The present invention relates generally to powder coating apparatus and methods of use, and more specifically, to apparatus and methods usable for rotating cylindrical members and coating the internal surfaces of the cylindrical members, including tubulars, pipe and the like.
Coating the inside of tubular members or tubulars, such as oilfield pipe, is well known in the art. Coating the inside of the tubular, by applying a material to the inside diameter or inside surface of the tubular which has been heated previously, is used to prevent corrosion and erosion of the inside surface. Additionally, pipe are often coated in order to reduce friction of the inside surface, as pipe that have been coated require less pressure to pump fluid therethrough, due to the reduced friction.
With recent advances in material science and increased demand for deeper and wider wells, downhole pipe lengths and diameters are increasing. The increased pipe lengths have limited the usefulness of prior coating devices, as these coating devices are unable to provide a uniform interior coating over an extended pipe length or a large pipe diameter. Despite the improvements in powder coating technology, problems of uneven coating thickness or gaps of bare metal on the inside surface of tubular goods have persisted.
Some existing devices have relied on introducing an excessive amount of coating material in order to ensure that the entire interior surface is coated. This procedure includes a thick application of material to the interior of the tubular, which can result in a coating layer that is too thick at one end and too thin at the opposite end. Furthermore, these existing coating devices are not adjustable to tubulars having different lengths and/or diameters. As such, each different pipe size or length requires a different volumetric flow rate therethrough, during coating operations, to maintain the desired powder velocities through the pipe for optimal coating formation.
Changes in pressure within the pipe during coating operations can also cause changes in the velocity of the coating material particles. A thick coating at the load end can result, where the particles have a long dwell or residence time upon initial loading. In addition, just downstream of the load end, a zone of reduced coating thickness can result from the sudden increase in particle velocity. Further, a zone of increasing coating thickness, toward the discharge end of the pipe, can result as the velocity of the particles through the pipe is reduced due to friction and decreased pressure. If increased air pressure is used to compensate for this action, the powder particles will have a greater velocity and will tend to pass through the discharge end without sufficient residence time to melt on the pipe wall, resulting in yet another zone of decreased film thickness. The number of bare metal gaps also tends to increase within the zone of decreased coating or film thickness.
Additionally, weld splatter inside the tubulars, which are manufactured with welded seams, is a common source of coating problems. Specifically, as some weld splatter is not removed when the pipe is cleaned prior to applying the coating, the splatter becomes part of the interior of the tubulars. Previous methods and devices for applying coating to the insides of tubulars are unable to sufficiently cover the bumps and cavities caused by weld splatter because of the improper rates of tubular rotation or improper powder velocities through the tubular.
Yet another drawback of previous devices is that they were unable to ensure constant rotation speeds for variously sized pipe. These previous devices are not automatically adjustable to tubulars having different diameters, wherein each differently sized diameter of the tubulars can rotate at a different speed to cause non-uniform rotation and application.
A further drawback of previous devices is that they rely on a human operator for controlling each step of the coating operations, which results in significant time delays over extended periods of operation.
Therefore, as the previous devices are totally or partially ineffective and deficient in coating the inside surface of tubulars, there is a need to provide improved apparatus and methods for uniformly applying a powdered coating material to the interior of tubulars, regardless of the diameter and/or length of the tubulars.
There is a need for providing a coating device that is adjustable to different tubular diameters, wherein the coating device can be adjusted to supply the necessary volumetric air flow rates into the tubulars to generate and maintain desired powdered coating material velocities during coating operations over the entire length of the tubulars, including tubulars having an extended length.
There is a need in the art for providing a coating device which rotates tubulars, no matter what their diameter, at a constant, predetermined speed.
There is also a need for providing a coating device that can automate each step of the coating operations, minimizing time delays between each phase of the coating operations.
Embodiments usable within the scope of the present disclosure meet these needs.
