The present application claims priority under 35 U.S.C. §119 of European Patent Application No. 03 09 0356.1, filed on Oct. 21, 2003, the disclosure of which is expressly incorporated by reference herein in its entirety.
1. Field of the Invention
The present invention relates to an apparatus for the transfer of rod-shaped or rod-like articles, in particular cigarettes, from a longitudinal conveyor for longitudinal-axial conveying of the articles onto a transverse conveyor for transverse-axial conveying of the articles. The apparatus includes a conveyor to receive the articles from the longitudinal conveyor and to deliver the articles to the transverse conveyor. Moreover, the conveyor is designed to rotate the articles by a predetermined angle and to reduce the transport speed of the articles. Furthermore, the present invention relates to a method for the transfer of rod-like articles, in particular cigarettes, from a longitudinal conveyor for longitudinal-axial conveying of the articles onto a transverse conveyor for transverse-axial conveying of the articles.
2. Discussion of Background Information
Apparatuses and methods of the type mentioned are used particularly in the tobacco-processing industry. Furthermore, in a continuous cigarette rod-making machine, strands of tobacco are produced which are usually divided into tobacco sticks having single or preferably double cigarette length. The tobacco sticks are conveyed in their longitudinal direction and have to be transferred for further transport or for further processing, for example for applying a filter, on a filter-application machine. For this purpose, the tobacco sticks usually have to be transferred from their longitudinal-axial transport direction into a transverse-axial transport direction.
Various apparatuses and methods for the transfer of rod-like articles from a longitudinal conveyor onto a transverse conveyor are known. For example, the known apparatuses have a conveyor, which is designed to receive the articles from the longitudinal conveyor. The conveyor is designed such that the main function of the apparatus, namely the braking of the articles, takes place during a rotation of the conveying element by 90°. Additionally, the conveyor is designed to deliver the articles to the downstream transverse conveyor. In a method of using the apparatus, the articles are taken from the longitudinal conveyor at strand speed, wherein the axial strand speed is completely reduced before the articles are delivered and radially accelerated to the downstream transverse conveyor. This braking or acceleration process is carried out, as is known, along the transport path of the articles on the conveyor of 90°, which leads to a considerable stress due to high (positive and negative) accelerations of the articles. However, the forces acting in axial direction of the articles in particular are undesirable since they lead to damage, for example so-called head loss in tobacco sticks.
An intermediate conveyor, which is designed as a flat-bed conveyor, is known from WO 99/56568. Transport elements, which co-operate with a closed conveying system, are arranged on the flat-bed conveyor, wherein the closed conveying system has a track having different radii. Receiver heads for the cigarettes as part of the transport elements of the intermediate conveyor follow the closed conveying system, namely the conveying track. Additionally, a speed change is thus achieved so that the cigarettes are received at a first speed, rotated during transport and delivered at a second speed which is lower than the first speed. This intermediate conveyor is, however, very complex in construction and the articles to be transported, that is in particular the cigarettes, are exposed in their axial direction during braking or acceleration to forces, since the rotation of the cigarettes and the braking of the cigarettes take place in a superimposed movement, so that the cigarettes are stressed in their axial direction. Furthermore, this intermediate conveyor facilitates only a limited transfer capacity which is no match for the requirements or the possible capacities of modern continuous cigarette rod-making machine.
It is therefore an aspect of the present invention to provide an efficient apparatus which is suitable to ensure gentle transfer of rod-like articles from a longitudinal conveyor onto a transverse conveyor. Furthermore, an additional aspect of the present invention is to propose a method for the gentle transfer of articles from a longitudinal conveyor onto a transverse conveyor.
