This application claims the benefit of Korean Patent Application No. 2001-19263, filed on Apr. 11, 2001, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to an apparatus and method for slicing a radio frequency (RF) signal in a disk drive, and more particularly, to an apparatus and method for slicing a disk drive RF signal and compensating for the slice level of the RF signal, which is capable of optimizing the slice level of the RF signal in accordance with variation in the symmetry of the RF signal.
2. Description of the Related Art
Disk drives are devices for reproducing data recorded on a disk, such as CD-DA/ROM/R/RW or DVD-ROM/R/RW/RAM, or recording data on the disk. Such disk drives include an apparatus for slicing an RF signal, which converts an RF signal reproduced from a disk into a digital signal.
When an RF signal reproduced from a disk (not shown) is applied to a positive terminal (+) of a comparator 101, the comparator 101, which is comprised of a Schmitt's trigger, slices the RF signal. In other words, the comparator 101 compares a level of a digital RF signal, which is fed back to a negative terminal (−) of the comparator 101 via a low pass filter 102, with a level of the RF signal, which is currently being applied to the positive terminal (+) of the comparator 101, and outputs a digitalized RF signal. The digitalized RF signal is called an “eight to fourteen modulation (EFM) signal.”
As described above, the conventional apparatus for slicing an RF signal simply uses the result of low-pass filtering and the output of the comparator 101 as a reference level (slice level) required to slice an RF signal. Accordingly, if the degree of symmetry of an RF signal recorded on a disk is too high or the beta value of the RF signal is very low due to errors in disk mastering or recording, the information on the disk may not be normally reproduced and various errors may be caused that increase a block error rate.
To solve the above-described problems, it is an object of the present invention to provide an apparatus and method for slicing an RF signal and compensating for the slice level of an RF signal, which is capable of minimizing a block error rate by optimizing the slice level of an RF signal in accordance with a variation in the symmetry of the RF signal.
Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Accordingly, to achieve the above and other objects, there is provided an apparatus for slicing an RF signal in a disk drive, the apparatus comprising a comparator, which converts an RF signal reproduced from a disk into a digital signal by comparing the RF signal with a slice level, a low-pass filter, which low-pass filters the digital signal and provides the result to the comparator as the slice level, and a slice level compensator, which compensates for the slice level provided to the comparator by the low-pass filter in accordance with variations in the symmetry of the RF signal.
According to another aspect of the present invention, there is provided an apparatus for compensating for a slice level in an apparatus for slicing an RF signal, which converts an RF signal reproduced from a disk into a digital signal, the apparatus for compensating for the slice level comprising a peak holder, which detects and holds peak levels of the RF signal, a bottom holder, which detects and holds bottom levels of the RF signal, a low-pass filter, which low-pass filters the RF signal, a controller, which measures variations in the symmetry of the RF signal using outputs of the peak holder, the bottom holder, and the low-pass filter and determines an amount by which the slice level will be compensated according to the measured variation in the symmetry of the RF signal, and a slice level adjuster, which adjusts the slice level based on the determined amount by which the slice level will be compensated.
Also, the present invention provides a method of slicing an RF signal reproduced from a disk in a disk drive, the method comprising determining an amount to compensate a slice level used to convert the RF signal into a digital signal by measuring variations in symmetry of the RF signal, adjusting the slice level based on the determined amount by which the slice level will be compensated, and outputting a digital signal corresponding to the RF signal by comparing the level of the RF signal with the adjusted slice level.
According to another aspect of the present invention, there is provided a method of compensating for a slice level in an apparatus for slicing an RF signal, which converts an RF signal reproduced from a disk into a digital signal, the method comprising, detecting and holding peak levels of the RF signal, detecting and holding bottom levels of the RF signal, low-pass filtering the RF signal, measuring variations in symmetry of the RF signal using the peak levels of the RF signal, the bottom levels of the RF signal and the result of the low-pass filtering of the RF signal, determining an amount to compensate the slice level based on the measured variations in the symmetry of the RF signal, and adjusting the slice level based on the determined amount by which the slice level will be compensated.
The above objects and advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings in which:
Reference will now be made in detail to the present preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The example embodiments are described below to explain the present invention by referring to the figures.
