This invention relates to stimulation of subterranean formations.
In the recovery of oil and gas from subterranean formations it is common practice to fracture the hydrocarbon-bearing formation, providing flow channels for oil and gas. These flow channels facilitate movement of the hydrocarbons to the wellbore so they may be produced from the well. Without fracturing, many wells would not be economically viable.
In such fracturing operations, a fracturing fluid is hydraulically injected down a wellbore penetrating the subterranean formation. The fluid is forced down the interior of the wellbore casing, through perforations, and into the formation strata by pressure. The formation strata or rock is forced to crack open, and a proppant carried by the fluid into the crack is then deposited by movement of the viscous fluid containing proppant into the crack in the rock. The resulting fracture, with proppant in place to hold open the crack, provides improved flow of the recoverable fluid, i.e., oil, gas, or water, into the wellbore.
The perforations are generally produced by lowering a tool containing explosive charges into the wellbore to the depth of the formation of interest and detonating the explosive charges. In many cases, the wellbore casing or completion string is cemented to the subterranean formations, and the explosive charges penetrate the cement and casing.
These charges are shaped to provide outward forces and to blast a hole through the wellbore casing and into the hydrocarbon bearing formation.
Due to the hazards of handling, transporting, and using explosives in the remote locations where oil and gas wells are frequently located, it is desirable to eliminate the use of explosives as a means to create wellbore casing perforations.
Prior art fracturing systems often use expensive equipment to produce the perforations, and to control which of the perforations the fracturing fluid will flow and which area of the formation will be subject to stimulation. Once fracturing is complete, the equipment must remain in the wellbore, which is very expensive.
In one aspect, this invention discloses a method of stimulating a subterranean formation having a wellbore formed therein which includes a completion string having a wall with burst disks formed therein, and a well treatment tool connected to and in fluid communication with a treatment tubing having a conduit therein. The tool has at least one opening formed straddled by two interval isolation devices. The treatment tubing is fed into the completion string and the well treatment tool is positioned such that the isolation devices straddle the set of burst disks. Treatment fluid is then pumped under pressure through the conduit, and treatment fluid ejecting from the opening in the tool increases pressure within a space within the completion string between the two interval isolation devices to rupture the burst disks. Subsequent to the rupture of burst disks, the treatment fluid passes into an isolated annulus interval and then stimulates the formation.
In another aspect, this invention discloses a method of stimulating a subterranean formation having a wellbore formed therein comprising the step of rupturing burst disks in any sequence, wherein the sequence is independent of the pressure threshold of the burst disks.
In yet another aspect, this invention discloses a burst disk in a completion string wall defined by a discrete section of the string wall with reduced thickness. This section of reduced wall thickness is defined by an end wall of a bore formed partway through the completion string wall.
In yet another aspect, this invention discloses a method of stimulating a subterranean formation having a wellbore formed therein comprising the step of rupturing a set of burst disks using a well treatment tool, moving the tool downhole from the set of burst disks, pumping treatment fluid down the annulus between the treatment tubing and completion string through the ruptured burst disks to stimulate the formation.
In another aspect, this invention relates to a method comprising providing a tubular member capable of fluid flow in a wellbore of a subterranean formation, wherein the tubular member comprises at least one burst disk with a rupture pressure threshold and positioned at a location within the tubular element, wherein the burst disk blocks the flow of fluid while intact, and is adapted to rupture at the rupture pressure threshold to provide a flow path for fluid inside the tubular member to the outside of the tubular member; isolating the burst disk; flowing fluid in the tubular member; and, increasing the pressure inside the tubular member until the burst disk ruptures.
A plurality of burst disks can be included in the tubular member wherein each burst disk has a rupture pressure threshold and is positioned at a location within the tubular member, and wherein each burst disk blocks the flow of fluid while intact, and is adapted to rupture at the rupture pressure threshold to provide a flow path for fluid inside the tubular member to the outside of the tubular member. After after rupturing a first burst disk, a second burst disk may be isolated, fluid may be flowed in the tubular member; and the pressure may be increased inside the tubular member until the second burst disk ruptures. The steps of isolating a burst disk, flowing fluid in the tubular member; and, increasing the pressure inside the tubular member until the isolated burst disk ruptures, can be repeated for additional burst disks in the tubular member. The order of isolating of the burst disks may independent of the rupture pressure thresholds of the burst disks. In the case of a horizontal well, the order of rupture may be from the toe end to a heal section or in the reverse direction. In a vertical well, the order can be top to bottom or bottom to top.