The present disclosure is directed to a system for coating an interior surface of a tubular member. An embodiment of the system can comprise a first coating apparatus and a second coating apparatus, each comprising an elongated barrel having a first end, a second end, and an axial bore extending longitudinally therethrough. Each coating apparatus can further comprise a conical member connected with the elongated barrel at the first end thereof, and a plurality of gas conduits connected to the elongated barrel. The conical members can connect with an end of the tubular member, and the plurality of gas conduits can communicate pressurized gas into the axial bore of the elongated barrel. Each gas conduit can further contain a gas flow control valve connected thereto for controlling the flow of gas through the gas conduit, wherein each flow control valve can control the flow of gas through each gas conduit independently from the other flow control valve. Each coating apparatus can comprise a first container for holding therein a coating material, an inlet conduit connected to the elongated barrel, and a plurality of gas nozzles connected to the elongated barrel. The inlet conduit can communicate the coating material from the first container into the axial bore of the elongated barrel and the inlet conduit can be connected to the elongated barrel between the plurality of gas conduits and the first end of the elongated barrel. The plurality of gas nozzles can introduce pressurized gas into the axial bore of the elongated barrel to induce a spiraling gas flow through the axial bore, toward the first end of the elongated barrel. The spiraling gas flow can cause the coating material to spiral as the coating material moves through the axial bore and the tubular member.
The present disclosure is further directed to a system for moving and rotating cylindrical members during coating and cleaning operations. An embodiment of the system comprises a first rotator apparatus and a second rotator apparatus positioned at a distance from each other. Each of the first and the second rotator apparatus can comprise a first wheel having a first axis of rotation and a second wheel having a second axis of rotation, wherein the first and second axes of rotation can be generally parallel. Each of the first and second rotators can further comprise an arm positioned adjacent the first and second wheels, wherein the arm can extend generally perpendicularly with respect to the first and second axes of rotation and can have a downwardly sloping upper edge. Each arm can receive a cylindrical member thereon and can move in an upward and/or downward direction. When moving in the downward direction, each arm can position the cylindrical member between the first and second wheels. When moving in the upward direction, each arm can move the cylindrical member from between the first and second wheels.
The present disclosure is further directed to a method for moving and rotating tubular members during coating and cleaning operations. The method can comprise the steps of providing a first rotator apparatus, comprising a first set of wheels and a first arm positioned adjacent to the first set of wheels, and providing a second rotator apparatus, comprising a second set of wheels and a second arm positioned adjacent to the second set of wheels. Each of the first arm and second arms can have an upper edge that can be downwardly sloping. The method can further comprise the steps of positioning a tubular member on the first and second upper edges, rolling the tubular member along the first and second upper edges from a first side of the first and second arms toward the second side of the first and second arms, and stopping the tubular member from rolling along the first and second arms at an intermediate position between the first and second sides of the first and second arms. Further steps can include moving the first and second arms in a downward direction to position the tubular member in contact with the first and second sets of wheels, rotating the first and second sets of wheels to rotate the tubular member, moving the first and second arms in an upward direction to lift the tubular member off of the first and second wheels, and rolling the tubular member along the first and second upper edges, toward the second end of the first and second arms, for removal from the first and second rotator apparatus.
The present disclosure is directed also to methods for coating an interior surface of a tubular member. The methods can comprise the steps of capturing the tubular member between a first conical member and a second conical member, rotating the tubular member, establishing a swirling air flow through the first tubular barrel with a plurality of nozzles positioned along the tubular barrel, and drawing air from the second tubular barrel with a vacuum generator. Further method steps can include introducing coating material into the first tubular barrel, whereby the swirling air flow moves the coating material through the tubular member in a swirling manner, communicating air into the first tubular member through an air conduit that can be connected to the first tubular member, upstream from the plurality of nozzles, to move the coating material through the tubular member to coat the tubular member; and adjustably controlling the volumetric flow rate of the air communicated into the first tubular member through the air conduit.
The foregoing is intended to give a general idea of the invention, and is not intended to fully define nor limit the invention. The invention will be more fully understood and better appreciated by reference to the following description and drawings.
In the detailed description of various embodiments usable within the scope of the present disclosure, presented below, reference is made to the accompanying drawings, in which:
One or more embodiments are described below with reference to the listed Figures.
Before describing selected embodiments of the present disclosure in detail, it is to be understood that the present invention is not limited to the particular embodiments described herein. The disclosure and description herein is illustrative and explanatory of one or more presently preferred embodiments and variations thereof, and it will be appreciated by those skilled in the art that various changes in the design, organization, means of operation, structures and location, methodology, and use of mechanical equivalents may be made without departing from the spirit of the invention.
