The present invention relates to portable storage devices, and in particular to portable storage devices including a microprocessor.
Portable storage devices are in commercial use for many years to carry data from one computer to another or to store backup data. The simpler devices, such as floppy disks or writable CDs are dumb in the sense that they do not include processing power. The more sophisticated ones, such as portable hard disk drives or portable flash memory disks, do include a microprocessor for controlling the storage management.
When a portable storage device is connected to a computer, the computer takes control over the read/write operation via its operating system. Thus, there is a procedure of “mounting” the portable storage device, in which data exchanged between the device and the computer establishes the storage device as another disk drive, and from this moment on, the computer controls all read/write operations under well-established standards. If the storage device is dumb, for instance with a floppy disk, then the computer manages all physical addressing through file allocation tables (FAT) that are maintained on the storage device. However, when the storage device includes a microprocessor, the addressing made by the computer is actually virtual, since the microprocessor can transform addresses received from the computer to other addresses, for example for wear-leveling of flash memory disks.
A user of a portable storage device may lose it and then face the risk of others reading his files. This may be highly undesirable since such files may contain personal or commercially-confidential information. A commonly-used solution for protecting data is encryption. A file that is considered confidential will be encrypted using a common encryption algorithm such as Data Encryption Standard (DES) or triple-DES using a secret key known only to the user. Thus, an obvious way for protecting data carried on a portable storage device would be encrypting it on the computer and then copying the encrypted version onto the portable device and carrying it securely. When approaching another computer having a compatible decryption software, the user will need to copy the encrypted version onto that computer and key-in the secret key in order to open the file and use it normally.
The method described above will be however inconvenient, since not all visited computers may have the appropriate software, and manual encryption and decryption of individual, selected files is cumbersome.
There is therefore, a need to secure the data stored on portable storage devices independently of a host device, and allow access only when the user has provided an appropriate password or biometric identification data.
The object of the present invention is to employ the microprocessor included in a portable storage device for securing data stored in the device in a way that will be both convenient and secure.
According to the present invention there is provided a secure portable storage device for securing user data under a clear key, the portable storage device being connectable to a host device, the host device selectably sending data to be written onto the portable storage device and receiving data read from the portable storage device, the secure portable storage device comprising: a storage medium including a secure user area; and a microprocessor operable to use the clear key to decrypt data read from the secure user area and encrypt data written onto the secure user area.
According to the present invention there is provided a secure portable storage device for securing user data under a user password, the portable storage device being connectable to a host device, the host device selectably sending data to be written onto the portable storage device and receiving data read from the portable storage device, the secure portable storage device comprising: a storage medium including a secure user area; and a microprocessor operable to exclude access from the host device to the secure user area unless the user password is provided to the microprocessor.
According to the present invention there is provided in a first preferred embodiment a method for using a user password for securing and accessing user data exchanged with a host device and stored in a portable storage device, the portable storage device including a microprocessor, the method comprising: (a) generating a secret key by: operating the microprocessor to generate a random clear key, operating the microprocessor to encrypt the clear key with the user password to obtain the secret key, and storing the secret key within the portable storage device; (b) selectably storing first user data in the portable storage device by receiving the first user data from the host device, retrieving the secret key from the portable storage device, operating the microprocessor to decrypt the secret key with the user password to obtain the clear key, and operating the microprocessor to encrypt the first user data and store the encrypted first user data within the portable storage device; and (c) selectably retrieving second encrypted user data from the portable storage device by: reading second encrypted user data from the portable storage device, retrieving the secret key from the portable storage device, operating the microprocessor to decrypt the secret key with the user password to obtain the clear key, and decrypting the second encrypted user data with the clear key and sending the decrypted second user data to the host device.
According to the present invention there is provided in a second preferred embodiment a method for using a user password for securing and accessing user data exchanged with a host device and stored in a portable storage device; the portable storage device including a microprocessor, a secure storage area, and a register to contain a representation of the user password; the method comprising: (a) selectably receiving an entered user password; (b) operating the microprocessor to check the entered user password against the representation of the user password, and then: if the check is positive, operating the microprocessor to allow access, and if the check is negative, operating the microprocessor to exclude access from the secure storage area.
According to the present invention, the second preferred embodiment of the method provided herein further comprises: (a) generating a secret key by operating the microprocessor to generate a random clear key, operating the microprocessor to encrypt the clear key with the user password to obtain the secret key, and storing the secret key within the portable storage device; (b) selectably storing first user data in the portable storage device by receiving the first user data from the host device, retrieving the secret key from the portable storage device, operating the microprocessor to decrypt the secret key with the user password to obtain the clear key, and operating the microprocessor to encrypt the first user data and store the encrypted first user data within the portable storage device; and (c) selectably retrieving second encrypted user data from the portable storage device by reading second encrypted user data from the portable storage device, retrieving the secret key from the portable storage device, operating the microprocessor to decrypt the secret key with the user password to obtain the clear key, and decrypting the second encrypted user data with the clear key and sending the decrypted second user data to the host device.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
System Structure
Referring now to the drawings,
Initial Setup
In step 502, the user is prompted to enter a password (or, alternatively, a biometric signature via a biometric reader such as a fingerprint reader), and also enter the desired allocation of memory for secure area 122. For example, he/she may read on the screen of user interface 104 “64 MB of memory available, please select how much of this you would like to allocate for your secure data”, and key in a number such as “48 MB”.