An inside section of the tubular member where the burst disk is located, may be sealed with at least one isolation device whereby the increase in pressure is confined to the isolated section of the tubular member defined by the isolation device.
The isolation device can be selected from the group consisting of at least one packer and at least one cup or may be located on a treatment string in the tubular member. The isolation device may comprise a cup-cup tool.
The burst disk may comprises a cap which blocks fluid flow to the burst disk from outside of the tubular member.
Fluid can be flowed in the tubular member at a pressure sufficient to stimulate the formation.
A section of annulus formed by the tubular member and the wellbore where the burst disk is located may be sealed with at least one isolation device.
A section of annulus formed by the tubular member and the wellbore where the burst disk is located may be cemented. The annulus at the burst disk location may be sufficiently minimized whereby the cement can be ruptured by a fluid flowing through the ruptured burst disk. A section of the subterranean formation may be treated by flowing a treatment fluid through the ruptured burst disk wherein the cement is sufficiently ruptured to permit the treatment fluid to reach the formation.
In a further aspect, this invention relates to a burst disk comprising a port in a wall of the tubular member, a burstable disk with a rupture pressure threshold sealing the port when intact, and a cap spaced from the burstable disk, wherein the cap and burstable disk defining a chamber in the port. The atmospheric pressure inside the chamber may be sufficiently low to facilitate rupture of the burstable disk. The burstable disk may be integrally formed with the wall of the tubular member. The burstable disk may be sealingly engaged with the port. The burst disk may further comprise a retainer for maintaining the burstable disk in sealing engagement with the port when intact.
In yet another aspect, this invention relates to a method further comprising (a) providing a tubular member capable of fluid flow in a wellbore of a subterranean formation, wherein the tubular member comprises a plurality of burst disks, each burst disk with a rupture pressure threshold and positioned at a location within the wall of the tubular element, (b) isolating a first burst disk by a movable isolation device, (c) bursting the first disk, (d) moving the isolation device down hole of the first burst disk, (e) prior to isolating a second burst disk, treating a section of the subterranean formation by flowing a fluid through the ruptured first burst disk, (f) moving the isolation device up hole of the first burst disk, (g) isolating the second burst disk by the movable isolation device (h) bursting the second disk, (i) moving the isolation device down hole of the second burst disk, and sealing the ruptured first burst disk, and (j) treating a section of the subterranean formation by flowing a fluid through the ruptured second burst disk. The isolation device may be selected from the group consisting of at least one packer and at least one cup, a cup-cup tool, and a tool with two packers or two cups. Steps (d) to (J) may be repeated for each remaining intact burst disk, and it will be understood that in repeating steps (d) to (j), the “first burst disk” and “second burst” become the third and fourth burst disks respectively. Steps (d) to (j) may be repeated for subsequent burst disks (fourth/fifth, sixth/seventh etc.).
In another aspect, this invention relates to a method comprising providing a tubular member capable of fluid flow in a wellbore of a subterranean formation, wherein the tubular member comprises at least one acid soluble burst disk with an acid concentration threshold and positioned at a location within the tubular element, wherein the burst disk blocks the flow of well treatment while intact, and is adapted to dissolve at the acid concentration threshold to provide a flow path for fluid inside the tubular member to the outside of the tubular member. The annulus formed by the tubular member and the wall of the wellbore may be sealed with a cement which may be acid soluble. An acid may be flowed in the tubular member at a concentration sufficient to at least partially dissolve at least one burst disk to permit a fluid to flow through the burst disk and may be flowed through the dissolved burst disk to at least partially dissolve the cement to permit a fluid to flow through the cement to the formation wall. A fluid may be in the tubular member at a pressure sufficient to stimulate the formation. A section of the annulus formed by the tubular member and the wellbore where the burst disk is located may be sealed with at least one isolation device. The isolation device may be movable and may be selected from the group consisting of a packer and a cup, two packers, two cups and a cup-cup tool.