As well, it should be understood that the drawings are intended to illustrate and plainly disclose presently preferred embodiments to one of skill in the art, but are not intended to be manufacturing level drawings or renditions of final products and may include simplified conceptual views to facilitate understanding or explanation. As well, the relative size and arrangement of the components may differ from that shown and still operate within the spirit of the invention.
Moreover, it will be understood that various directions such as “upper”, “lower”, “bottom”, “top”, “left”, “right”, “first”, “second” and so forth are made only with respect to explanation in conjunction with the drawings, and that components may be oriented differently, for instance, during transportation and manufacturing as well as operation. Because many varying and different embodiments may be made within the scope of the concept(s) herein taught, and because many modifications may be made in the embodiments described herein, it is to be understood that the details herein are to be interpreted as illustrative and non-limiting.
Referring now to
The rollers (56) can then rotate the pipe (9) while the first coating apparatus (100a) injects a first packet of powdered coating material (not shown), referred to from hereon as the coating material, into the pipe (9). Once the coating material travels the length of the pipe (9), the second coating apparatus (100b) can inject another packet of coating material into the opposite end of the pipe (9), wherein the second packet of coating material can travel through the pipe. After the coating cycles are complete, the coating apparatus (100a, 100b) can separate, allowing the pipe (9) to be removed and another pipe to be positioned for coating.
Referring still to
In other embodiments (not shown) of the powder coating system (10), the support frame (20) can guide the wheels (53, 113) by way of longitudinal channels that are incorporated along the longitudinal beams (21), wherein the channels guide the rolling motion of the wheels (53, 113). In yet another embodiment (not shown) of the powder coating system (10), the longitudinal beams (21) themselves can directly support and guide wheels that are adapted to be rolled thereon. In still another embodiment (not shown) of the powder coating system (10), the rails (23) or channels can extend the entire length of the support frame (20), allowing the first and second coating apparatus (100a, 100b) and the three rotators (50a-c) to move along any portion of the frame (20).
The support frame (20) is shown further comprising toothed bars (24), extending longitudinally between the longitudinal beams (21). The toothed bars (24) are depicted extending about half the length of the frame (20), below the third rotator (50c) and the second coating apparatus (100b). As explained herein, the toothed bars (24) are usable for moving the third rotator (50c) along the frame (20) when engaged by rotating gears of the corresponding drive assembly (85, see
The powder coating system (10), depicted in
Referring now to
The first rotator (50a) is further depicted comprising an arm (70) for loading and unloading a pipe (9) onto and from between the rollers (56). In
As shown in
The third rotator (50c), depicted in
Furthermore, the third rotator (50c) can be actuated to roll along the frame (20) by a drive assembly (85), depicted in
Referring again to
Referring again to
The coating material usable with the powder coating system (10) can be a thermosetting or thermoplastic compound that can fusion bond to the inner surface or wall of a pipe (9) when heated above the fusion temperature of the coating material. The material can be comminuted to a powder of a particle size(s) that will be supported by the gas or airflow rate within the pipe. For purposes of this application, gas shall include any gaseous mixture which may include fluids and small particles, for example, air. As further illustrated in
Pressurized air can be introduced into the air receiving chamber (165) by a conduit (161) extending from an air manifold (150), which can receive compressed air from a compressor (not shown) by an air supply conduit (155).
The powder coating system (10), including the various pressure and flow regulators disclosed herein, can be governed by a programmable controller or computer (not shown), which receives information concerning the length of the pipe (9) to be coated as well as the diameter of the pipe (9); and then, the controller or computer signals the various shut-off valves and pressure and flow regulators as to the length of time, the amount of pressure, and in what particular sequence the valves and regulators should be opened. Additionally, the shut-off valve (171) can be opened according to the specific requirements of each pipe, for various lengths of time, thereby admitting the appropriate amount of coating material for each pipe (9).
Further depicted in
As further illustrated in
The feed tube (170) can further contain, adjacent to the shut-off valve (170), an internal nozzle (175), directed along the central axis of the feed tube (170), away from the fluid bed (160), for drawing coating material from the fluid bed (160). The internal nozzle (175) can provide a push-pull effect on the coating material in the fluid bed (160) when the shut-off valve (171) is opened. While the pressure inside the fluid bed (160) pushes the coating material into the feed tube (170), the air flow from the internal nozzle (175) can generate suction to further draw the coating material from the fluid bed (160). The air flow within the feed tube (170) can promote air suspension of the coating material particles, thus forming a “cloud” of particles of coating material.
