The present invention relates to an improved voice/music piece reproduction apparatus and method for reproducing a particular voice sequence at designated timing within a music piece sequence.
In the field of mobile or portable phones (e.g., cellular phones) and the like today, it has been known to perform visual display and voice (e.g., human voice) reproduction in synchronism with a music piece. Japanese Patent Application Laid-open Publication No. 2002-101191 discloses a technique for audibly reproducing a music piece and voices in synchronism at predetermined timing.
Also, as an example of the technique for audibly reproducing voices (e.g., human voices) in synchronism with a music piece, there has been known a method, in accordance with which both a music piece sequence and a voice sequence are defined in a single sequence file so that a music piece and voices are audible reproduced by reproducing the sequence file.
The voice sequence included in the voice-added music piece data file includes time information indicative of generation timing of individual voices to be audibly reproduced or sounded, and the voice sequence can be synchronized with the music piece sequence in accordance with the time information. Thus, when editing the voice-added music piece data file or revising reproduced contents of the voice sequence, the conventional voice/music piece reproduction apparatus must edit or revise given portions while interpreting the time information of the two sequences to confirm synchronization between the voices and the music piece, so that the editing or revision would require a considerable time and labor. Further, where a plurality of reproduction patterns differing only in to-be-reproduced voices are necessary, a same music piece sequence must be prepared in correspondence with the respective to-be-reproduced voices, which would result in a significant waste in terms of a data size particularly in small-size equipment, such as portable phones.
In view of the foregoing, it is an object of the present invention to provide an improved voice/music piece reproduction apparatus, method and program and improved sequence data format which allow a voice sequence to be edited or revised with ease and can avoid a waste of a data size.
In order to accomplish the above-mentioned object, the present invention provides a voice/music piece reproduction apparatus, which comprises: a first storage section storing music piece sequence data composed of a plurality of event data, the plurality of event data including performance event data and user event data designed for linking a voice to progression of a music piece; a second storage section storing a plurality of voice data files; a music piece sequence reproduction section that sequentially reads out the individual event data of the music piece sequence data from the first storage section, a voice reproduction instruction being outputted in response to readout, by the music piece sequence reproduction section, of the user event data; a musical sound source section that generates a tone signal in accordance with the performance data read out by the music piece sequence reproduction section; a voice reproduction section that, in response to the voice reproduction instruction outputted by the music piece sequence reproduction section, selects a voice data files from among the voice data files stored in the second storage section and sequentially reads out voice data included in the selected voice data file; and a voice sound source section that generates a voice signal on the basis of the voice data read out by the voice reproduction section.
With such arrangements, voice data can be reproduced easily at predetermined timing in a progression of a music piece. Also, the inventive arrangements allow a voice data reproducing sequence, synchronized with the progression of the music piece, to be revised, edited, etc. with ease. The voice reproduction instruction may include information specifying a voice data file to be selected from among the voice data files stored in the second storage section. Further, desired voice data contents may be created in response to user's input operation, and a voice data file composed of the thus-created voice data contents may be written in the second storage section. Thus, in a manner original to each individual user, the necessary processing to be performed by the apparatus can be programmed with utmost ease such that the voice data are reproduced at predetermined timing in a progression of a music piece. This arrangement should be very advantageous and convenient for an ordinary user having no or little expert knowledge of music piece sequence data in that, where the present invention is applied to a portable phone or other portable terminal equipment, it. allows a music piece and voices to be linked together in a manner original to the user.
The present invention also provides a method for reproducing a voice and music piece using a storage medium storing music piece sequence data composed of a plurality of event data and a plurality of voice data files, the plurality of event data including performance event data and user event data designed for linking a voice to progression of a music piece, and the method comprises: a music piece sequence reproduction step of sequentially reading out the individual event data of the music piece sequence data from the storage medium, and outputting a voice reproduction instruction in response to readout of the user event data; and a voice reproduction step of, in response to the voice reproduction instruction outputted by the music piece sequence reproduction step, selecting a voice data files from among the voice data files stored in the storage medium and sequentially reading out voice data included in the selected voice data file. In the method, a tone signal is generated in accordance with the performance event data read out by the music piece sequence reproduction step, and a voice signal is generated on the basis of the voice data read out by the voice reproduction step.
The present invention also provides a program containing a group of instructions for causing a computer to perform the above voice/music piece reproduction method.
The present invention also provides a novel and useful format of voice/music piece reproducing sequence data, which comprises: a sequence data chunk including music piece sequence data composed of a plurality of event data that include performance event data and user event data; and a voice data chunk including a plurality of voice data files. According to the inventive format, the user event data is designed for linking a voice to progression of a music piece, and to the user event data is allocated a voice data file to be reproduced at generation timing of the user event, the voice data file to be reproduced at generation timing being selected from among the plurality of voice data files included in the voice data chunk.
