1. Field of the Invention
The present invention relates to an apparatus, and particularly to an apparatus and a method for testing an IEEE1394 port of a motherboard test device.
2. General Background
IEEE (Institute of Electrical and Electronic Engineers)1394 has two standard ports: an IEEE1394a port and an IEEE1394b port. The IEEE1394a port may provide 100 Mbps, 200 Mbps, and 400 Mbps data transmission rates. The IEEE1394b port extends data transmission rates of the IEEE1394a port, providing an 800 Mbps data transmission rate.
Motherboards must be tested for quality before shipment. Conventionally, in testing, a peripheral device is coupled to a motherboard test device under test via an IEEE1394a/b port to test whether the IEEE1394a/b function works well or not. For example, an ATA/ATAPI hard disk drive is coupled to the motherboard test device via an IEEE1394a/b port to test the IEEE1394 a/b port function. However, a conventional ATA/ATAPI hard disk drive is expensive, and this can increase the cost of testing. Furthermore, the ATA/ATAPI hard disk drive consumes significant amounts of power, and is prone to cause reliability problems especially if it sustains external shock or vibration. If the ATA/ATAPI hard disk drive operates unreliably, this may compromise the accuracy of the test.
What is needed is an apparatus and a method which economically and efficiently replaces a conventional ATA/ATAPI hard disk drive in the testing process of a motherboard test apparatus.
An exemplary apparatus for testing an IEEE1394 port of a motherboard test apparatus includes an IEEE1394 connector, a cable transceiver arbiter connected to the IEEE1394 connector, a first converting chip connected to the cable transceiver arbiter, a second converting chip connected to the first converting chip, and a flash chip connected to the second converting chip. The controller receives IEEE1394 signals from the connector, the first converting chip and the second converting chip cooperate to convert the IEEE1394 signals to flash signals, the flash signals are stored in the flash chip. The first converting chip and the second converting chip also cooperate to convert the flash signals to the IEEE1394 signals, the connector outputs the IEEE1394 signals through the controller. A method for testing an IEEE1394 port of a motherboard test apparatus is also provided.
Other advantages and novel features will become more apparent from the following detailed description, in which:
Referring to
In this embodiment, the cable transceiver arbiter 10 is a model TSB81BA3-EP. The first converting chip 20 is a model OXFW912. The second converting chip 30 is a model SST55LD019A. The flash chip 40 is a model TC58DVM72A1FT00.
In testing, the apparatus 100 is connected to the IEEE1394a port of the motherboard test device 60 via the IEEE1394 connector 50. Workers input signals containing a file or files to the apparatus 100 via the motherboard test device 60, such as a host. Then, the apparatus 100 returns the signal containing the file or files to the motherboard test apparatus 60, the workers verify a size of the file or files input match a size of the file or files returned. For example, a 750 kB file is input to the apparatus 100, if a file returned by the apparatus 100 is the same size as the 750 kb file, the IEEE1394 port of the motherboard test apparatus 60 is considered to be okay. And if a returned file is any size other than the 750 kb file, then, the IEEE1394 port of the motherboard test apparatus 60 is considered to be bad.
Referring also to
Step 1: signals containing a file is input from the motherboard test apparatus 60 to the apparatus 100, when the cable transceiver arbiter 10 receives the signals containing the file from the connector 50, it transmits the signals to the first converting chip 20; the first converting chip 20 converts the signals to IDE signals, and transmits the IDE signals to the second converting chip 30; the second converting chip 30 converts the IDE signals to flash signals, then, the flash signals are temporarily stored in the flash chip 40.
Step 2: the flash chip 40 transmits the flash signals to the second converting chip 30; the second converting chip 30 converts the flash signals to the IDE signals, and transmits the IDE signals to the first converting chip 20; the first converting chip 20 converts the IDE signals to return signals, and the return signals are transmitted to the motherboard test apparatus 60.
Step 3: workers compare the input signals containing the file with the return signals containing the file on a CRT screen of the motherboard test apparatus 60.
Step 4: if a size of the return signals containing the file matches a size of the input signals containing the file, the IEEE1394 port of the motherboard test device 60 is okay.
Step 5: if a size of the return signals containing the file do not match the size of the input signals containing the file, the IEEE1394 port of the motherboard test device 60 is bad.
When testing an IEEE1394b port of the motherboard 60, the procedure is the same as testing the IEEE1394a port. The apparatus 100 simulates the function of a conventional ATA/ATAPI hard disk drive in the test. The apparatus 100 is cheaper than the ATA/ATAPI hard disk drive, and more reliable, as well as consuming less power than the ATA/ATAPI hard disk drive.
It is believed that the present embodiment and it's advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the embodiment or sacrificing all of its material advantages, the example hereinbefore described merely being preferred or exemplary embodiment.
Number | Date | Country | Kind |
---|---|---|---|
200510100597.8 | Oct 2005 | CN | national |