Pressurized air can be supplied to the nozzle (175) by a fluid conduit (154), wherein the air pressure and flow can be controlled by a pressure and flow regulator (159) connected to the air manifold (150). When the shut-off valve (171) and the pressure and flow regulator (159) are opened for a predetermined period of time, a predetermined amount of fluidized coating material can be drawn from the fluid bed (160), by the air flow generated by the nozzle (175), and communicated through the feed tube (170) into the coating barrel (120). The coating barrel (120) is shown extending the length of the first coating apparatus (100a), wherein the first end (e.g. front end) of the coating barrel (120) can be connected to the rotating joint (116), and the second end (e.g., back end) of the coating barrel (120) can have a quick shut-off valve (125) attached thereto, to open and close the second end of the coating barrel (120) and to connect with the coating material return tube (210). The quick shut-off valve (125) can be operated by any means in the art, including a fluid rotary actuator (126).
Referring again to
Referring again to
Referring also to
In an embodiment, the pitch of the nozzles (121, 122, 123) can be selectively adjusted to direct a jet of air into the central bore of the coating barrel (120), at a desired diagonal angle with respect to the central axis (5). As discussed above, this causes the gas or air flowing therethrough to flow in a spiral manner, comprising both axial and circumferential flow components, which mixes the powder and the gas. The pitch of the nozzle influences the amount of mixing between the powder and gas and adhesion with the tubular. Typically, all three nozzles (121, 122, 123) are oriented 30 degrees toward the rotatable cone 115. Orienting the pitch of one or more of the nozzles more toward the rotatable cone 115 will reduce the mixing between the powder and gas and reduce adhesion with the tubular. Conversely, orienting the pitch of one or more of the nozzles (121, 122, 123) toward the feed tube 170 would result in increased mixing between the powder and gas and increased adhesion with the tubular. In one embodiment, any nozzle can be adjusted manually by opening and adjusting a bezel on any one of the nozzles (121, 122, 123).
In various embodiments, the pitches of the nozzles could be operated individually or in concert. For example, a bell crank can adjust one nozzle individually, two nozzles, or all three nozzles together by having the bell crank connected to one, two, or all three nozzles respectively. In one embodiment, the adjustment by the operator can be automated wherein each nozzle can be controlled by a controller controlling at least one or a plurality of separate nozzle motors. The controller for the nozzles can be connected to the nozzle motors 199 with wires or through wireless communication. A computer running a program to operate the controller adjusting the pitch of nozzles (121, 122, 123) can be utilized to determine the most favorable pitch angle of the nozzles based on operating conditions and desired properties of the coating materials. The computer program could also be used to automatically, in real time, adjust the nozzles (121, 122, 123) based on the operating conditions to obtain favorable coating material properties.
The word “spiral” describes the shape of the air flow and the shape of the flow of the coating material through the coating barrel (120). As used herein, the word spiral refers to a helical or coiled shape. Specifically, the spiral movement has a longitudinal or axial component and a tangential or circumferential component. The coating material can move tangentially with respect to the central axis (5) at the inside surface of the coating barrel (120), wherein the inside surface of the coating barrel continually redirects the gas and coating material flow circumferentially along the inside surface of the coating barrel (120). The coating material can also move axially, wherein the coating material can flow along the inside surface of the coating barrel (120), along a direction parallel to the central axis (5) and toward the front end of the coating barrel (120). As the shape of the spiral movement is substantially circular or ring like, centrifugal force will maintain the coating material particles at or near the inside surface and away from the center or axis of the coating barrel (120) and the tubulars being coated. Therefore, because of the spiral movement, the density of the coating material particle cloud can be less, along the central axis (5) of the coating barrel (120) and the tubular being coated, than along the inside diameter or inside wall surface thereof.