A first acid soluble burst disk may be isolated by a movable isolation device, an acid may be flowed at a concentration sufficient to at least partially dissolve the first burst disk to rupture it to permit a fluid to flow through the burst disk, the isolation device may be moved down hole of the first burst disk following rupture, a section of the subterranean formation may be treated by flowing a fluid through the ruptured burst disk, and the ruptured first burst disk can be sealed. After sealing the ruptured burst disk, the isolation device may be moved to a second acid soluble burst disk to isolate it, an acid may be flowed at a concentration sufficient to at least partially dissolve at the second burst disk to rupture it to permit a fluid to flow through the burst disk, the isolation device may be moved down hole of the second burst disk following rupture, and a section of the subterranean formation may be treated by flowing a fluid through the ruptured second burst disk.
In another aspect, this invention relates to a method comprising providing a first tubular member capable of fluid flow in a wellbore of a subterranean formation, wherein the tubular member comprises at least one burst disk with a rupture pressure threshold and positioned at a location within the tubular member, wherein the burst disk blocks the flow of well treatment while intact, and is adapted to rupture at the rupture pressure threshold to provide a flow path for fluid inside the tubular member to the outside of the tubular member; providing a second tubular member in the first tubular member; isolating the burst disk; flowing fluid in the second tubular member; and, increasing the pressure inside the first tubular member until the burst disk ruptures. The burst disk may be isolated by at least one isolation element exterior to the first tubular member and at least one isolation element in the annulus between the first and second tubular members. The exterior isolation element may be cement. A fluid may be flowed in the second tubular member and inside the first tubular member until the isolated burst disk ruptures. At least one other burst disk at a different interval may be present in the tubular member and the steps of isolating, flowing fluid and rupturing can be repeated for the other burst disk or disks. A fluid may be flowed in the first tubular member at a pressure sufficient to stimulate the formation. The ruptured burst disk may be sealed with particulate, a ball or other suitable sealing means.
In another aspect, this invention relates to a burst disk assembly comprising a port, a burstable disk with a rupture pressure threshold sealingly engaged with the port wherein the burstable disk blocks the passage of fluid through the port while intact; and a cap sealingly engaged with the port and spaced from the burstable disk wherein the cap blocks the passage of fluid through the port while intact and wherein the port, burstable disk and cap define a chamber. The chamber may contain a fluid while the burstable disk is intact at a pressure which facilitates rupture of the burstable disk. The burst disk can further comprise a retainer for retaining the burstable disk in sealing engagement with the port.
In a still further aspect, this invention relates to a bottom hole tool comprising a tubular member comprising a conduit capable of fluid flow and adapted to be connected to a treatment string, a flow activation equalization valve in the conduit for controlling fluid flow in the conduit, and, at least one isolation element exterior to the tubular member. The valve may be adapted to be actuated by fluid flow in the treatment string. A piston may be connected to the valve. The piston may be spring biased whereby fluid pressure acting on the piston causes the piston to act on the valve to at least partially close it, and an absence of pressure acting on the piston causes the piston to be biased such that the valve is at least partially opened. The valve may further comprise sealing portions comprised of a ceramic, a silicon nitride and a boron carbide.
In yet a further aspect, this invention relates to a method comprising providing a tubular member capable of fluid flow in a wellbore of a subterranean formation, wherein the tubular member comprises at least one burst disk with a rupture pressure threshold and positioned at a location within the tubular element, wherein the burst disk blocks the flow of well treatment while intact, and is adapted to rupture at the rupture pressure threshold to provide a flow path for fluid inside the tubular member to the outside of the tubular member; cementing the tubular member in place at least at the location of the at least one burst disk, flowing a fluid in the tubular member; and, increasing the pressure inside the tubular member until all of the at least one burst disk in the tubular member rupture. The cement may be sufficiently ruptured to permit fluid access to the formation from at the ruptured at least one burst disk and fluid may be flowed through the ruptured burst disk to for example treat (such as by fracturing) the formation. A bottom hole assembly (“BHA”) may be provided in the tubular member and the flowing fluid may be used to move the assembly. The BHA may be connected to a wireline. The BHA may be a perforation gun or other tool. The BHA may further comprise a swab cup.
