Unless otherwise indicated herein, the materials described in this section are not prior art to the claims and are not admitted to be prior art by inclusion in this section.
In the aerospace industry, structural fasteners such as rivets are commonly used to join a structure such as metal sheet components. In an example, rivets are used for construction of primary structures of aircraft (e.g., fuselage, wings, and tail), as well as secondary structures (e.g., rudders). Rivets commonly are used for fastening an aerodynamic skin to a frame to provide a strong aerodynamically smooth surface. Further, rivets are also commonly used in the interior structure of aircrafts since rivets provide a light and secure method of fastening structural components together.
Before being installed, a rivet typically consists of a cylindrical shaft with a head on one end and a tail on the other end (commonly referred to as the buck-tail). The installation process for installing rivets to join a structure typically involves use of a rivet gun and a bucking bar. In particular, a typical rivet-installation process involves forming a hole in the structure and then placing the rivet in the rivet hole. The rivet gun is placed on one side of the rivet and the bucking bar is placed on the opposite side of the rivet. The rivet gun then hammers on the rivet and some of the force of the rivet gun is absorbed by the bucking bar. Under this force, each end of the rivet is compressed causing outward expansion of the rivet such that the rivet fills the rivet hole. Typically, the rivet is compressed until the rivet establishes a tight fit, which is commonly called an interference fit. Further, during installation, the tail is deformed, so that it expands (e.g., to about 1.5 times the original shaft diameter), thereby securely holding the rivet in place.
A rivet is typically sized for the thickness of the structure which it is to join and the stress which it is to carry. Further, the impact energy of the rivet gun is typically designed to completely form the button end on the tail of the rivet and cause the desired degree of interference between the rivet shank and the hole, and/or between the rivet head and the surface of the structure.
However, the typical rivet-installation process has a number of drawbacks. For instance, the typical rivet-installation process creates impact energy that propagates through not only the rivet but also the structure into which the rivet is being installed. In practice it is extremely difficult to precisely control the propagation of the impact energy throughout the system. The lack of control over the propagation of the impact energy throughout the system may lead to a rivet that fails to meet the desired degree of interference. In the typical rivet-installation process, when a rivet gun impacts a rivet, the impact energy creates an impact wave that travels through the rivet and hits the bucking bar. Much of this impact energy is transferred to the rivet thereby leading to the deformation of the rivet. However, the impact energy of the rivet gun is also transferred or dissipated in various other ways. For example, typically some of the impact energy is lost (e.g., as heat), some of the impact energy is transferred to the bucking bar, some of the impact energy is transferred to the rivet, and some of the energy is transferred to the structure being joined. Since it is difficult to precisely control the propagation of this impact energy, an undesired amount of energy may be transferred to the structure and/or the rivet. Thus, the traditional rivet-installation process often results in rivets that fail to precisely meet a desired degree of interference.
Another drawback of the traditional rivet-installation process is that the typical rivet installation process involves a large amount of human feedback. For instance, the typical rivet process involves a highly skilled operator to produce quality rivets consistently. Further, the typical rivet process involves highly skilled quality control inspectors to confirm that installation of rivets meet particular specifications of flushness, interference and button formation.
Yet another drawback of the traditional rivet-installation process is that the typical rivet installation process is unsuitable for joining structures such as composite materials. In the aerospace industry, the use of components including composite materials is widespread. However, currently it is extremely difficult to use rivets to join composite materials, due to the forces that the traditional rivet process imparts on the composite material. As mentioned above, the impact energy created by the rivet gun is often transferred to the structure to be joined. Since composite materials typically cannot sustain the forces of the standard rivet-installation process, rivets are not commonly used to join composite materials.
A method and system for installing rivets is disclosed. An example method involves positioning a rivet through a structure to be joined. The method further involves positioning a first rivet gun on a first side of the rivet and positioning a second rivet gun on a second side of the rivet. Still further, the method involves synchronizing firing of the first and second rivet guns, so as to cancel forces that otherwise would propagate into the structure during installation of the rivet.