During each coating sequence, pressurized air from the conduits (141, 142, 143) enters the coating barrel (120) and moves toward the front end of the coating barrel (120). The air is then deflected by directional air jets from the three sets of nozzles (121, 122, 123), resulting in spiral air movement as previously described. As the air flows though the coating barrel (120) in a spiral manner, toward the front end of the coating barrel (120), the air encounters the coating material particles that are entering the coating barrel (120) and deflects the coating material in the spiral direction. As the cloud of coating material spirals further downstream and past the nozzles (121, 122, 123), the spiral flow of coating material can be successively adjusted to comprise a greater circumferential flow component or a greater axial flow component. As the cloud of coating material exits the coating barrel (120), the cloud of coating material then spirals into the rotatable cone (115) and into the pipe (9) positioned within the cone (115).
The pipe (9) can be rotated in the opposite direction to the circumferential component of the spiral movement of the coating material. This increases the relative tangential or circumferential velocity of the coating particles at the inside surface of the pipe (9), and reduces dwell or residence time of the coating material particles at a given point on the inside surface of the pipe, whereby at higher air velocities, less coating is deposited on the hot pipe (9).
Referring again to
The present disclosure is further directed to an embodiment of a method or a process for coating the pipe (9) with the coating apparatus (10) described above. Prior to the start of the coating operations, the dimensions of the pipe (9), such as a length, an inner diameter, and an outer diameter, can be entered into the powder coating system (10) controller or computer (not shown) to calculate the amount of coating material that will be required to coat each pipe (9). The pipe dimensions can be used by the controller to control the operation of the plurality of motors, linear actuators, rotary actuators, and pressure and flow controllers in order to properly coat the pipe (9). Once the amount of coating material, which is needed to coat the specified pipe (9) to a given millage or thickness, is calculated, this and other data can be entered into the programmable controller to execute the coating sequence, which includes controlling variables such as volumetric air flow through the coating barrel (120), the amount of coating material that should be injected into the coating barrel (120), the amount of time that each shut-off valve should be opened or closed, and the rotting speed of the pipe (9). Prior to commencement of the coating operations, all the shut-off valves can be actuated or set to the closed position to prevent air flow therethrough.
Before the coating stage of the pipe coating process can start, the pipe can be heated to a desired temperature and ejected from the oven (not shown) onto pipe storage rack (not shown) or another pipe storage structure. The pipe can then be properly positioned for coating, between the cones (115) of the first and second coating apparatus (100a, 100b) and between the wheels (56) of opposite roller assemblies (55) on each rotator (50a-c), as depicted in
In order to evenly coat the pipe (9) with the coating material, the powder coating system (10) can be used by performing several specific steps or actions listed below. Referring again to
Once spiraling air flow is introduced in the pipe (9), the coating material can be introduced into the coating barrel (120) of the first coating apparatus (100a). Specifically, the rotary actuator (172) can open the shut-off valve (171) as the pressure and flow control valve (159) is opened to force air out of the internal nozzle (175). Simultaneously, the pressure and flow control valves (146, 147, 148) can be closed to prevent the introduction of air flow through conduits (141, 142, 143). Accordingly, the coating material is drawn from the fluid bed (160) and pushed though the feed tube (170) into the coating barrel (120) of the first coating apparatus (100a). As the coating material enters the coating barrel (120), the three sets of nozzles (121, 122, 123) induce the air and the coating material located inside the coating barrel (120) to spiral therein. Once a predetermined amount of coating material has been introduced into the coating barrel (120), the shut-off valve (171) is closed, preventing an inflow of the coating material.
The coating material, travelling in a spiral manner, will be forced outward and will expand outwardly immediately after exiting the first end of the coating barrel (120). The spiral motion can cause the coating material to move radially, as the coating material moves axially through the pipe (9), to coat the inside surface of the pipe with the coating material. As the spiraling cloud of coating material enters and moves through the pipe (9), the coating material settles and coats the inside surface of the pipe (9). Once all of the coating material moves from the coating barrel (120) into the pipe (9), the pressure and flow valves (156, 157, 158) can be closed to shut off flow to the nozzle sets (121, 122, 123).