One aspect is achieved by an apparatus of the type mentioned in the introduction in that the conveyor has at least two separate conveying elements which co-operate with one another. One conveying element is designed to rotate the articles by a predetermined angle and the other conveying element is designed to reduce the transport speed of the articles. Thereby, gentle transfer of the articles, namely in particular the cigarettes, from the longitudinal conveyor to the transverse conveyor is thus achieved in a particularly effective and simple manner. By dividing the main functions of the apparatus, rotation of the articles and reduction of the transport speed of the articles over two independent conveying elements, the transport path of the articles as a whole is extended. In other words, the functions which stress the articles are divided over an extended transport path, as a result a longer process duration for each process cycle is achieved, and specifically without reducing the “output” or the capacity of the apparatus. This leads to protection of the articles.
The two conveying elements are advantageously arranged one behind the other in transport direction of the articles. In particular, the first conveying element, in transport direction of the articles, is designed to rotate the articles and the second conveying element is designed to reduce the conveying speed. This design according to the present invention ensures, in addition to extension of the transport path, that the forces acting during braking or acceleration of the articles on the latter act exclusively in a direction vertically/transversely to the axial direction. By rotating the articles before braking, stress of the articles in axial direction may be effectively reduced. This applies particularly to tobacco sticks, in which the so-called head loss, that is, the falling-out of tobacco product from the tobacco stick caused by a delay is avoided.
In a preferred embodiment of the present invention, several, preferably four, receiving elements are combined to remove and deliver the articles to a trough segment. The parallel and gentle transfer of several, preferably four, articles, in particular four double tobacco sticks, is thus ensured.
The first conveying element can comprise several, preferably eight, trough segments, which are designed to be rotatable in each case about a rotary axis. This has the advantage that several trough segments are always occupied, so that one single transfer process may take place for the duration of several process cycles. Due to the possibility of rotation, the articles may be brought into a required position, in which the stress on the articles is reduced, before braking.
A further advantageous embodiment of the present invention envisages that the second conveying element comprises several, preferably six, trough segments, which are designed to be movable in each case to change the radius. A reduction of the transport speed of the articles in the region of the second conveying element is thus achieved in constructively simple manner.
Furthermore, an aspect of the present invention is achieved by a method of the type mentioned in the introduction, which includes receiving several rod-like articles from the longitudinal conveyor at a strand speed by a first conveying element and rotating the articles by an angle of 90° about an axis likewise by the first conveying element. Moreover, the method includes transferring the articles from the first conveying element to a second conveying element, braking the articles to a speed which is less than the strand speed by the second conveying element, and delivering the articles to the transverse conveyor. Using this sequence it is possible to protect the articles during transfer from the longitudinal conveyor to the transverse conveyor, since the main functions, rotation of the articles and braking of the articles, are divided over two sequential working steps. A reduction of the force effect in axial direction on the articles is effectively ensured by the step sequence “first rotate, then brake.” Furthermore, the step sequence ensures extension of the transport path. In other words, the rotation and the braking are divided over an extended transport path/conveying path, as a result of which the articles are less stressed.
Braking of the articles preferably takes place due to changes in the radius of the second conveying element. This ensures that, independently of the strand speed and of the division of the articles over the strand conveyor, delivery of the articles with division which is necessary for subsequent processing and a speed matching the division is ensured.
One aspect of the present invention includes an apparatus for transferring rod-like articles from a longitudinal conveyor that longitudinal-axially conveys the articles onto a transverse conveyor that transverse-axially conveys the articles. Moreover the apparatus includes a conveyor that receives the articles from the longitudinal conveyor and delivers the articles to the transverse conveyor, the conveyor comprising at least a first conveying element and a separate second conveying element which are configured to be in functional connection with one another. Additionally, the first conveying element being structured and arranged to rotate the articles by a predetermined angle. Furthermore, the second conveying element being structured and arranged to reduce the transport speed of the articles.