In an example embodiment, a riveting system includes a first rivet gun and a second rivet gun, said first rivet gun and said second rivet gun configured for operation on opposite sides of a rivet to be installed to join a structure. The riveting system further includes a controller, said controller configured to synchronize firing of the rivet guns such that forces that otherwise would propagate into the structure are canceled.
In another example embodiment, a riveting system includes a first rivet gun, a second rivet gun, and a controller. The first rivet gun and the second rivet gun are arranged on opposite sides of a rivet to be installed. Further, the controller is configured to cause the first and second rivet guns to impact the rivet a plurality of times. The controller is also configured to control a timing of each impact of the first and second rivet guns such that each impact of the first rivet gun occurs at substantially the same time as a respective impact of the second rivet gun.
The features, functions, and advantages can be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments in which further details can be seen with reference to the following description and drawings.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented herein. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the figures, can be arranged, substituted, combined, separated, and designed in a wide variety of different configurations, all of which are explicitly contemplated herein.
As mentioned above, a traditional rivet-installation process has a number of drawbacks. For instance, the typical rivet-installation process creates impact energy that propagates through the system, and in practice it is extremely difficult to precisely control the propagation of the impact energy throughout the system. The lack of control over the propagation of the impact energy throughout the system may impact the structure into which a rivet is installed and/or result in a rivet that fails to meet the desired degree of interference. Thus, the disclosed embodiments provide an improved rivet process that does not impact the structure and that provides the ability to more precisely control the degree of interference.
The methods and systems in accordance with the present disclosure beneficially provide such a rivet process. An example method and system in accordance with the present disclosure involves fine-tuning the timing of the firing of rivet guns placed on opposite sides of the rivet, and also fine-tuning the force upon which the rivet guns impact or act on the rivet.
In particular, an example method in accordance with the present disclosure includes positioning a rivet through a structure to be joined. The method further includes positioning a first rivet gun on a first side of the rivet and positioning a second rivet gun on a second side of the rivet. Still further, the method includes synchronizing firing of the first and second rivet guns, so that forces that otherwise would propagate into the structure during installation of the rivet are canceled. In an example embodiment, each rivet gun includes a firing tube and a projectile within the firing tube, and the velocity of the projectile affects the force at which the rivet gun impacts the rivet and/or when the force of the rivet gun impacts the rivet. In an example, the method involves adjusting a velocity of the projectile in each rivet gun, so that the projectile in the first rivet gun and the projectile in the second rivet gun cause the rivet guns to impact the rivet at substantially the same time (e.g., within microseconds or milliseconds of each other).
When a rivet gun impacts a rivet on a first end, an impact wave is sent through the rivet material to the second end of the rivet. In an example embodiment, the method involves impacting the rivet on the second end at the same time or substantially the same time that the impact wave has reached the second end of the rivet. By impacting the second end of the rivet at the same time as when the impact wave reaches that second end, the well-timed second impact cancels forces that would otherwise propagate into the surrounding system (e.g., to the rivet gun and/or the structure). In particular, by timing the second impact on the second end in this way, the second impact creates a second impact wave that cancels the first impact wave traveling through the rivet. Through these well-timed impacts, all or substantially all of the energy in turn goes into deforming the rivet.
Beneficially, the disclosed methods and systems allow for precise control of the interference during rivet installation, and the disclosed methods and systems also reduce or eliminate the forces that would otherwise propagate into the structure. In particular, since the disclosed methods and systems may result in all or substantially all of the energy going into deforming the rivet, it is possible to precisely control the interference during rivet installation. Further, through these well-timed opposing impacts, forces that would otherwise propagate into the structure are canceled.