Thereafter, as the cloud of coating material continues to move through the pipe (9) and reaches a mid-point along the length of the pipe, the cloud of coating material can be moved further by increasing the back pressure (e.g., pressure upstream from the moving coating material, pressure in the first coating apparatus (100a)) and shutting off suction generated by the second coating apparatus (100b). Specifically, when the cloud of coating material reaches about the mid-point along the length of the pipe (9), several actions can be performed at essentially the same time. First, the back end shut-off valve (125) of the second coating apparatus (100b) can be opened to allow any excess coating material particles to be deposited in the main container (201) of the first coating apparatus (100a). Second, one or more of the pressure and flow valves (146, 147, 148), of the first coating apparatus (100a), can open to introduce pressurized air into the coating barrel (120) for moving the coating material further through the coating barrel (120). Third, the vacuum shut-off valve (184) of the second coating apparatus (100b) can close to turn off suction at the coating barrel (120) of the second coating apparatus (100b). As the cloud of the coating material moves past the midpoint, along the length of the pipe (9), the coating material continues to adhere to the inside surface of the pipe until most or all of the coating material is used up, marking the end of the first coating cycle.
The second coating cycle can be the same or similar to the first coating cycle. Specifically, the sequence of steps described above can be performed by the opposite coating apparatus (100a, 100b), wherein the steps previously performed by the first coating apparatus (100a) can be performed by the second coating apparatus (100b), while the steps previously performed by the second coating apparatus (100b) can be performed by the first coating apparatus (100a). Once the second coating cycle is complete, the inside surface of the pipe (9) is coated with a second coat of the coating material and the pipe (9) can be removed from the rotators (50a-c).
Once the pipe (9) is ready for removal, the coating apparatus (100a, 100b) can roll away from each other, freeing the pipe (9) from the cones (115). Once again, the arm (70) can be lifted by the cylinders (77) until the upper edge (75) of the extending members (73) contact and lift the pipe (9). Once the pipe (9) clears the wheels (56), the pipe can roll along the upper edges (75, 71) until it rolls off the arm (70) and onto a collection rack or other container (not shown). A new uncoated pipe (not shown) can then be positioned on the rotators (50a-c), and the first and second coating cycles can be repeated.
While various embodiments usable within the scope of the present disclosure have been described with emphasis, it should be understood that within the scope of the appended claims, the present invention can be practiced other than as specifically described herein. It should be understood by persons of ordinary skill in the art that an embodiment of powder coating system (10) in accordance with the present disclosure can comprise all of the features described above. However, it should also be understood that each feature described above can be incorporated into the powder coating system (10) by itself or in combinations, without departing from the scope of the present disclosure.
This application is a Divisional of U.S. patent application Ser. No. 14/687,710, filed on Apr. 15, 2015. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2146305 | Link | Feb 1939 | A |
2420620 | Remington et al. | May 1947 | A |
2602415 | Hall | Jul 1952 | A |
2873716 | Daniel et al. | Feb 1959 | A |
3434758 | Fry | Mar 1969 | A |
3687704 | Stanley et al. | Aug 1972 | A |
3850660 | Inamura et al. | Nov 1974 | A |
3974306 | Inamura et al. | Aug 1976 | A |
3982050 | Kato et al. | Sep 1976 | A |
4089998 | Gibson | May 1978 | A |
4243699 | Gibson | Jan 1981 | A |
4340010 | Hart | Jul 1982 | A |
4382421 | Warren et al. | May 1983 | A |
4420508 | Gibson | Dec 1983 | A |
4454173 | Koga | Jun 1984 | A |
4666534 | Gray | May 1987 | A |
4698241 | Roberson | Oct 1987 | A |
4816296 | Gibson | Mar 1989 | A |
4958587 | Fogal, Sr. | Sep 1990 | A |
4987001 | Knobbe et al. | Jan 1991 | A |
6019845 | Nakakoshi | Feb 2000 | A |
6053420 | Ahlbert et al. | Apr 2000 | A |
6951309 | Buschor et al. | Oct 2005 | B2 |
8061296 | Batur | Nov 2011 | B1 |
20110244125 | Weisenberg et al. | Oct 2011 | A1 |
Entry |
---|
PCT/ISA/210, International Search Report, issued by USPTO, dated Jul. 8, 2018. |
PCT/ISA/237, Written Opinion of the International Searching Authority, issued by USPTO, dated Jul. 8, 2016. |
Number | Date | Country | |
---|---|---|---|
20180236475 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14687710 | Apr 2015 | US |
Child | 15959591 | US |