A further aspect of the present invention, the apparatus can include the first and second conveying elements can be arranged one after another, i.e., sequentially, in a transport direction of the articles. Moreover, the second conveying element can be positioned downstream of the first conveying element. Additionally the first and second conveying elements can each be structured and arranged as rotational bodies that include one of a drum and disc configured to be driven to rotate about a rotational axis. Furthermore, each conveying element can include a plurality of receiving elements that are configured to at least one of remove and deliver the articles. Additionally, the apparatus can include at least one trough segment composed of four receiving elements of the plurality of receiving elements. Moreover, the first conveying element can include eight trough segments configured to pivot about a pivoting axis and are structured and arranged to be rotatable about an axis. Additionally, the second conveying element can include six trough segments which are structured and arranged to be movable to change a radial position. Furthermore, the trough segments can be arranged on pivoting levers such that the trough segments can be configured to be moved on a plurality of track curves each having different radius. Additionally, a transport path of the articles within the conveyor can be at least 360°. Moreover, a transport path to rotate the articles and the transport path to reduce the conveying speed of the articles can each be at least 180°. Furthermore, rotational axes of the first and second conveying elements can be parallel to one another. Furthermore, rotational axes of the first and second conveying elements can be transverse to one another. Additionally, the rod-like articles can be cigarettes.
Yet another aspect of the present invention includes a method for transferring rod-like articles from a longitudinal conveyor for longitudinal-axial conveying of the articles onto a transverse conveyor for transverse-axial conveying of the articles. The method includes receiving a plurality of rod-like articles from the longitudinal conveyor at a strand speed by a first conveying element and rotating the articles by an angle of 90° about an axis by the first conveying element. Moreover, the method includes transferring the articles from the first conveying element to a second conveying element and braking the articles to a speed, which is less than the strand speed, by the second conveying element. Additionally, the method includes delivering the articles to the transverse conveyor.
A further aspect of the method of the present invention, the rotation of the articles can take place during transport on a transport path of about 180° about a rotational axis of the first conveying element. Moreover, braking of the articles can take place during transport on a transport path of about 180° about a rotational axis of the conveying element. Additionally, the braking of the articles can take place due to changes in a radial position of the second conveying element. Moreover, the articles can be guided at least in a region of a receiving position and a taking-over position. Additionally, the articles can be pivoted and guided about a pivoting axis. Furthermore, movements about at least two of the rotational axis of the first conveying element, the pivoting axis, and the axis can be superimposed. Additionally, the braking of the articles can take place due to a superimposed movement of the articles to the conveying element. Moreover, the rod-like articles can be cigarettes. Furthermore, a conveyor that conveys rod-like articles can use the method noted above.
Yet another aspect of the present invention includes an apparatus for transferring rod-like articles from a longitudinal-axially conveyed direction to a transverse-axially conveyed direction. Additionally, the apparatus includes a first conveyor structured and arranged to rotate the articles by a predetermined angle and a second conveyor structured and arranged to reduce the transport speed of the articles. Moreover, the first and second conveyors are respectively arranged one after another in transport direction of the articles.
A further aspect of the present invention the first and second conveyors can each be structured and arranged as rotational bodies that comprise one of a drum and disc which can be configured to be driven to rotate about a respective rotational axis. Moreover, each conveyor can include a plurality of receiving elements that are configured to at least one of remove and deliver the articles. Additionally, the apparatus can include at least one trough segment having four receiving elements of the plurality of receiving elements. Moreover, the rod-like articles can be cigarettes.
Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.
The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:
a, 6b, 6c, and 6d show a detailed representation of the apparatus according to
The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.
The apparatuses described and the method of the present invention serve to transfer cigarettes or tobacco sticks from a continuous cigarette rod-making machine to a downstream machine, in particular a filter-attaching machine.
A first embodiment of an apparatus 10 for the transfer of rod-like articles 11, namely for example tobacco sticks of double cigarette length from a longitudinal conveyor (not shown) onto a transverse conveyor (likewise not shown) is shown in
The conveying elements 13, 14 are designed as rotary bodies, preferably as drums and can be driven to be rotating about rotational axes 15 or 16. Each conveying element 13, 14 usually has a separate drive. The drives can preferably be controlled and/or regulated via a common control and can be matched to one another particularly with regard to the rotational speeds. The rotary bodies may also be designed as discs or in a different conventional form. The rotational axes 15, 16 run parallel to one another in this embodiment, wherein the rotational axes 15, 16 lie in a vertical plane. The two conveying elements 13, 14, namely a receiving drum and a delivery drum, can be driven in an opposite direction and co-operate with one another in the region of a taking-over position 17, or transfer position, such that the articles 11 can be transferred from an outer track curve 18, or outer curved path, of the conveying element 13 to an outer track curve 19 of the conveying element 14. In the embodiment shown, the radius of the track curve 18 is designed to be greater than the radius of the track curve 19. However, other radii ratios are also possible.