In step 503, the memory offset is calculated from the difference between the total user memory and the allocation for secure data; for instance, in the above example, “offset”=64 MB−48 MB=16 MB. Then the password entered in step 502 is bashed by microprocessor 111 using a standard hash algorithm. Microprocessor 111 also generates a random “clear” key and encrypts it using the password (see
It should be appreciated that the term “password” should be interpreted broadly as data accessible to the user only, which may be a string of alphanumeric characters known to the user only, or a set of biometric parameters read from the user via an appropriate device. A password may be kept with the user only, or kept with and automatically inserted by a trusted host device, e.g. the user's personal desktop computer. Although the most preferred embodiment includes the storage of a hashed password in register 124 as described above, it should be appreciated that in certain cases requiring less security, a non-hashed, clear password may be stored in the register.
In step 504, communication link 120 between storage device 110 and host device 101 is disconnected by microprocessor 111, which from the viewpoint of CPU 102 of the host is interpreted as if the portable storage device has been dismounted or moved to a “device not ready” status. Then CPU 102 continually polls port 105 to identify whether a new device has been connected. When microprocessor 111 reconnects communication link 120, i.e. when storage device 110 is logically remounted, CPU 102 accepts storage medium 113 as if it were a new storage device. However, the parameters of this storage area are represented by microprocessor 111 to cover clear user area 121 only, i.e. address offset 125A is 0 and the size of the storage area is the size allocated by the user in step 502. In step 506 the setup program instructs host device 101 to format clear user area 121, i.e. set up the initial contents of areas 401-405 of
In step 507, portable storage device 110 is dismounted and remounted again by the setup program similarly to the process in step 504. However, this time, microprocessor 111 represents secure user area 122, i.e. all physical memory addresses are offset by microprocessor 111 by the calculated offset parameter stored in register 125, and the memory size is that allocated by the user for secure user area 122 in step 502. In step 508 the setup program calls host device 101 to format the currently-accessible storage area, this time secure user area 122, i.e. to enter standard formatting parameters into memory segments 406-410 as shown in
Accessing the Secure Area
In step 703, the entered password is hashed by microprocessor 111 and the hashed entered password is then compared to the hashed stored password in register 124. The reason for hashing the entered password and comparing it to a hashed stored password rather than storing the password in clear in register 124 is to prevent an attack on the password by disassembling storage device 110 and reading the content of register 124 from storage medium 113 by an external reader. If the hashed entered password matches the stored hashed password in step 703, then step 704 will route the procedure to step 706. Otherwise, there will be two additional attempts via a test 711, which will lead to either a rejection of the access to the secure user area in step 712, or to the successful entry into step 706.
In step 706, controller 111 dismounts and remounts portable storage device 110, similarly to steps 504 or 507 of
On-The-Fly Encryption/Decryption
Steps 701-708 in
Reference is now made to
While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made.
Number | Name | Date | Kind |
---|---|---|---|
4816654 | Anderl et al. | Mar 1989 | A |
5282247 | McLean et al. | Jan 1994 | A |
5392351 | Hasebe et al. | Feb 1995 | A |
5418852 | Itami et al. | May 1995 | A |
5457746 | Dolphin | Oct 1995 | A |
5828053 | Kinugasa | Oct 1998 | A |
5857021 | Kataoka et al. | Jan 1999 | A |
6035380 | Shelton et al. | Mar 2000 | A |
6088802 | Bialick et al. | Jul 2000 | A |
6550011 | Sims, III | Apr 2003 | B1 |
6738877 | Yamakawa et al. | May 2004 | B1 |
6768942 | Chojnacki | Jul 2004 | B1 |
6865431 | Hirota et al. | Mar 2005 | B1 |
6880054 | Cheng et al. | Apr 2005 | B2 |
6950939 | Tobin | Sep 2005 | B2 |
6976165 | Carpentier et al. | Dec 2005 | B1 |
6999947 | Utsumi et al. | Feb 2006 | B2 |
7039811 | Ito | May 2006 | B2 |
7043615 | Kobayashi et al. | May 2006 | B1 |
7055038 | Porter et al. | May 2006 | B2 |
7100053 | Brown et al. | Aug 2006 | B1 |
7124301 | Uchida | Oct 2006 | B1 |
7137011 | Harari et al. | Nov 2006 | B1 |
20010032088 | Utsumi et al. | Oct 2001 | A1 |
20020029254 | Davis et al. | Mar 2002 | A1 |
20020029343 | Kurita | Mar 2002 | A1 |
20020044663 | King et al. | Apr 2002 | A1 |
20020118095 | Estes | Aug 2002 | A1 |
20020145507 | Foster | Oct 2002 | A1 |
20020194479 | Beuten et al. | Dec 2002 | A1 |
20030005337 | Poo et al. | Jan 2003 | A1 |
20030041253 | Matsui et al. | Feb 2003 | A1 |
20030078709 | Yester et al. | Apr 2003 | A1 |
20030097340 | Okamoto et al. | May 2003 | A1 |
20030191716 | Woods et al. | Oct 2003 | A1 |
20030229791 | De Jong | Dec 2003 | A1 |
20040059925 | Benhammou et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
2377525 | Jan 2003 | GB |
WO0161692 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040103288 A1 | May 2004 | US |