Inventive concepts relate generally to an apparatus and method for a stringed instrument tailpiece. In particular, inventive concepts relate to an apparatus and method for a stringed instrument tailpiece through which instrument strings that may be bowed or plucked may be terminated in the instrument's endpin.
The violin family of stringed musical instruments, including the violin, viola, and cello, was first developed in Italy in the early 1500s. The general design of such instruments was refined in the 1600s by such well-known makers as the Amati family and Antonio Stradivari. That design survives substantially intact to this day, with relatively minor modifications, for example, to the length and tilt of the fingerboard and to the length of the neck, for example. There is some debate as to whether the double bass is derived from the viol or is a member of the violin family. The double bass's proportions are unlike those of the violin and cello, for example, in that it is proportionately much deeper than a violin and it shoulders are much more sloping than those of the violin. This yields an external appearance more like that of the viola da gamba, but the internal construction of the double bass is nearly identical to that of instruments of the violin family. In any case, all these stringed musical instruments, and more, employ a tailpiece. An improved tailpiece in accordance with principles of inventive concepts may be employed to advantage with any stringed musical instrument, whether in the violin family or not, that requires a tailpiece.
The general construction of a violin family instrument will now be described in reference to the perspective view of a conventional violin of
An example of a conventional stringed instrument employing a tailpiece is illustrated in
The violin 100 includes a hollow body 110, neck 120, strings 130, a tailpiece 140 to which ends of strings 130 are fastened, and bridge 150 for transmitting the vibration of the strings 130 to the body 110. The tailpiece 140 attaches, at the opposite end to which the strings are attached, to endpin 118. The term “endpin” is used herein to refer to the element of a stringed instrument, referred to in the violin family of stringed instruments as either an endpin or button and, generally, refers to an element that attaches a gut-end of a tailpiece to the body of the instrument. The body 110 includes an upper plate 112 in which f-shaped holes 124 are formed and a lower plate 114. Side plate 116 connects the upper plate 112 and lower plate 114 to form a hollow resonant body.
Four spaced-apart strings 130 are tensioned on the upper plate of the body 110. The ends of the strings 130 opposite the ends attached to the tailpiece 140 are wound to the pegs 122. Four string holes 142 are formed in the tailpiece and the ends of strings 130 are inserted into these holes and fastened to the tailpiece through the holes. Tailgut 126, traditionally formed of gut cord, are wrapped around endpin 118, with one “leg” (that is, strand, length, cord, cable, etc.) on either side of endpin and both legs returning to tailpiece 140 to be fixed to the tailpiece, thereby fastening the tailpiece 140 to the body 110. Vibrations generated in the strings 130, by plucking or bowing, for example, may be transmitted by the bridge 150 to the resonant body 110 for amplification.
In example embodiments in accordance with principles of inventive concepts a musical instrument tailpiece includes an elongate body that is top/bottom and left/right symmetrical, openings formed at a bridge-end of the elongate body to engage a musical instrument's one or more strings and an opening at the gut-end of the elongate body to engage a gut.
In example embodiments a tailpiece includes a single-leg gut.
In example embodiments the mass of the elongate body is evenly distributed above and below a plane substantially defined by locations corresponding to the centers of a plurality of instrument string-ends exiting the elongate body through openings at the bridge end and the opening at the gut-end of the elongate body.
In example embodiments openings formed at the bridge-end of a tailpiece are enclosed holes.
In example embodiments openings formed at the bridge-end of a tailpiece are slots.
In example embodiments the separation of the outermost openings on the bridge end of the tailpiece is less than the separation of the corresponding slots, or grooves, on an associated instrument bridge.
In example embodiments the elongate body of a tailpieces comprises a natural material.
In example embodiments the elongate body of a tailpiece is comprises a wood.
In example embodiments the elongate body of a tailpiece comprises a metal.
In example embodiments the elongate body comprises a synthetic material.
In example embodiments the elongate body comprises a carbon fiber material.
In example embodiments the opening at the gut-end of the tailpiece is sized to accommodate no more than one gut-end leg.
In example embodiments a musical instrument tailpiece includes an elongate body that is top/bottom and left/right symmetrical, slot-openings formed at a bridge-end of the elongate body to engage a musical instrument's one or more strings, the slot-openings spaced equidistant apart and substantially along a line that bisects the top and bottom of the elongate body, and an opening at the gut-end of the elongate body to engage a gut.