The following will describe embodiments of the present invention, but it should be appreciated that the present invention is not limited to the described embodiments and various modifications of the invention are possible without departing from the basic principles. The scope of the present invention is therefore to be determined solely by the appended claims.
For better understanding of the object and other features of the present invention, its preferred embodiments will be described hereinbelow in greater detail with reference to the accompanying drawings, in which:
Reference numeral 8 represents a voice processing section, which decompresses compressed voice data output from the communication section 6 and converts the voice data into an analog signal to supply the converted analog signal to a speaker 9. The voice processing section 8 also converts a voice signal picked up by a microphone 10 into digital voice data and compresses the digital voice data to supply the compressed digital voice data to the communication section 6. Reference numeral 12 represents a sound source unit, which includes a music-piece reproducing sound source 12a and a voice reproducing sound source 12b. In the illustrated example, the music-piece reproducing sound source 12a is designed to generate a tone signal using the FM or PCM scheme, and the voice reproducing sound source 12b synthesizes a voice (e.g., human voice) using the waveform convolution scheme or formant synthesis scheme. Incoming call signaling melody (ring melody) is produced by the music-piece reproducing sound source 12a, and a tone imparted with voices (voice-added tone) is reproduced by both of the music-piece reproducing sound source 12a and voice reproducing sound source 12b. Note that, unless specified otherwise, the term “voice” as used herein typically refers to a human voice, such as a singing voice, humming or narrative voice; however, the term “voice” also refers to an artificially-made special voice, such as a voice of an animal or robot.
As shown in
Further, in
Next, operation of the instant embodiment of the voice/music piece reproduction apparatus will be described with reference to a flow chart and diagram of
Once the user designates a desired music piece by entering a unique music piece number of the music piece and instructs music piece reproduction on the operation section 4, the player 22 reads out the music piece data of the designated music piece from the music piece data file 21 and loads the read-out music piece data into the sound middleware 23, at step Sa1 of
Reproduction of the desired music piece is carried out by repeating the above-mentioned steps. Once a user event is detected during the course of the music piece reproduction, i.e. once a YES determination is made at step Sa4, the sound middleware 23 sends the user event to the player 27, at step Sa9. Upon receipt of the user event, the player 27 loads a voice data file 26 of a file number, designated by the user event, into the sound middleware 28, at step Sa10. In turn, the sound middleware 28 starts voice reproduction processing at step Sa11 and sequentially outputs the loaded voice data to the voice reproducing sound source 12b. Thus, the voice reproducing sound source 12b carries out the voice reproduction at step Sa12.
After sending the user event to the player 27, the sound middleware 23 determines at step Sa8 whether or not the end of the music piece data set has been detected. If answered in the negative at step Sa8, control reverts to step sa3 to repeat the above operations.
Next, a description will be given about a first example of use or application of the above-described voice/music piece reproduction apparatus, with reference to a diagram and flow chart of
In the first example of application, once application software is started up, inquiring voice data is supplied to the voice reproducing sound source 12b so as to perform inquiring voice reproduction (step Sbl of
Next, a description will be given about a second example of application of the above-described voice/music piece reproduction apparatus, with reference to a diagram and flow chart of
In the second example of application, once application software is started up, entry of lyrics is requested on a screen display or the like. In response to the request, the user selects a particular music piece (in which one or more user events are preset) and uses the numerical keypad to enter text of original lyrics at particular timing within the music piece, at step Sc1 of
Then, reproduction of a corresponding music piece data set is carried out at step Sc4. If a user event (having a file number of a voice data file allocated thereto) is detected during the course of the music piece data reproduction, then the voice data of the lyrics allocated to the user event through the above operations are reproduced. For example, words “Happy birthday, Ton chan!” are sounded to the music piece tones (
Note that the original lyrics may be sounded with a melody imparted thereto, in which case tone pitches and tone lengths may be allocated to individual elements (syllables) of the lyrics, for example, in any of the following manners.
(1) When the lyrics (text) are registered, tags indicative of predetermined tone pitches and lengths are imparted to the text, and the sound source controls pitches and lengths to be reproduced in accordance with the tags at the time of reproduction.
(2) When the music piece sequence is reproduced, tone pitches and lengths of the melody following the detected user event are extracted, and simultaneously tones corresponding to syllables constituting the lyrics (text) are controlled to assume the tone pitches and lengths to thereby generate the thus-controlled tones.
Here, the application software employed in the first and second examples may be prestored in the ROM 2 or may be made on the basis of JAVA (registered trademark).
Next, a description will be given about a second embodiment of the present invention.
Contents Info Chunk storing various managing information of the SMAF file;
Score Track chunk storing a sequence track of a music piece to be supplied to a sound source;
Sequence Data Chunk storing actual performance data; and
HV Data chunk storing HV (voice) data HV-1, H-2, . . . .