In another aspect, this invention relates to a method comprising: providing a tubular member capable of fluid flow in a wellbore of a subterranean formation whereby the tubular member and the wall of the subterranean formation define an annulus, providing a cement into at least a section of the annulus to secure the tubular member in the wellbore, providing a milling tool in the tubular member, milling at least one port in the tubular member with the milling tool, flowing a fluid through the port to fracture the formation. At least a section of the cement may be ruptured to permit fluid access from the tubular member to the wall of the formation. The milling tool up hole may be moved up hole following the fracture of the formation.
In another aspect, this invention relates to a method comprising: providing a tubular member capable of fluid flow in a wellbore of a subterranean formation wherein the tubular member comprises at least one port positioned at a location within the tubular element, and an aperture (such as a sliding sleeve) for opening and closing the at least one port, and wherein the tubular member and the wall of the subterranean formation define an annulus, introducing cement into at least a section of the annulus to secure the tubular member in the wellbore, opening the aperature at the at least one port, and flowing a fluid through the opened at least one port. The cement may be ruptured by the flow of the fluid through the port and the fluid may be used to fracture the formation.
In general, apparatus and methods of this invention can be applied to a horizontal, deviated or vertical open hole completion or cemented condition, or a frac through coil system where a multi-stage cased/open hole, hybrid system is used where isolation and frac points are set up along an open hole section of a well to give full bore access to the wellbore casing string at the completion of the stimulation.
Referring to
A completion string is usually a tubular pipe also commonly known as production casing or well bore liner that is usually permanently installed in the well bore. A completion string may be a wellbore casing, liner, tubulars or any other similar tubing.
The completion string 12 is in what is commonly known as open hole condition, meaning that the annular space 18 between completion string 12 and the wellbore 10 is not purposely filled.
Segments of a completion string can be joined together with collars. The completion string 12 includes collars 40 that join sections 13 of the completion string 12 together. The collars 40 are equally spaced but need not be equally spaced along the completion string 12 and are usually placed at intervals determined by the conditions of the hydrocarbon bearing formation and the results desired from the stimulation process.
The collars 40 of the completion string 12 include burst disks which are housed in burst ports 20 of the collars 40. In general, a burst disk is a device which is designed to rupture once a certain pressure threshold is reached thus opening a port in the wall in which it is located.
Burst disks embodying the principles of the invention can be located within different types of bodies. For example, the body can be a completion string or like tubing or piping, or a collar. A “collar” is a tubular section of larger outside diameter and shorter length than the adjacent tubular sections that comprise the majority of a drill string. Often collars are used to join tubular sections together, and as such may have any combination of thread types on their ends. Collars may also serve functions other than simply extending the drill string or joining sections of tubulars together. Burst disks can also be located in the walls of a completion string. Bodies, including completion strings, drill strings, and treatment strings, tubulars, tubing, piping and collars are also referred to herein as tubular members.
A treatment string is usually a tubular pipe for conveying fluids, such as but not limited to coiled tubing and collars, for conveying fluids, that is not permanently installed in a well bore. Treatment tubing is commonly inserted into a wellbore (in either an open hole or completed state) to convey fluid into and/or out of the wellbore to for example, stimulate a subterranean formation. It is also known to attach a bottom hole (“BHA”) device to treatment tubing where the treatment tubing can be used to insert and/or remove the BHA and convey fluid to operate the BHA.
One embodiment of a collar suitable for the invention in which burst disks can be placed is shown in
Another embodiment of a collar suitable for the invention in which burst disk assemblies 22 can be placed is shown in
Referring principally to
The cap 150 prevents pressure on the outside of a completion string or collar from bursting the burstable disk 148 from the outside of the string or collar inward during the placement, servicing, or cementing of the collar or completion string in which it is housed. The chamber 157 is normally close to atmospheric pressure until the burstable disk 148 bursts. The atmospheric pressure facilitates the bursting of the burstable disk 148 at a predictable pressure, as the necessary pressure acting inside the collar and against the interior side of the disk can be determined in a reliable manner. The burstable disk 148 in a burst condition is depicted in
Referring principally to
The burstable disk 20a is made from the same material as the wall 401 of the completion string or collar in which it is formed.