The rivet system 100 of
In an example embodiment, the rivet system 100 also has additional components that are used during the rivet-installation process, such as a rivet-hole-formation apparatus 108 and a rivet-placement apparatus 110. Systems that combine rivet-hole formation, rivet placement, and rivet installation are commonly used in the aerospace industry because of the large number of holes and rivets required to assemble aircraft structures such as the aircraft skin. The rivet-hole-formation apparatus 108 may include any suitable apparatus for forming a rivet hole. In an example, rivet-hole-formation apparatus 108 is a drill or punching apparatus. In an example, the rivet-hole-formation apparatus 108 is configured to form countersunk holes for the installation of countersunk rivets. For instance, hole 204 is depicted as a countersunk hole. The rivet-placement apparatus 110 may include any suitable apparatus for placing or positioning rivets. In an example, the rivet-placement apparatus 110 is a robotic assembly that includes one or more robotic arms that are configured to place rivets in formed rivet holes.
As depicted in
In an example, the rivet system 100 is a robotic-assembly system configured for the manufacturing of aircraft structures, such as primary aircraft structures (e.g., fuselage, wings, and tail) and/or secondary aircraft structures (e.g., rudders). It should be understood, however, that although this rivet system 100 is described primarily with reference to the riveting of aircraft structures, the rivet system 100 is suitable for other types of structures as well, such as building structures, bridge components, and other structures that are suitable for joining through riveting.
As shown in
The assembly system may run continuously over long periods of time. Therefore, in an example, the rivet system 100 includes a cooling system that allows for cooling the rivet guns 102, 104 and/or other components of rivet system 100. In an example embodiment, the first and second rivet guns are air-cooled rivet guns. In an example, the rivet guns are constructed of heat-sink clamps, which allow the rivet guns to be air-cooled and not require water lines in a factory installation. In another example, the rivet guns are water-cooled or peltier-cooled. Other cooling systems are possible as well.
The rivet gun depicted in
As shown in
In an exemplary embodiment, data storage 306 includes program instructions 310 that are executable to cause the rivet system 100 to: (i) position a rivet through a structure to be joined; (ii) position a first rivet gun on a first side of the rivet; (iii) position a second rivet gun on a second side of the rivet; and (iv) synchronize firing of the first and second rivet guns, so as to cancel forces that otherwise would propagate into the structure during installation of the rivet.
i. Positioning the Rivet
Returning to
As indicated above, prior to positioning the rivet 206, the rivet system 100 forms the hole 204 into which the rivet is to be installed. For example, the rivet-hole-formation apparatus 108 forms the hole 204. This apparatus 108 is any suitable apparatus configured to form a desired hole, such as a drill or punching apparatus.
ii. Positioning the Rivet Guns
Returning to
iii. Synchronizing the Firing of the First and Second Rivet Guns
At block 406, the rivet system 100 synchronizes firing of the first and second rivet guns 102, 104. In particular, the rivet system 100 synchronizes firing of the first and second rivet guns 102, 104 so that the first rivet gun 102 impacts the rivet 206 at substantially the same time as the second rivet gun 104 impacts the rivet. Beneficially, by synchronizing firing of the rivet guns, the rivet system 100 cancels forces that otherwise would propagate into the structure during installation of the rivet.
a. The First and Second Rivet Guns Impacting the Rivet a Plurality of Times
In an example embodiment, the first and second rivet guns 102, 104 are configured to impact the rivet 206 a plurality of times. For instance, in one embodiment the rivet gun is configured to impact the rivet 10-20 times. In another embodiment, the rivet gun is configured to impact the rivet 5-50 times. In yet another embodiment, the rivet gun is configured to impact the rivet less than 5 times or significantly above 50 times. By impacting the rivet 206 a plurality of times, it is possible to better control the interference during rivet installation. For example, when the rivet guns only impact the rivet a single time, it is extremely difficult to precisely control the deformation of the rivet and the interference, as well as the propagation of force throughout the system. However, by impacting the rivet a plurality of times and precisely controlling each impact, it is possible to precisely control the deformation of the rivet and the interference and to limit the propagation of forces throughout the system.