In example embodiments the length of the elongate body is determined by a proximity to an associated instrument's saddle on one end and the distance from an associated instrument's bridge, the bridge to tailpiece distance determined by a rule of eighteen determination and the saddle to tailpiece distance within a range of from one eighth to two inches.
In example embodiments the saddle to tailpiece distance of a tailpiece is within a range of from one half to one inch.
In example embodiments, the tailpiece is a compensating tailpiece.
Example embodiments in accordance with principles of inventive concepts will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings in which:
Example embodiments in accordance with principles of inventive concepts will now be described more fully with reference to the accompanying drawings, in which example embodiments are shown. Example embodiments in accordance with principles of inventive concepts may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those of ordinary skill in the art. Like reference numerals in the drawings denote like elements, and thus their description may not be repeated. Example embodiments of systems and methods in accordance with principles of inventive concepts will be described in reference to the accompanying drawings and, although the phrase “example embodiments in accordance with principles of inventive concepts” may be used occasionally, for clarity and brevity of discussion example embodiments may also be referred to as “Applicants' system,” “the system,” “Applicants' method,” “the method,” or, simply, as a named component or element of a system or method, with the understanding that all are merely example embodiments of inventive concepts in accordance with principles of inventive concepts.
It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. As used herein the term “or” includes any and all combinations of one or more of the associated listed items. Other words used to describe the relationship between elements should be interpreted in a like fashion (for example, “between” versus “directly between,” “adjacent” versus “directly adjacent,” “on” versus “directly on”). The word “or” is used in an inclusive sense, unless otherwise indicated.
It will be understood that, although the terms “first”, “second”, etc. may be used herein to describe various elements, components, regions, layers or sections, these elements, components, regions, layers or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, step, layer or section from another element, component, region, step, layer or section. Thus, a first element, component, region, step, layer or section discussed below could be termed a second element, component, region, step, layer or section without departing from the teachings of example embodiments.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” “top,” “bottom,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if an element in the figures is turned over, elements described as “bottom,” “below,” “lower,” or “beneath” other elements or features would then be oriented “atop,” or “above,” the other elements or features. Thus, the example terms “bottom,” or “below” can encompass both an orientation of above and below, top and bottom. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising”, “includes” or “including,” if used herein, specify the presence of stated features, integers, steps, operations, elements or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components or groups thereof. The word “or” is used in an inclusive sense to mean both “or” and “and/or.” The term “exclusive or” will be used to indicate that only one thing or another, not both, is being referred to.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments in accordance with principles of inventive concepts belong. It will be further understood that terms, such as those defined in commonly-used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
For clarity and brevity of description, inventive concepts may be described in terms of example embodiments related to a violin; other stringed musical instruments that employ a tailpiece, such as the double bass, viola, cello, and guitar, are contemplated within the scope of inventive concepts.
The terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers or sections. These elements, components, regions, layers or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, step, layer or section from another region, step, layer or section. Terms such as “first,” “second,” and other numerical terms do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, step, layer or section discussed below could be termed a second element, component, region, step, layer or section without departing from the teachings of the example configurations.
In example embodiments in accordance with principles of inventive concepts, an apparatus and method in accordance with principles of inventive concepts may join the strings of a stringed musical instrument to the instrument's endpin, a plug (used, for example, on Pollman double basses), or to otherwise attach the strings to the instrument's body.
An example embodiment of an apparatus and method for a stringed musical instrument tailpiece is depicted in the plan view of
A wolf tone, or “wolf,” is a sympathetic artificial overtone that amplifies and expands the frequencies of a played musical note. The wolf is produced when the played note matches the resonant frequency of the violin family instrument being played. Wolfs are undesirable and players employ various apparatus, referred to as wolf tone eliminators to reduce, as much as possible, the effects of a wolf. Wolf eliminators, essentially attenuators, are typically attached to an offending string between the bridge and tailpiece of the instrument. It has been Applicant's experience that wolfs are considerably diminished by use of his novel tailpiece and that, for those wolfs that are not entirely eliminated, a player may “play around” or otherwise compensate for the wolf more readily. Additionally, the sound produced by the instrument appears to be substantially fuller and richer than that produced with a conventional tailpiece.
