The present invention generally relates to communications systems and, more particularly, to wireless systems, e.g., terrestrial broadcast, cellular, Wireless-Fidelity (Wi-Fi), satellite, etc.
A Wireless Regional Area Network (WRAN) system is being studied in the IEEE 802.22 standard group. The WRAN system is intended to make use of unused television (TV) broadcast channels in the TV spectrum, on a non-interfering basis, to address, as a primary objective, rural and remote areas and low population density underserved markets with performance levels similar to those of broadband access technologies serving urban and suburban areas. In addition, the WRAN system may also be able to scale to serve denser population areas where spectrum is available. Since one goal of the WRAN system is not to interfere with TV broadcasts, a critical procedure is to robustly and accurately sense the licensed TV signals that exist in the area served by the WRAN (the WRAN area).
In the United States, the TV spectrum currently comprises ATSC (Advanced Television Systems Committee) broadcast signals that co-exist with NTSC (National Television Systems Committee) NTSC broadcast signals. The ATSC broadcast signals are also referred to as digital TV (DTV) signals. Currently, NTSC transmission will cease in 2009 and, at that time, the TV spectrum will comprise only ATSC broadcast signals.
Since, as noted above, one goal of the WRAN system is to not interfere with those TV signals that exist in a particular WRAN area, it is important in a WRAN system to be able to detect ATSC broadcasts. One known method to detect an ATSC signal is to look for a small pilot signal that is a part of the ATSC signal. Such a detector is simple and includes a phase lock-loop with a very narrow bandwidth filter for extracting the ATSC pilot signal. In a WRAN system, this method provides an easy way to check if a broadcast channel is currently in use by simply checking if the ATSC detector provides an extracted ATSC pilot signal. Unfortunately, this method may not be accurate, especially in a very low signal-to-noise ratio (SNR) environment. In fact, false detection of an ATSC signal may occur if there is an interfering signal present in the band that has a spectral component in the pilot carrier position.
In order to improve the accuracy of detecting ATSC broadcast signals in very low signal-to-noise ratio (SNR) environments, segment sync symbols and field sync symbols embedded within an ATSC DTV signal are utilized to improve the detection probability, while reducing the false alarm probability. In particular, and in accordance with the principles of the invention, an apparatus comprises a transceiver for communicating with a wireless network over one of a number of channels, and an Advanced Television Systems Committee (ATSC) signal detector for use in forming a supported channel list comprising those ones of the number of channels upon which an ATSC signal was not detected, wherein the ATSC signal detector includes a filter matched to a PN63 sequence of an ATSC signal for filtering a received signal on one of the number of channels for providing a filtered signal for use in determining if the received signal is an ATSC signal.
In an illustrative embodiment of the invention, the receiver is a Wireless Regional Area Network (WRAN) receiver and wherein the ATSC signal detector is a coherent ATSC signal detector.
In another illustrative embodiment of the invention, the receiver is a Wireless Regional Area Network (WRAN) receiver and wherein the ATSC signal detector is a non-coherent ATSC signal detector.
In view of the above, and as will be apparent from reading the detailed description, other embodiments and features are also possible and fall within the principles of the invention.
Other than the inventive concept, the elements shown in the figures are well known and will not be described in detail. Also, familiarity with television broadcasting, receivers and video encoding is assumed and is not described in detail herein. For example, other than the inventive concept, familiarity with current and proposed recommendations for TV standards such as NTSC (National Television Systems Committee), PAL (Phase Alternation Lines), SECAM (Sequential Couleur Avec Memoire) and ATSC (Advanced Television Systems Committee) (ATSC) is assumed. Further information on ATSC broadcast signals can be found in the following ATSC standards: Digital Television Standard (A/53), Revision C, including Amendment No. 1 and Corrigendum No. 1, Doc. A/53C; and Recommended Practice: Guide to the Use of the ATSC Digital Television Standard (A/54). Likewise, other than the inventive concept, transmission concepts such as eight-level vestigial sideband (8-VSB), Quadrature Amplitude Modulation (QAM), orthogonal frequency division multiplexing (OFDM) or coded OFDM (COFDM)), and receiver components such as a radio-frequency (RF) front-end, or receiver section, such as a low noise block, tuners, and demodulators, correlators, leak integrators and squarers is assumed. Similarly, other than the inventive concept, formatting and encoding methods (such as Moving Picture Expert Group (MPEG)-2 Systems Standard (ISO/IEC 13818-1)) for generating transport bit streams are well-known and not described herein. It should also be noted that the inventive concept may be implemented using conventional programming techniques, which, as such, will not be described herein. Finally, like-numbers on the figures represent similar elements.