As can be seen in
b. Synchronizing the Impacts of the First and Second Rivet Guns to Occur at Substantially the Same Time
In an example, synchronizing firing of the first rivet gun 102 and the second rivet gun 104 involves synchronizing each impact of the first and second rivet guns. As used herein, synchronizing each impact involves timing each impact of the first rivet gun so that it occurs at the same or substantially the same time as an impact of the second rivet gun. The impacts are precisely timed to minimize the amount of energy of the rivet guns dissipated throughout the system, so as to ensure that all or substantially all of the energy goes into deforming the rivet. Beneficially, this creates a highly controlled and efficient deformation process, while also reducing or eliminating forces that would otherwise propagate into the structure. In an example, the efficient deformation reduces the number of impacts used to form the rivet (e.g., since less energy is wasted by dissipation throughout the system). Additionally or alternatively, the efficient deformation allows the system to use lower energy impacts to deform a rivet than would otherwise be needed.
In an example, impacting the rivet at substantially the same time involves the rivet guns impacting the rivet within 0.1 microseconds to 10 microseconds of one another. In another example, impacting the rivet at substantially the same time involves the rivet guns impacting the rivet within 10 microseconds to 100 microseconds of one another. In another embodiment, impacting the rivet at substantially the same time involves the rivet guns impacting the rivet within 0.1-10 milliseconds of one another. In yet another embodiment, impacting the rivet at substantially the same time involves the rivet guns impacting the rivet within 100 milliseconds of one another.
In an example, the rivet being installed is an aluminum rivet. In aluminum, the speed of sound is approximately 5,100 meters/second, which is 0.2 inches/μs. Therefore, for a 1 inch aluminum rivet, an impact wave would take approximately 5 μs to travel from a first side to the opposite side of the 1 inch rivet. In this example, the rivet guns would impact the rivet within approximately 5 μs of each other. Other example rivet lengths and rivet materials (and thus speeds of sound through the material) are possible as well.
As mentioned above, when a rivet gun impacts rivet, an impact wave is sent through the rivet to the other side of the rivet. In order to precisely time the opposing impact to minimize the amount of energy of the rivet guns dissipated throughout the system and maximize the energy that is absorbed by the rivet itself, the rivet system 100 times the second impact created by the second rivet gun to occur at the same time or substantially the same time the impact wave created by the first rivet gun reaches the side at which the second gun is positioned. For instance, in an example, when rivet gun 102 impacts rivet 206 on the rivet head 220, an impact wave is sent through the rivet 206 to the rivet tail 222. At the same time or substantially the same time that the impact wave has reached the rivet tail 222, the second rivet gun 104 impacts the rivet tail 222.
By impacting the rivet tail 222 at the same time or substantially the same time as when the impact wave reaches that end, the second impact of the rivet gun 104 would create an impact that cancels the first impact wave traveling through the rivet. This allows for all or substantially all of the energy to go into deforming rivet 206, and thus reduces the amount of energy that would be dissipated elsewhere in the system (e.g., to the rivet gun 104 and/or the structure 202). As a result, the precisely-timed opposing impacts cancel forces that would otherwise propagate into the surrounding system (e.g., to the rivet gun 104 and/or the structure 202).
c. Precisely Controlling the Timing and Force of the Synchronized Impacts
In order to synchronize the firing of the rivet guns to cancel the forces that would otherwise propagate into the structure, the rivet guns 102, 104 are configured such that they impact the rivet at a precisely-controlled time with a precisely-controlled force. In an example embodiment, the first and second rivet guns 102, 104 are electromagnetic multi-stage rivet guns. In an example, an electromagnetic multi-stage rivet gun includes a firing tube that houses a projectile and is surrounded by electromagnetic coils. By controlling the movement of the projectile within the firing tube, the rivet gun precisely controls the timing and force of the impacts of the rivet gun.
In an example embodiment, the rivet gun is configured such that the firing-tube projectile acts upon a hammering apparatus at the end on its travel through the firing tube. In an example, the hammering apparatus is a spring-loaded hammer. In turn, after the projectile acts upon the spring-loaded hammer, the spring-loaded hammer is activated and acts upon the rivet with a set amount of force.