Sequence of actual performance data includes “HV Note ON” events recorded therein, and sounding of each data in the HV Data chunk is specified by the “HV Note ON” event. Note that the “HV Note ON” event corresponds to the user event in the first embodiment.
Further, in
Next, operation of the second embodiment of the voice/music piece reproduction apparatus will be described with reference to a diagram and flow chart of
Once the user instructs reproduction of a desired music piece, the player 32 reads out the corresponding designated music piece data from the SMAF file 31 and loads the read-out music piece data into the sound middleware 33, at step Sd1 of
Reproduction of the desired music piece is carried out by repeating the above-mentioned steps. Once an HV Note ON event is detected during the course of the music piece reproduction, i.e. once a YES determination is made at step Sd4, the sequencer 37 sends an ID designating HV data assigned to the HV Note ON event, at step Sd9. In turn, the player 34 reads out, from the SMAF file, the HV data designated by the ID and loads the HV data into the sound middleware 35, at step Sd10. The sound middleware 35 converts the HV data into sound source control data (parameters for designating a voice) and outputs the converted sound source control data to the sound source 39. Thus, the sound source 39 carries out the voice reproduction at step Sd11.
After sending the HV Note ON event to the player 34, the sequencer 37 determines at step Sd7 whether or not the data end has been detected. If answered in the negative at step Sd7, control reverts to step sd3 to repeat the above operations.
Similarly to the above-described first embodiment, the second embodiment can reproduce a music piece where a singing voice and/or narration is inserted.
The SMAF file is normally created by a contents maker and delivered to an interested user; however, if a user's portable terminal apparatus has a function to process the data of the SMAF file, the second embodiment permits use or application similar to the above-described second example of application.
One or more user event data within music piece sequence data are incorporated in advance in one or more positions (such as time positions and/or measure positions) of each individual music piece. With this arrangement, when the user performs operation to allocate desired voice data files, it is no longer necessary for the user to incorporate user events one by one into music pieces, which can significantly reduce burdens on the user. Namely, the user need not have detailed knowledge of the file structure of the music piece sequence data. The user only has to merely allocate desired voice data files in association with the previously-incorporated user events; alternatively, suitable voice data files are automatically allocated by application software. Therefore, when an amateur user, such as an ordinary user of a portable phone, having no or little expert knowledge of music piece sequence data, wants to freely incorporate original voices (e.g., human voices) in synchronism with music pieces, utmost ease of use or convenience an be achieved. Alternatively, one or more user event data may of course be freely incorporated by user's operation in corresponding relation to one or more desired positions within the music piece sequence data. In such a case, original voices can be incorporated at original timing in synchronism with music pieces.
As a modification, a plurality of voice data files may be allocated to one user event data so that the allocated voice data files can be reproduced sequentially (or simultaneously) with the timing of the user event data used as a start point of the reproduction.
Whereas the embodiments of the present invention have been described as reproducing voices in Japanese, voices in various other languages than Japanese, such as English, Chinese, German, Korean and Spanish, may be reproduced. Further, voices of animals in addition to or in place of human voices may be reproduced.
In summary, according to the present invention, a music piece data file including user events and voice data files whose reproduction is instructed by the user events are processed by respective reproduction sections. Thus, the present invention allows a voice sequence to be readily edited or revised as desired. Further, even in a case where a plurality of voice sequence patterns are to be prepared, it just suffice to prepare only a plurality of voice data files, so that the present invention can avoid a waste of a data size.
Number | Date | Country | Kind |
---|---|---|---|
2002-371750 | Dec 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4731847 | Lybrook et al. | Mar 1988 | A |
5235124 | Okamura et al. | Aug 1993 | A |
5703311 | Ohta | Dec 1997 | A |
5806039 | Fukada et al. | Sep 1998 | A |
6304846 | George et al. | Oct 2001 | B1 |
6321179 | Glance et al. | Nov 2001 | B1 |
6327590 | Chidlovskii et al. | Dec 2001 | B1 |
6424944 | Hikawa | Jul 2002 | B1 |
6459774 | Ball et al. | Oct 2002 | B1 |
6694297 | Sato | Feb 2004 | B2 |
6782299 | Tsuji et al. | Aug 2004 | B1 |
6928410 | Marila et al. | Aug 2005 | B1 |
7058889 | Trovato et al. | Jun 2006 | B2 |
20010027396 | Sato | Oct 2001 | A1 |
20030200858 | Xie | Oct 2003 | A1 |
20030212559 | Xie | Nov 2003 | A1 |
20040014484 | Kawashima | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
1330101 | Jul 2003 | EP |
62-137082 | Aug 1987 | JP |
62-194390 | Dec 1987 | JP |
2002-311967 | Oct 2002 | JP |
2002-334261 | Nov 2002 | JP |
WO-9940566 | Aug 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040133425 A1 | Jul 2004 | US |