The burstable disk 20a can be circular in shape. In one embodiment, the burstable disk 20a has a diameter between ¼ inch and 1 inch when used with a completion string of suitable material and thickness. More preferably, the diameter is 7/16 inches or ⅝ inches. However, a person of ordinary skill in the art would understand that the shape, thickness and diameter of the burst disk may vary.
The thickness of the remaining wall defining the burst disk, the diameter of the burstable disk 20a, and the material of the burst disk will determine the magnitude of burst pressure. For example, according to one embodiment of this invention, a burstable disk diameter of about ⅝ inches and a burstable disk wall casing thickness of 0.01 inches results in a burst pressure of about 3,000 psi to about 4,000 psi using L-80 casing.
The burstable disk is preferably made of type 302 stainless steel, however the burst disk can be made of any suitable material that could withstand the pressures described in this invention. For example, the burst disk can be made of plastic or other metals such as an alloy, stainless steel or other suitable material that can withstand the design pressures, or a material that dissolves upon contact with a dissolving fluid. An example of a dissolving fluid is an acid.
A person of ordinary skill in the art would understand that the shape and size of the burst disk and the port in which it is placed may vary.
As shown in
For example, the cover 14 can be press fit or held in place by means of an O-ring (as in
Capping the port with a protective cover 14 serves several purposes. The cover 14 creates an air pocket of about atmospheric pressure between the outside of the burst disk and the inside of the cover 14. The space between the burst disk and the cover 14 is sealed and the space remains at or close to atmospheric pressure until the disk bursts. This facilitates bursting of the disk because it bursts against about atmospheric pressure and ensures that a predictable pressure will burst the disk. Furthermore, without the cover 14, the burst disks may not rupture simultaneously. If one burst disk were to rupture before the others, then fluid will flow out of that first ruptured port and the pressure will equalize between the inside and in the space exterior to the completion string, such as completion string 12 in which the burstable disk 20a is housed. The cover 14 prevents the pressure from rupturing the other disks from the outside in, which would cause fluid to flow into the tool. Preferably, as shown in
Referring to
Burst disks suitable for use in this invention can also be of the conventional type used in prior art, for example, the burst disks supplied by Benoil™. If conventional burst disks are used, they can be built into or installed into a completion string and/or collars by conventional methods and used according to the methods described herein.
Completion strings and collars having burstable disks according to the invention can cemented or used in an open hole condition. The completion string 12 and collars 40 can be cemented to the wellbore 10 by filling the annular space 500 between completion string 12 and collars 40 and the wellbore 10. This is commonly known as the cemented condition. Using cement can substitute for the need for packers or other interval isolation devices.
When a completion string with burst disks is cemented into place, an interval of the completion string 12 that has the burst disks 20, can be covered by a shield (not shown) to prevent cement from sealing in the burst disks. A shield can also be used to cover burst disks in a collar if a collar of the type shown in
The shield provides for a space to be maintained between the completion string and the wall of the wellbore to allow cement to flow continuously along the entire length of the completion string. The pressure exerted by the treatment fluid would be enough to fracture through the layer of cement that would have formed. Alternatively, in another embodiment, the completion string could be resting against the wellbore and, therefore, cement does not completely encircle the completion string allowing the burst disk ports to contact the wellbore. The pressure exerted by the treatment fluid would be enough to fracture directly into the formation.
Referring to
To cement a completion string with a collar having fins in place, cement is pumped between the wellbore and the outside diameter of the completion string, through a void commonly known as the annulus. Fins 100 are arranged so that there are slots between them such that cement can pass by and continue to fill the annulus. Once the cement is cured, the subterranean hydrocarbon bearing formation, completion string, and collar(s) are rigidly connected to each other. In one embodiment of the invention, the projection of the fins 100 ensures that very little cement is between the fin 100 and the subterranean hydrocarbon bearing formation. The cement used for filling the annular space may have special properties to make it more suitable for the downhole environment and in one embodiment of the invention the cement may be acid soluble, unlike conventional cement used in oilfield operations. Each collar carries at least one burst port located within the fin 100.