A TV spectrum for the United States as known in the art is shown in Table One of
In addition to the TV spectrum shown in
Since it is important for any channel sensing to be accurate, we have observed that increasing the accuracy of either the timing or carrier frequency references in a receiver improves the performance of signal detection, or channel sensing, techniques (whether these techniques are coherent or non-coherent). In particular, a receiver comprises a tuner for tuning to one of a number of channels, a broadcast signal detector coupled to the tuner for detecting if a broadcast signal exists on at least one of the channels, wherein the tuner is calibrated as a function of a received broadcast signal. An illustrative embodiment of the invention is described in the context of using an existing ATSC channel as a reference.
An illustrative Wireless Regional Area Network (WRAN) system 200 incorporating the principles of the invention is shown in
An illustrative portion of a receiver 300 for use in CPE 250 is shown in
Before describing the inventive concept, the general operation of receiver 300 is as follows. An input signal 304 (e.g., received via antenna 255 of
Turning now to
Preferably, controller 325 looks for the strongest ATSC signal currently broadcasting in the WRAN area. However, controller 325 may stop at the first detected ATSC signal.
Turning briefly to
Tuner 305 comprises amplifier 355, multiplier 360, filter 365, divide-by-n element 370, voltage controlled oscillator (VCO) 385, phase detector 375, loop filter 390, divide-by-m element 380 and local oscillator (LO) 395. Other than the inventive concept, the elements of tuner 305 are well-known and not described further herein. In general, the following relationship holds between the signals provided by LO 395 and VCO 385:
where Fref is the reference frequency provided by LO 395, Fvco is the frequency provided by VCO 385, n is the value of the divisor represented by divide-by-n element 370 and m is the value of the divisor represented by divide-by-m element 380. Equation (1) can be rewritten as:
It can be observed from equation (2) that Fvco can be set to different ATSC DTV bands by appropriate values of n, as set by controller 325 (step 260 of
Referring now to
Continuing with step 270 of
F
c
=nF
step
+F
offset. (3)
where Fc represents the frequency of the pilot signal of the detected ATSC signal. With regard to the value for Foffset in equation (3), controller 325 determines this value by simply accessing the associated data in NCO 420, via bidirectional path 327. However, while the value for n was already determined by controller 325 for the selected ATSC channel, the actual value of Fstep is unknown. However, equation (3) can be rewritten as:
While this solution seems straightforward, it should be recalled that the value for Fc is not uniquely determined as suggested by Table One of
As such, using the values from Table One and Table Three (e.g., stored in the earlier-noted memory), controller 325 performs two calculations to determine different values for Fstep:
where FC(1) represents the low band edge from Table One for the selected ATSC channel plus the low band edge offset from the first row of Table Three; and FC(2) represents the low band edge from Table One for the selected ATSC channel plus the low band edge offset from the second row of Table Three. As a result, controller 325 determines two possible values for
Fstep for use in receiver 300. Thus, in step 270, controller 325 determines tuning parameters for use in calibrating receiver 300.
Finally, in step 275, controller 325 scans the TV spectrum to determine the supported channel list, which comprises one, or more, TV channels that are not being used and, as such, are available for supporting WRAN communications. For each channel that is selected by controller 325 (e.g., from the list of Table One), the observations with respect to equations (3), (4), (4a) and (4b) still apply. In other words, for each selected channel the offsets shown in Table Three must be taken into account. Since there are two offsets shown in Table Three and there are two possible values for Fstep as determined in step 270 (equations (4a) and (4b)), four scans are performed. (If the offsets listed in Table Two were used, there would be 142 scans or 196 scans). For example, in the first scan, controller 325 sets tuner 305, via path 326, to different values for n for each of the ATSC channels. Controller 325 determines the values for n by solving equation (3) for n:
where the value for Fstep is equal to the determined value for FStep(1) and the value for Fc is equal to the low band edge from Table One for the selected ATSC channel plus the low band edge offset from the first row of Table Three. However, for the second scan, while the value for Fstep is still equal to the determined value for FStep(2), the value for Fc is now changed to be equal to the low band edge from Table One for the selected ATSC channel plus the low band edge offset from the second row of Table Three. The third and fourth scans are similar except that the value for Fstep is now set equal to the determined value for FStep(2). During each of these scans, as tuner 305 is tuned to provide a selected channel, ATSC signal detector 320 processes the received signals to determine if an ATSC signal is present on the currently selected channel. Data, or information, as to the presence of an ATSC signal is provided to controller 325 via path 321. From this information, controller 325 builds the supported channel list. Thus, the stability and known frequency allocation of DTV channels themselves are used to calibrate receiver 300 in order to enhance detection of low SNR ATSC DTV signals. As such, in step 275, receiver 300 is able to scan for ATSC signals that may be present even in a very low SNR environment because of the precise frequency information (Foffset and the various values for Fstep) determined in step 270. The target sensitivity is to detect ATSC signals with a signal strength of −116 dBm (decibels relative to a power level of one milliwatt). This is more than 30 dB (decibels) below the threshold of visibility (ToV). It should be noted that, depending on the drift characteristics of the local oscillator, it may be necessary to periodically re-calibrate. It should also be noted that further variations to the above-described method can also be implemented. For example, the ATSC signal detected in step 260 can be excluded from the scans performed in step 275. Further, any re-calibrations can immediately be performed by tuning to the identified ATSC signal from step 260 without having to perform step 260 again. Also, once an ATSC signal is detected in step 275, the associated band can be excluded from any subsequent scans.