In example embodiments a violin family tailpiece may be configured to conduct the tensile forces exerted upon the instrument's strings in a substantially linear fashion, across the bridge, through the tailpiece, through the gut, and over the saddle. That is, whether in a through-hole embodiment or a slot embodiment the instrument strings emerge from the bridge-end of the tailpiece substantially in the middle of the tailpiece (middle relative to the plane that bisects the tailpiece in the top/bottom direction) and similarly, the gut emerges from the gut-end of the tailpiece substantially in the middle of the tailpiece. In such embodiments tension is transferred, without skewing or kinking associated with conventional tailpiece arrangements where, for example, strings are routed over the top of the tailpiece. Not wishing to be bound by theory, although the kink, discontinuity, or flow-disruption associated with a conventional tailpiece string termination may appear to be minor, it is Applicant's belief that the interruption-free straight-line path from bridge, through the tailpiece and on to the saddle provided by Applicant's example embodiments may contribute to the greater responsiveness, improved playability, greater sustain, and fuller sound yielded through use of his novel tailpiece. The use of a single-leg gut in accordance with principles of inventive concepts may similarly contribute to such positive attributes.
Any suitable material, including the traditional ebony wood, may be used to construct a tailpiece in accordance with principles of inventive concepts. The use of natural materials, including all variety of wood; metals; or synthetic materials, such as carbon fiber, are contemplated within the scope of inventive concepts. Applicant has found that lighter materials may provide greater response than heavier materials. For example, a carbon fiber embodiment may provide greater responsiveness than an ebony embodiment of the same dimension.
The bottom plan view of
Other embodiments are contemplated within the scope of inventive concepts. For example, a tailgut may be formed sans loop, and threaded and attached through the instrument endpin. Some violin family instruments, notably the double bass, come in a variety of sizes and shapes. That is, although violins are of a substantially standard size and shape, double basses vary considerably and may be of a certain size to accommodate a larger or smaller player, for example. The proportion of the bass components may vary from instrument to instrument as well, with some double basses having larger lower bouts than others. Nevertheless, bass tailpieces are typically selected from among a few size options, with ¾ size tailpiece being approximately 13.5 inches in length. As a result, several inches of the gut extending from the tailpiece to the saddle may be exposed.
In example embodiments in accordance with principles of inventive concepts, a bass tailpiece may be of a length that accommodates the distance between an individual bass bridge and saddle: custom fit, that is, for the length. The distance from the bridge to the bridge-end of the tailpiece may be configured according to a method such as “the rule of 18,” which is known in the art. For a double bass, the distance between bridge and tailpiece may be set such that the “E” string is tuned to “A” at the bridge-end of the tailpiece, in general, the distance is set such that the lowest string is tuned to the next higher open string. In example embodiments, a tailpiece may extend substantially from the tuned distance near the bridge to within a short range of the saddle. The tailpiece is configured such that it is not so long as to contact the instrument top while playing, yet near enough to the saddle that only a relatively short length of gut extends from the gut-end of the tailpiece to the saddle. In example embodiments that exposed length of gut may be less than two inches; in some embodiments that length is less than one inch; in some embodiments that length is less than one half inch.
The perspective view of
The bottom plan view of
Elements of a slotted, through-hole free, example embodiment of a tailpiece in accordance with principles of inventive concepts will now be described in the discussion related to
In an example embodiment of
In an example embodiment of
The perspective view of
The perspective view of
While the present inventive concepts have been particularly shown and described above with reference to example embodiments thereof, it will be understood by those of ordinary skill in the art, that various changes in form and detail can be made without departing from the spirit and scope of inventive concepts as defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
336428 | Perry | Feb 1886 | A |
578396 | Filson | Mar 1897 | A |
1416568 | Mazzocco | May 1922 | A |
1757170 | Callier | May 1930 | A |
1764548 | Callier | Jun 1930 | A |
1884434 | Wehmann | Oct 1932 | A |
2680987 | Straton | Jun 1954 | A |
2971422 | Passa | Feb 1961 | A |
3096676 | Havivi | Jul 1963 | A |
3688630 | Tartaglia | Sep 1972 | A |
4224857 | Infeld | Sep 1980 | A |
6635812 | Roth | Oct 2003 | B2 |
8227678 | Frirsz | Jul 2012 | B2 |
9082374 | Aires | Jul 2015 | B2 |
10199015 | Tsuruta | Feb 2019 | B2 |
20040129127 | Mercer | Jul 2004 | A1 |
20130014630 | Um | Jan 2013 | A1 |