As a result, once cement fills the space between the completion string and wellbore, the portions of cement 500 adjacent the fins are thin enough such that treatment fluid can burst through the cement 500 when the burstable disks 148 rupture, as shown in
A person of ordinary skill in the art would understand that this technique of cementing the completion string to the wellbore, as taught by this invention, can be applied to treatment methods that use other conventional burst disks and sliding sleeves.
The method of hydrocarbon bearing formation stimulation of one embodiment of this invention involves stimulating a hydrocarbon bearing formation by pumping treatment fluid under pressure through a treatment tubing and treatment tool. Prior to carrying out this method, the interval of the wellbore to be fractured must be isolated by conventional methods. The spacing between intervals would differ depending on the well, however typically, they may be spaced about every 30-50 meters. Hydraulic isolation in the exterior annulus can be achieved by having the completion string either cemented into position or by having external packers or other annular sealing device running along the longitudinal length of the completion string. Suitable annular sealing devices include cups and packers, and are well known in the art.
Referring to
In a cemented environment, once the burst disks rupture, the treatment fluid fractures the cement, and then can reach the formation to stimulate or fracture it. The treatment fluid can be pumped at a pressure between about 100 psi and about 20,000 psi to rupture the disks but other suitable pumping pressures are also possible. Preferably, pressure is applied at about 100 psi to about 10,000 psi. More preferably, pressure is applied at about 3,000 psi to about 4,500 psi. In this invention, stimulation can begin anywhere along the completion string where burst disks are located and there need not be any pre-defined order of treatment. For example, stimulation can occur at the distal end of the completion string first and then moved up hole, or in the reverse order, or stimulation can start partway down the wellbore and then proceed either up or downhole. This also allows some of the burst disks to be opened in one treatment and others to be left for treatment at a later date.
Therefore, following treatment, the treatment tubing, and hence the tool, can be moved up or down hole to straddle another set of burst disks. Each set of burst disks placed in the treatment tubing can be treated independently as successive treatments are isolated from each other. As such, each isolated interval of formation can also be treated separately.
Since the interval is isolated, pressure builds within the completion string very quickly. Furthermore, the same pressure can be applied for each treatment. The operation is further simplified because, unlike methods of prior art, each burst disk can be identical and having the same pressure threshold.
Referring to
The treatment tool 51 with isolation devices 30 can be used to isolate an interval within the completion string. Further, the wall of the completion string 12 similarly has collars 40 which carry burst ports 20 arranged therein as described in above described embodiments. The treatment tool 51 is first positioned such that the isolation devices 30 straddle a set of burst disks. As more particularly shown in
Referring to
Referring to
The method described with reference to
Another embodiment of this invention involves the use of burst disks, as disclosed in this application, in enhanced oil recovery, for example SAGD or VAPEX. Typically, there would be a pair of horizontal injection and producing wells. Burst disks located in the walls of a completion string fed down the injection well would rupture under the pressure of steam or solvent being pumped into the injection well. The steam or solvent liquefies the oil situated between the pair of horizontal wells. Burst disks located in the walls of a completion string fed down the producing well would then be ruptured under pressure, allowing the liquefied oil to migrate into the producing well through the ruptured burst disks and later collected from the producing well.
In an alternative embodiment, the completion string is inserted into the wellbore and cemented to the hydrocarbon bearing formation. In place of periodically spaced collars carrying burst disks the completions string can be locally provided with communication with the cement. Examples include but are not limited to, conventional burst disks, sliding sleeves and/or any method of opening a port in the completion string wall; having the completion string wall reduced in thickness or even completely to partially removed by any means to create a region of low to zero strength in the completion string wall. The wall material of the completion string can be removed by cutting, machining, abrading, chemical removal, or other means. The resultant region of low to zero strength will allow fracturing through the cement thus behaving-similarly to a burst disk and allow the treatment fluid to stimulate the subterranean hydrocarbon bearing formation when the treatment fluid is pressurized in accordance with any of the methods described above. Alternatively, the cement can be acid soluble, and in place of high pressure the stimulation is initiated by an acid spearhead. Some pressure would be needed to either rupture the burst disks or penetrate a region of low strength of the completion string wall, but the pressure is much lower than would be used in a pressure initiated stimulation treatment.