As noted above, receiver 300 includes an ATSC signal detector 320. In accordance with the principles of the inventions, ATSC signal detector 320 takes advantage of the format of an ATSC DTV signal. DTV data is modulated using 8-VSB (vestigial sideband). In particular, for a receiver operating in low SNR environments, segment sync symbols and field sync symbols embedded within an ATSC DTV signal are utilized by the receiver to improve the probability of accurately detecting the presence of an ATSC DTV signal, thus reducing the false alarm probability. In an ATSC DTV signal, besides the eight-level digital data stream, a two-level (binary) four-symbol data segment sync is inserted at the beginning of each data segment. An ATSC data segment is shown in
After the PN511 sequence, there are three identical pseudo-random sequences of 63 bits (PN63) concatenated together, with the second PN63 sequence being inverted every other data field.
In view of the above, one embodiment of ATSC signal detector 320 in accordance with the principles of the invention is shown in
Another method to detect the presence of an ATSC DTV signal is to use the data segment sync. Since the data segment sync repeats every data segment, it is usually used for timing recovery. This timing recovery method is outlined in the above-noted Recommended Practice: Guide to the Use of the ATSC Digital Television Standard (A/54). However, the data segment sync can also be used to detect the presence of a DTV signal using the timing recovery circuit. If the timing recovery circuit provides an indication of timing lock, it ensures the presence of the DTV signal with high confidence. This method will work even if the initial local symbol clock is not close to the transmitter symbol clock, as long as the clock offset is within the pull-in range of the timing recovery circuitry. However, it should be noted that since the useful range was down to 0 dB SNR, there needs to be an additional 15 dB improvement to reach the above-noted detection goal of −116 dBm.
Another approach that can be used to detect an ATSC signal is to process the segment syncs independent of the timing recovery mechanism employed. This is illustrated in
Other than the above-described coherent methods for detecting an ATSC signal, non-coherent approaches may also be used, i.e., down-conversion to baseband via use of the pilot carrier is not required. This is advantageous since robust extraction of the pilot can be problematic in low SNR environments. One illustrative non-coherent segment sync detector is shown in
Similarly to the earlier-described embodiments operating at baseband, other non-coherent embodiments may also utilize the longer PN511 sequences found within the field sync. However, it should be noted that some modifications may have to be made to accommodate the frequency offset. For example, if the PN511 sequence is to be used as an indicator of the ATSC signal, there may be several correlators used simultaneously to detect its presence. Consider the case where the frequency offset is such that the carrier undergoes one complete cycle or rotation during the PN511 sequence. In such a case, the matched correlator output between the input signal and a reference PN511 sequence would sum to zero. However, if the PN511 sequence is broken into N parts, each part would have appreciable energy, as the carrier would only rotate by 1/N cycles during each part. Therefore, a non-coherent correlator approach can be utilized advantageously by breaking the long correlator into smaller sequences, and approaching each sub-sequence with a non-coherent correlator, as shown in
Another illustrative embodiment of an ATSC signal detector in accordance with the principles of the invention is shown in
An alternative embodiment of an ATSC signal detector that matches to the PN63 sequence is shown in
Yet additional variations are shown in
Turning now to
Other variations to the above are possible. For example, the PN63 and PN511 matched filters can be cascaded, in order to make use of their inherent delay-line structure to reduce the amount of additional delay line needed. In another embodiment, three PN63 matched filters can be employed rather than a single PN63 matched filter plus delay lines. This can be done with or without use of a PN511 matched filter.
As described above, the performance of a broadcast signal detector is enhanced by first calibrating the tuner to a received broadcast signal before scanning the spectrum for other broadcast signals. Thus, in the context of a WRAN system, it is possible to detect the presence of ATSC DTV signals in low signal-to-noise environments with high confidence. It should be noted that although the receiver of
In view of the above, the foregoing merely illustrates the principles of the invention and it will thus be appreciated that those skilled in the art will be able to devise numerous alternative arrangements which, although not explicitly described herein, embody the principles of the invention and are within its spirit and scope. For example, although illustrated in the context of separate functional elements, these functional elements may be embodied in one, or more, integrated circuits (ICs). Similarly, although shown as separate elements, any or all of the elements may be implemented in a stored-program-controlled processor, e.g., a digital signal processor, which executes associated software, e.g., corresponding to one, or more, of the steps shown in, e.g.,
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/021596 | 6/5/2006 | WO | 00 | 8/7/2008 |
Number | Date | Country | |
---|---|---|---|
60774126 | Feb 2006 | US |