1. Field of the Invention
Embodiments described generally relate to reducing vortex induced vibrations. More particularly, embodiments described relate to apparatus and methods for reducing vortex induced vibrations on submerged marine elements.
2. Description of the Related Art
Marine elements, such as submerged pipelines, risers, tendons, and other structural components, are subject to vibrations caused by the periodic shedding of eddies resulting from fluid flow. These vibrations place stress on the submerged structures and reduce their fatigue lives. To reduce the effects of the vortex induced vibrations, vortex induced vibration inhibitors (VIVIs), such as fairings and strakes, are often placed on vibration sensitive marine elements. Fairings are generally more efficient in reducing drag and vortex induced vibrations. However, fairings can be difficult to secure on existing marine elements, especially underwater.
There is a need, therefore, for a new apparatus and method for securing fairings on submerged marine elements.
Apparatus and methods for securing fairings on submerged marine elements are provided. In at least one specific embodiment, the apparatus includes first and second opposing sides, a third side extending between the first and second sides, and an attachment mechanism extending from the third side. The apparatus can be configured to mount on a bearing block of a fairing, and the attachment mechanism can be configured to interlock with a corresponding attachment mechanism of an opposing connector to secure the fairing around the marine element.
In at least one specific embodiment of the method, a fairing can be placed around a marine element, and a first connector can be interlocked with a second connector to secure the fairing around the marine element, wherein the first connector is mounted on a first bearing block on a first inner side of the fairing and the second connector is mounted on a second bearing block on a second inner side of the fairing. The first and second connectors can each comprise first and second opposing sides; a third side extending between the first and second sides; and an attachment mechanism extending from the third side.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
A detailed description will now be provided. Each of the appended claims defines a separate invention, which for infringement purposes is recognized as including equivalents to the various elements or limitations specified in the claims. Depending on the context, all references below to the “invention” may in some cases refer to certain specific embodiments only. In other cases, it will be recognized that references to the “invention” will refer to subject matter recited in one or more, but not necessarily all, of the claims. Each of the inventions will now be described in greater detail below, including specific embodiments, versions and examples, but the inventions are not limited to these embodiments, versions or examples, which are included to enable a person having ordinary skill in the art to make and use the inventions, when the information in this disclosure is combined with publicly available information and technology.
Referring to
The fairing 100 can be constructed from any non-metallic, low corrosive material such as high or low density polyethylene, polyurethane, vinyl ester resin, poly vinyl chloride (PVC), or other materials with substantially similar flexibility and durability properties. These materials provide the fairing 100 with the flexibility be placed around the marine element during installation and the strength to stay on the marine element after installation. The use of such materials substantially eliminates the possibility of corrosion, which can cause the fairing 100 to seize up around the marine element it surrounds.
Referring to
A connector assembly 130 including first and second connectors 132, 134 can be used to secure the fairing 100 in place around the marine element. Each connector 132, 134 can include a generally U-shaped body 136 having first and second opposing sides 140, 144 and a third side 142 extending between the first and second sides 140, 144. The body 136 of each connector 132, 134 can be configured to mount on a bearing block 122, 124. Each side 140, 144 can include one or more connector apertures 139 (two are shown) formed therethrough. When a connector 132, 134 is mounted on a bearing block 122, 124, the connector apertures 139 in the first and second sides 140, 144 can be aligned with a corresponding bearing block aperture 129 such that a securing device (not shown) can be inserted therethrough to secure the connector 132, 134 to the bearing block 122, 124. The securing device can be a pin, screw, bolt, or any other device suitable to secure the connector 132, 134 to the bearing block 122, 124.
Referring to
One or more attachment mechanisms 138 can extend from the third side 142 of each connector 132, 134. The attachment mechanisms 138 on opposing connectors 132, 134 can be configured to interlock and/or engage to secure the fairing 100 in place around the marine element. For example, each attachment mechanism 138 can include a first portion 146 and a second portion 154. The first portion 146 can extend from a first end 156, disposed proximate the third side 142 of the body 136, to a second end 158, disposed proximate the second portion 154. The length of the first portion 146 can be tapered from the first end 156 to the second end 158. The first portion 146 can be centrally located along the third side 142, between the first side 140 and the second side 144. Alternatively, the first portion 146 can located along the third side closer to one side 140, 144 than the other 140, 144, i.e. off-center.
The second portion 154 can be oriented at an angle with respect to the first portion 146 to form a hook. The angle between the first portion 146 and the second portion 154 can range from a low of about 30°, about 40°, or about 50° to a high of about 60°, about 70°, or about 80°. Preferably, the angle is about 55°. In one or more embodiments, each connector 132, 134 can be a single, rigid component including the body 136 and the attachment mechanism 138.
Referring to
The second portion 164 can extend from the second end 172 of the first portion 162 at a first angle with respect to the first portion 162, and the third portion 166 can extend from the second end 172 of the first portion 162 at a second angle with respect the first portion 162 such that the second and third portions 164, 166 oppose one another and form a generally T-shaped hook. In one or more embodiments, the first and second angles can be the same. In one or more embodiments, the angle between the first portion 162 and the second and/or third portion 164, 166 can range from a low of about 20°, about 30°, or about 40° to a high of about 60°, about 70°, or about 80°. Preferably, the angle is about 50°.