Referring to
The second low-pass filter 211 filters an RF signal reproduced from a disk (not shown) and provides data corresponding to average values of the RF signal to the controller 214. For example, the second low-pass filter 211 provides to the controller 214 voltage levels (points where voltage reaches 0) of the RF signal in accordance with time, as shown in
The bottom holder 212 detects bottom levels of the RF signal based upon pit lengths T according to time and reproduced from the disk. Next, the bottom holder 212 transmits the detected bottom levels of the RF signal to the controller 214 and maintains the detected bottom levels of the RF signal. For example, when the waveform of the RF signal is the same as that shown in
The peak holder 213 detects peak levels of the RF signal based upon pit lengths T according to time and applied thereto and transmits the detected peak levels of the RF signal to the controller 214 while maintaining the detected peak levels of the RF signal. In other words, when the waveform of the RF signal applied to the peak holder 214 is same as that shown in
When the second low-pass filter 211, the bottom holder 212, and the peak holder 213 apply their respective outputs to the controller 214, the controller 214 measures variations in symmetry of the RF signal based on the outputs of the second low-pass filter 211, the bottom holder 212, and the peak holder 213. Next, the controller 214 determines an amount to compensate the slice level of the RF signal according to variations in the symmetry of the RF signal. The controller 214 provides the determined amount by which the slice level of the RF signal will be compensated, to the slice level adjustor 215.
Equation (1) is an expression for a beta value based upon pit lengths T according to time, where T is a reproduction clock. The beta value is inversely proportional to degree of symmetry of a mastered or recorded disk.
In operation 403, the controller 214 determines the amount by which the slice level of the RF signal will be compensated based on the beta value obtained in operation 402. In other words, the controller 214 determines the amount to compensate the slice level of the RF signal by selecting, for example, from a previously stored table, an appropriate value corresponding to the beta value computed in operation 402 or by identifying whether the beta value computed in operation 402 is within a predetermined range. When the beta value is not within the predetermined range further identifying whether the beta value is no greater than the minimum value in the predetermined range or no less than the maximum value in the predetermined range. The predetermined range is a range within which there is no need to compensate for the slice level of an RF signal.
In a case where the slice level of an RF signal is below the minimum value in the predetermined range, the slice level of the RF signal is determined to be increased. In a case where the slice level of an RF signal exceeds the maximum value in the predetermined range, the slice level of the RF signal is determined to be decreased. In a case where the slice level of an RF signal is within the predetermined range, there is no need to compensate for the slice level of the RF signal. Since the beta value is inversely proportional to the degree of symmetry of the RF signal, and the amount to compensate the slice level of an RF signal is determined based on the beta value, variations in the symmetry of the RF signal can be sufficiently reflected in the degree of symmetry of the RF signal.
As described above, if in operation 403, the amount to compensate the slice level of an RF signal is determined based on the beta value obtained in operation 402, in operation 404 the controller 214 provides the determined amount to compensate the slice level of the RF signal to the slice level adjustor 215.
The slice level adjustor 215 adjusts slice level of an RF signal output from the first low-pass filter 202 (the level of a reference signal of the comparator 201) based on the amount to compensate the slice level as determined by the controller 214. Next, the slice level adjustor 215 transmits the adjusted slice level of the RF signal to a negative terminal (−) of the comparator 201.
The comparator 201 can output an EFM signal appropriately compensated for a slice level of an RF signal in accordance with variations in symmetry of the RF signal. The EFM signal corresponds to an analog RF signal.
In a method of slicing an RF signal according to the present invention, a beta value is computed to measure variations in symmetry of the RF signal reproduced from a disk. Next, the amount to compensate the slice level of the RF signal is determined based on the computed beta value. Next, the slice level of the RF signal is adjusted in accordance with the determined amount by which the slice level of the RF signal will be compensated. Here, the slice level of the RF signal will be used to convert the RF signal reproduced from the disk (not shown) into a digital signal. Next, the digital signal corresponding to the RF signal reproduced from the disk is output by comparing the RF signal and the adjusted slice level of the RF signal.