As mentioned above,
The velocity of the projectile is thus a parameter that affects the impacts created by the rivet gun. For instance, the velocity of the projectile affects the force at which the rivet gun impacts the rivet. Further, the velocity of the projectile affects when the force of the rivet gun impacts the rivet. By controlling the velocity of the projectile in the firing tube, it is possible to precisely control the time and force at which the rivet gun (e.g., the spring-loaded hammer) impacts the rivet.
In an example, the velocity of the projectile is adjusted by controlling the current traveling through the various electromagnetic coils 608a-h. In particular, the current traveling through the electromagnetic coils 608a-h will produce a magnetic field, and this magnetic field imparts force that moves the projectile 606. The current traveling through the electromagnetic coils 608a-h is adjusted in order to precisely control the magnetic field that moves the projectile 606 through the firing tube 602. Therefore, in an example, synchronizing firing of the first and second rivet guns 102, 104 involves adjusting a velocity of the projectile in each rivet gun, so that the projectile in the first rivet gun and the projectile in the second rivet gun cause the rivet guns to impact the rivet at substantially the same time.
Further, in an example embodiment, in order to precisely control the velocity of the projectile 606, the current traveling through these coils 608a-h is adjusted based on a detected position of the projectile in each tube. In order to detect the position of the projectile 606 in the firing tube 602, the rivet guns 102, 104 include detectors that are configured to detect the position. For instance, in this example, the rivet gun includes a plurality of optical sensors configured to precisely detect the position of the projectile.
The rivet system 100 then controls firing of particular electromagnetic coils 608a-h in the rivet gun based on the detected projectile position. Since each rivet gun 102, 104 precisely detects the position of the projectile 606, the rivet system 100 controls the velocity of each projectile such that the projectiles in each gun act upon the rivet at the desired time. For instance, the rivet system 100 controls the velocity of each projectile such that the projectiles in each gun act upon the rivet at substantially the same time. In an example embodiment, magnetically stored energy is recycled into storage capacitors after each firing of the rivet guns. This energy recycling allows the rivet guns to turn minimal energy into waste heat.
d. Controlling Various Parameters of the Synchronized Impacts Based on the Structural Properties of the Rivet and/or the Structure
Rivets come in a variety of different types of material, different shapes, and different lengths. Due to the different structural properties of rivets, different rivets often respond differently to the impacts of the rivet guns 102, 104. For example, a first rivet might deform more quickly under a given force than a second rivet would. Further, the rivet system 100 is used to install rivets in structures of different materials. For instance, the rivet system 100 will install rivets in aluminum structures, copper structures, steel structures, composite structures, and/or other material structures. Different materials have different structural properties, and thus rivet installation would impact different structures differently. For instance, composite materials are typically more sensitive to rivet installation than metallic structures.
Therefore, in an example embodiment, the rivet system 100 controls various parameters of the synchronized impacts based on the structural properties of the rivet being installed and/or based on the structural properties of the structure being joined by the rivet. These various parameters to control include, for example, the number of synchronized impacts, the force of the synchronized impacts, and the timing of the synchronized impacts.
The speed at which an impact wave travels through a rivet depends on both the force at which the impact occurs and the material properties of the rivet material. For example, an impact wave created by x amount of force on a steel rivet will take a different amount of time to reach the other end than would an impact wave created by x amount of force on an aluminum rivet. As another example, an impact wave created by y amount of force on a one inch rivet will take a different amount of time to reach the other end than would an impact wave created by y amount of force on a two inch rivet. Therefore, the rivet system 100 times the opposing impacts based on the force at which the impact occurs and the material properties of the rivet being installed. In practice, typically the time difference between the opposing impacts would be on the order of microseconds or milliseconds.