Referring to
The length of the first portion 186 can be tapered from the first end 190 to the second end 191, and the length of the third portion 192 can be tapered from the first end 194 to the second end 195. In one or more embodiments, the first portion 186 can be positioned closer to the first side 140 than the second side 144, and the third portion 192 can be positioned closer to the second side 144 than the first side 140, or vice versa.
The second portion 188 can extend from the second end 191 of the first portion 186 at a first angle with respect to the first portion 186 such that the first and second portions 186, 188 together form a first hook. The fourth portion 193 can extend from the second end 195 of the third portion 192 at a second angle with respect to the third portion 192 such that the third and fourth portions 192, 193 together form a second hook. In one or more embodiments, the first and second hooks can face one another and be configured to interlock with the generally T-shaped hook of the attachment mechanism 161 of the connector 160 (see
The fairing 100 can be placed around a marine element, and the first and second connectors 132, 134, 160, 180 can be interlocked to secure the fairing 100 around the marine element. The first connector 132, 160 can be mounted on the first bearing block 122 on an inner surface of the first side 102 of the fairing 100, and the second connector 134, 180 can be mounted on the second bearing block 124 on an inner surface of the second side 104 of the fairing 100. In one or more embodiments, a remotely operated vehicle (ROV) (not shown) can transport the fairing 100 toward the marine element, and the ROV can place the fairing 100 around the marine element.
In one or more embodiments, the first and second connectors 132, 134, 160, 180 can be secured to the first and second bearing blocks 122, 124 before the fairing 100 is submerged. Once the ROV engages the fairing 100, the ROV can transport the fairing 100 to a marine element. The ROV can then place the marine element between the first 102 and second 104 sides of the fairing 100. The ROV can then press the fairing 100 onto the marine element. As the fairing 100 is pressed onto the marine element, the attachment mechanism 138, 161 of the first connector 132, 160 can slidingly disengage the attachment mechanism 138, 181 of the second connector 134, 180. Once the fairing 100 is disposed around the marine element, the attachment mechanism 138, 161 of the first connector 132 can slidingly re-engage the attachment mechanism 138, 181 of the second connector 134 to secure the fairing 100 around the marine element.
After the fairing 100 has been placed around the marine element, the first and second connectors 132, 134, 160, 180 can be secured to the first and second bearing blocks 122, 124. The ROV can mount the first connector 132 onto the first bearing block 122, aligning the connector apertures 139 and the bearing block apertures 129. The ROV can then secure the first connector 132, 160 to the first bearing block 122 by inserting the securing device into the aligned apertures 129, 139. After the ROV has secured the first connector 132 to the first bearing block 122, the ROV can then slide the second connector 134, 180 onto the second bearing block 124, aligning the connector apertures 139 and bearing block apertures 129. As the second connector 134, 180 is slid into place, the attachment mechanism 138, 161 of the first connector 132, 160 can slidingly engage the attachment mechanism 138, 181 of the second connector 134, 180, interlocking the first and second connectors 132, 134, 160, 180. The ROV can then secure the second connector 134, 180 to the second bearing block 124 by inserting a securing device into each of the aligned apertures 129, 139.
Certain embodiments and features have been described using a set of numerical upper limits and a set of numerical lower limits. It should be appreciated that ranges from any lower limit to any upper limit are contemplated unless otherwise indicated. Certain lower limits, upper limits, and ranges appear in one or more claims below. All numerical values are “about” or “approximately” the indicated value, and take into account experimental error and variations that would be expected by a person having ordinary skill in the art.
Various terms have been defined above. To the extent a term used in a claim is not defined above, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Furthermore, all patents, test procedures, and other documents cited in this application are fully incorporated by reference to the extent such disclosure is not inconsistent with this application and for all jurisdictions in which such incorporation is permitted.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application having Ser. No. 13/514,468, filed on Jun. 7, 2012, which claims the benefit of U.S. Provisional Patent Application having Ser. No. 61/267,788, filed on Dec. 8, 2009, both of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3241513 | Rather et al. | Mar 1966 | A |
4171674 | Hale | Oct 1979 | A |
4474129 | Watkins et al. | Oct 1984 | A |
5456199 | Kernkamp | Oct 1995 | A |
5678504 | Toplosky et al. | Oct 1997 | A |
6010278 | Denison et al. | Jan 2000 | A |
6019549 | Blair et al. | Feb 2000 | A |
6048136 | Denison et al. | Apr 2000 | A |
6179524 | Allen et al. | Jan 2001 | B1 |
6401646 | Masters et al. | Jun 2002 | B1 |
6702026 | Allen et al. | Mar 2004 | B2 |
6845644 | Buckner | Jan 2005 | B1 |
7337742 | Masters et al. | Mar 2008 | B1 |
8523492 | Baugh | Sep 2013 | B2 |
20050254903 | McMillan et al. | Nov 2005 | A1 |
20080050181 | Masters et al. | Feb 2008 | A1 |
20090185867 | Masters et al. | Jul 2009 | A1 |
20090252558 | Masters et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2402266 | Dec 2004 | GB |
Number | Date | Country | |
---|---|---|---|
20150003917 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
61267788 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13514468 | US | |
Child | 14486976 | US |