All of the above embodiments are generally described in terms of the completion string being cemented to the hydrocarbon bearing formation. It is possible to use the above described invention in an open hole, however isolation devices must be used between the outside of the completion string and the hydrocarbon bearing formation to hydraulically isolate the area to be stimulated, such that the treatment fluid will flow from the bore of the string that contains treatment fluid, through the ruptured burst ports, and into the formation. If the exterior annular isolation devices were not present the treatment fluid may not flow where desired.
Referring to
When BHA 51 is being removed from the wellbore 10 the treatment string 50 is full of service or treating fluid, and the fluid must escape from the interior of the treatment string at a controlled rate. If the flowrate or pressure differential of the fluid exceeds a predetermined threshold, then the isolation elements 30 will set, causing the tool to seal against the interior of the completion string 12 wall, preventing removal of the tool. This is a desirable attribute when preparing for a stimulation operation and the isolation elements need to be set to achieve hydraulic isolation against the completion string 12, but not when attempting to remove the treatment string 50 and the BHA 51 from the wellbore 10. To remove the treatment tool 51, the treatment string 50 is removed from the wellbore 10 at a controlled rate, such that the differential pressure across piston 112 does not cause it to move and seal against seat 104. Sealing element 52 is shown in
Referring to
In a stimulation operation, as the pumping rate of treatment fluid increases the fluid moves out through ports 108 as the piston 112 has sealingly engaged seat 104 to prevent the fluid from flowing through the BHA. Instead, the fluid moves through ports 108 and forces the lips of the sealing elements 30 against the completion string 12 wall, creating a pressure tight seal. Port 108 is located between two isolation elements 30 which straddle a collar or other portion of the completion string 12 that has been partially or completely removed such that it is suitable for a formation stimulation operation, as described hereinabove. Once the treatment fluid has reached the critical pressure, it will then rupture the burst disks and stimulate the hydrocarbon bearing formation 3 according to the methods described hereinabove. The sealing portions of the valve are comprised of ceramic material (silicon nitride for the piston end and boron carbide for the seat).
Referring to
Referring to
In each interval, there is an area of the completion string 12 where the wall of the completion string or collar is thinned 20. The thinned areas of the completion string or collar are where the ports 16 will open following rupturing of the burst disks.
The fluid that ejects from the opening 28 of the tool 51 causes an increase in pressure that is sufficient enough to rupture the burst disks, as shown in
Another embodiment of this invention uses the treatment tool combined with the equalization valve in horizontal or vertical wellbores to straddle and isolate intervals containing perforations, holes cut by abrasive jetting, sliding sleeves, or burst disk ports for the purpose of performing treatments. Referring to
In one embodiment, the method of one embodiment of this invention involves stimulating a formation by pumping treatment fluid under pressure through a treatment tubing and treatment tool. Prior to carrying out this method, the interval of the wellbore to be fractured must be isolated by conventional methods. The spacing between intervals would differ depending on the well, however typically, they may be spaced about every 100 meters. Hydraulic isolation in the exterior annulus can be achieved by having the completion string either cemented into position or by having external packers or other annular sealing device running along the longitudinal length of the completion string. The cement, external packers and annular sealing devices provide hydraulic isolation along the annulus formed by the completion string and the open hole of the wellbore.
A person skilled in the art would understand that treatment fluid needs to be pumped at a sufficient pressure to rupture the burst disks and that this pressure varies depending on the type of burst disk and location of the burst disk. Preferably, the pressure at which fluid is pumped is less than the anticipated break pressure. A discussed above, the initial pumping pressure may in one example be at about 4,200 psi or 31 MPa and at 9000 psi at surface (11,000 psi downhole) in another example.
Number | Date | Country | Kind |
---|---|---|---|
2670218 | Jun 2009 | CA | national |
2683432 | Oct 2009 | CA | national |
2692377 | Feb 2010 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA10/00955 | 6/22/2010 | WO | 00 | 4/8/2011 |