The invention relates to an apparatus for speech recognition in which the speech is optionally converted into electrical signals via a microphone close to the speaker and is supplied to a recognition system via a first transmission channel, or is converted into electrical signals via a microphone remote from the speaker and is supplied to the recognition system via a second transmission channel, and in which the recognition system compares the speech elements recorded using the respective microphone with speech elements learned previously in a training phase, and, in case of agreement, produces a recognition signal. In addition, the invention relates to a method for speech recognition.
In the recognition of speech or of speech elements, there is often the difficulty that the speech elements input via a microphone are affected by and overlaid with variance in room acoustics. The transmission characteristics of the room/space can significantly influence the recognition rate of the recognition system. Previously realized apparatuses and methods for speech recognition do not take into account changes in the transmission function of the room. In general, in the previous apparatuses and methods it has been assumed that the transmission function in the transmission of the speech of a person remains the same up to the digital recording, both in the training phase and also in later use for speech recognition, in particularly in the case of speaker-dependent speech recognition.
However, in speech recognition via e.g., a telephone, such an assumption is not made, because telephone systems currently in use have the possibility of switching between a telephone close to the speaker, in which the microphone of the telephone handset is held close to the mouth of the speaker, and a microphone remote from the speaker, in which (in a hands-free state, the microphone records voices at a greater distance. The typical distance for a microphone close to the speaker is in the range from 0 to 30 cm, that is, predominantly direct sound is converted into electrical signals. For microphone remote from the speaker, the distance is greater, and direct sound elements are mixed together resulting from echo effects, wall reflections, and direct sound. If the microphone close to the speaker is used during the training phase and a microphone remote from the speaker is used later, the recognition rate is deceased due to the different room transmission functions, as a result of the different transmission paths.
The object of the invention is to indicate an apparatus and a method for speech recognition that operates with high reliability, independent on the speaker's distance from a microphone.
This object is achieved by an apparatus for speech recognition, comprising a microphone close to a speaker or a microphone remote from the speaker, which produces electrical signals from speech elements of the speaker; a recognition system to which the electrical signals are supplied, the electrical signals being supplied via a first transmission channel when the microphone is a microphone close to the speaker, and the electrical signals being supplied via a second transmission channel when the microphone is a microphone remote from the speaker, the recognition system comparing speech elements recorded by the microphone with speech elements learned previously in a training phase, and, in case of agreement, producing a recognition signal; a correction unit connected into the first transmission channel, the correction unit modifying the electrical signals in such a way that they have room transmission characteristics as they occur in recording with a microphone remote from the speaker. The correction unit can be configured to simulate acoustic reflections from nearby objects and/or room reverberation. The correction unit may be fashioned as a stationary filter or an adaptive filter, and the adaptive filter's parameters can be set depending on recorded audio signals. Each microphone may also attach to a preamplifier. Compensation filters may also be provided for the compensation of varying microphone and amplifier frequency response characteristics. The recognition system may use a spectral analysis or an LPC ceptral analysis as its method.
The object of the invention is also achieved by a method for speech recognition, comprising the steps of: converging speech elements of a speaker into electrical signals using a microphone close to the speaker or a microphone remote from the speaker; supplying the electrical signals from the microphone, when the microphone is a microphone close to the speaker, to a recognition system via a first transmission channel; supplying the electrical signals from the microphone, when the microphone is a microphone remote from the speaker, to the recognition system via a second transmission channel; recording speech elements in a training phase; recording speech elements with the microphone in an operating phase; comparing the recorded speech elements in the training phase with the recorded speech elements in the operating phase in the recognition system and, in case of agreement, producing a recognition signal; modifying the electrical signals from the first transmission channel in such a way that they have room transmission characteristics as they occur during recording with the microphone remote from the speaker. The correction unit can simulate acoustic reflections from nearby objects and/or room reverberations.
According to the invention, a correction unit is connected into the first transmission channel that modifies the electrical signal in such a way that it contains room transmission characteristics. Thus, the speech input via a microphone close to the speaker is modified in the electrical signal in such a way that it has the characteristics of speech that has been input via the microphone remote from the speaker. Thus, the correction unit is used to simulate the room acoustic influences for a relatively large speech transmission path. The correction unit stimulates, for example acoustic reflections from nearby objects and/or room reverberation.
An exemplary embodiment of the invention is explained in the following on the basis of the drawings.
In the lower part of
In operation of the apparatus shown in
Number | Date | Country | Kind |
---|---|---|---|
198 11 879 | Mar 1998 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE99/00289 | 2/3/1999 | WO | 00 | 9/15/2000 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO99/48086 | 9/23/1999 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5267323 | Kimura | Nov 1993 | A |
5515445 | Baumhauer et al. | May 1996 | A |
5528731 | Sachs et al. | Jun 1996 | A |
5737485 | Flanagan et al. | Apr 1998 | A |
5765124 | Rose et al. | Jun 1998 | A |
6219645 | Byers | Apr 2001 | B1 |
6275800 | Chevalier et al. | Aug 2001 | B1 |
Number | Date | Country |
---|---|---|
43 12 155 | Oct 1994 | DE |