, 2014. The International Application was published in English on Feb. 18, 2016 as WO 2016/024866 A1 under PCT Article 21(2).
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NO2015/050126 | 7/8/2015 | WO | 00 |