In a method of compensating for the slice level of an RF signal according to the present invention, peak levels and bottom levels of the RF signal reproduced from a disk are detected and held. Next, a result of filtering the RF signal through a low-pass filter is obtained. Next, variations in symmetry of the RF signal are measured using the peak and bottom levels of the RF signal and the result of filtering the RF signal through the low-pass filter. It is possible to measure the variations in the symmetry of the RF signal by computing a beta value expressed in Equation (1). Next, the amount by which the slice level of the RF signal will be compensated for is determined based on variation in the symmetry of the RF signal. Next, the slice level of the RF signal is adjusted based on the determined amount.
According to the present invention, it is possible to precisely control a slice level of an RF signal reproduced from a disk when slicing the RF signal even in a case where the symmetry of the RF signal recorded on the disk is varied due to errors in disk mastering or recording. Accordingly, it is possible to minimize a block error rate in reproducing the RF signal from the disk and thus enhance reproducing performance of a disk drive.
While this invention has been particularly shown and described with reference to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. For example, the example embodiment of the present invention described relates to a case of compensating for a slice level of an RF signal by computing a beta value. However, the slice level of the RF signal may be compensated by computing degree of symmetry of the RF signal as follows:
In Equation 3, AVG designates an average, PLT(min) designates a Peak Land of minimum T, BPT(min) designates a Bottom Pit of minimum T, PLT(max) designates a Peak Land of maximum, and BPT(max) designates a Bottom Pit of maximum T. For reference, if the value of T is wider, the amplitude of Land and Pits are greater. However, when T reaches a certain value, the amplitude of Pits and Lands may be saturated.
For example, the degree of the symmetry of the RF signal shown in
Number | Date | Country | Kind |
---|---|---|---|
2001-19263 | Apr 2001 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
4015108 | Morton | Mar 1977 | A |
4706236 | Yoda | Nov 1987 | A |
4829499 | Abe | May 1989 | A |
4965782 | Mathews | Oct 1990 | A |
4975657 | Eastmond | Dec 1990 | A |
5134607 | Fuji et al. | Jul 1992 | A |
5377054 | Yamaguchi et al. | Dec 1994 | A |
5444688 | Fuji | Aug 1995 | A |
5490127 | Ohta et al. | Feb 1996 | A |
5559560 | Lee | Sep 1996 | A |
5696757 | Ozaki et al. | Dec 1997 | A |
5832039 | Rijns | Nov 1998 | A |
5841751 | Komazaki et al. | Nov 1998 | A |
5920534 | Furuta et al. | Jul 1999 | A |
6028829 | Yamazaki | Feb 2000 | A |
6069499 | Cho et al. | May 2000 | A |
6130871 | Watabe | Oct 2000 | A |
6272102 | Kahlman | Aug 2001 | B1 |
6292448 | Yoshida et al. | Sep 2001 | B1 |
6333902 | Shim | Dec 2001 | B1 |
6389548 | Bowles | May 2002 | B1 |
6396787 | Lee et al. | May 2002 | B1 |
6459315 | Orii | Oct 2002 | B2 |
6526007 | Fujita | Feb 2003 | B1 |
6557126 | Kelly | Apr 2003 | B1 |
6611485 | Kim et al. | Aug 2003 | B2 |
6680891 | Kim et al. | Jan 2004 | B2 |
6704252 | Aso et al. | Mar 2004 | B2 |
6735260 | Eliezer et al. | May 2004 | B1 |
6798725 | Horibe et al. | Sep 2004 | B1 |
6807134 | Nakajima et al. | Oct 2004 | B2 |
7023790 | Ueki | Apr 2006 | B2 |
Number | Date | Country |
---|---|---|
06-28675 | Feb 1994 | JP |
06-325365 | Nov 1994 | JP |
08-31101 | Feb 1996 | JP |
2000-48367 | Feb 2000 | JP |
2000-200420 | Jul 2000 | JP |
2000-276848 | Oct 2000 | JP |
2001-53650 | Feb 2001 | JP |
2000-9001 | Feb 2000 | KR |
Number | Date | Country | |
---|---|---|---|
20020181616 A1 | Dec 2002 | US |