In an example embodiment, before installing a rivet such as rivet 206, the rivet system 100 selects predefined installation parameters for the rivet to be installed. As indicated above, these predefined installation parameters are selected based on properties of the rivet and/or the structure to be joined. For example, for a rivet of a given material and of a given length, the rivet system 100 selects (i) a particular number of times that the first and second rivet guns will impact the rivet, (ii) a particular force at which the rivet guns impact the rivet, and (iii) how far apart in time the opposing impacts of the first and second guns will be. The rivet system 100 selects appropriate timing for firing of the electromagnetic coils in each rivet gun, so as to achieve the preselected parameters of number of impacts, timing of impacts, and force of impacts. The rivet system 100 then carries out the predefined installation parameters by firing the electromagnetic coils at the preselected times.
In another example embodiment, the rivet system 100 uses feedback from the system to adjust the installation parameters during the installation process. For instance, the rivet system 100 adjusts the installation parameters based on the optical-sensor measurements of the projectile in the firing tube of the rivet guns. In an example, by measuring the precise position of the projectile of each rivet gun, the rivet system 100 adjusts the firing of the electromagnetic coils, so as to more accurately achieve the preselected parameters (e.g., force and timing of each impact). In another example, the rivet system monitors the progress of the rivet installation and the rivet system 100 then determines that parameters different from the pre-selected parameters are more appropriate for completing the installation. Therefore, the rivet system 100 then adjusts the selected parameters (e.g., force and timing of each impact) based on feedback from the rivet system (e.g., feedback from the optical sensors).
The proposed methods and systems beneficially provide an improved way to install a rivet to join a structure, such as aircraft components. Beneficially, the disclosed methods and systems allow for precise control of interference during rivet installation. In the aerospace industry, structures joined by rivets go through many loading cycles throughout the life of the structure, and the quality of the rivet affects how the rivet and structure holds up during these loading cycles. Interference is a parameter that affects the useful life a rivet and/or the life of the structure joined by the rivet. Beneficially, by precisely controlling the interference during the rivet-installation process, the disclosed methods and systems thus help to extend the life of rivet and the structure being joined.
The disclosed methods and systems also beneficially reduce or eliminate the force that would otherwise propagate into the structure. Since the disclosed methods and system reduce or eliminate this force, the disclosed rivet methods and systems are suitable for joining composite materials. The traditional rivet process imparts forces on composite materials that make the traditional rivet process unsuitable for joining composite materials. However, the disclosed methods and systems allow for successfully securely join composite materials.
Still further, since the disclosed methods and systems allow for precise control of the interference, the disclosed methods and systems beneficially reduce the amount of human feedback used for the rivet-installation process. The traditional rivet-installation process often involves a large degree of human feedback during both the installation process and quality inspection process. However, given the precise control offered by the disclosed method and system, an inexperienced operator or a fully automated robot assembly system can deform rivets with a high degree of reliability to produce quality rivets consistently. By reducing or limiting the human feedback used for rivet-installation, the disclosed method and system beneficially increases the speed of the rivet-installation process and reduces costs involved with the rivet-installation process.
Exemplary embodiments have been described above. Those skilled in the art will understand, however, that changes and modifications may be made to these embodiments without departing from the true scope and spirit of the invention. The description of the different advantageous embodiments has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the embodiments in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. Further, different advantageous embodiments may provide different advantages as compared to other advantageous embodiments. The embodiment or embodiments selected are chosen and described in order to best explain the principles of the embodiments, the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5259104 | Givler | Nov 1993 | A |
5379508 | Givler et al. | Jan 1995 | A |
5398537 | Michalewski et al. | Mar 1995 | A |
20020172576 | Keener | Nov 2002 | A1 |
20080170926 | Taylor | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
0293257 | Nov 1988 | EP |
0768128 | Apr 1997 | EP |
2004012881 | Feb 2004 | WO |
2013152440 | Oct 2013 | WO |
Entry |
---|
Extended European Search Report, European Patent Application No. 15177980.8 dated Jan. 15, 2016. |
Number | Date | Country | |
---|---|---|---|
20160052042 A1 | Feb 2016 | US |