The first conveying element 13, in transport direction of the tobacco sticks, is designed to transport the tobacco sticks at strand speed from a receiving position 20 in the region of the longitudinal conveyor to the taking-over position 17. Moreover, the conveying element 13 is designed to rotate the tobacco sticks by a predetermined angle. In particular, the rotary movement of the articles 11 can be executed in parallel, that is superimposed, for the transport movement about the rotational axis 15. The conveying element 13 has receiving elements 21 to receive the tobacco sticks. The receiving elements 21 serve to remove the tobacco sticks. More specifically, four receiving elements 21 are arranged in parallel next to one another for preferred simultaneous removal of four tobacco sticks conveyed in parallel next to one another and at strand speed, and to transfer the tobacco sticks, preferably for individual transfer of the tobacco sticks to the conveying element 14. In the embodiment shown, four receiving elements 21 are thus combined to form one trough segment 22.
In total, the conveying element 13 has eight such trough segments 22, which are distributed uniformly in equal division over the periphery of the conveying element 13. Hence, for one complete revolution of the conveying element 13 about 360°, eight process cycles are possible. However, a different number of trough segments 22 in altered division can likewise be used. The trough segments 22 are attached to the conveying element 13 and can thus be rotated about the rotational axis 15. Additionally, each trough segment 22 is designed to be pivotable about a pivoting axis 23. In particular, wherein the pivoting movement of the trough segments 22 can be superimposed on the rotational movement of the conveying element 13. The pivoting movement about the pivoting axes 23 serves mainly to follow the trough segments 22 in the region of the receiving position 20 and the taking-over position 17, so that guiding of the articles 11 is guaranteed at the point in time of receiving and taking-over. All rotary axes 23 lie on a track curve 24, the radius of which is less than the radius of the track curve 18. The pivoting axes 23 run parallel to the rotational axis 15 and are arranged concentrically around the latter.
Furthermore, the trough segments 22 or at least the receiving elements 21 are combined to form the trough segment 22 and can be rotated about an axis 31. The axes 31 run vertically to the particular pivoting axes 23 and vertically to the axial direction of the receiving elements 21. The transport path of the conveying element 13 is, for the tobacco sticks, 180° from the receiving position 20 to the taking-over position 17. The trough segments can be rotated on this transport path additionally about the pivoting axis 23 and the axis 31, so that in total at least three movements may proceed one after another and/or simultaneously. Other arrangements having a shorter or longer transport path and further movement possibilities are however also conceivable.
The conveying element 14, downstream of the conveying element 13, is designed to transport the tobacco sticks from the taking-over position 17 to a delivery position 25 and to brake the tobacco sticks to a conveying speed which is less than the strand speed. The conveying element 14 likewise has receiving elements 26 for taking-over the tobacco sticks from the conveying element 13 or from the trough segments 22 to deliver the tobacco sticks to the transverse conveyor. In turn, in each case four receiving elements 26 are combined to form a trough segment 27. Six trough segments 27 are arranged and distributed uniformly over the periphery of the conveying element 14 in the embodiment shown. A lesser or greater number of trough segments 27 and/or a different division of the trough segments 27 can however also be used.
The trough segments 27 have, in the front view (see for example
The previously described curvature of the trough segments 27 or the outer surface 32 in the region of the receiving elements 26 has a radius which is slightly less than the radius of the track curve 19 and corresponds approximately to the radius of the track curve 30. In other words, only one contact point between the conveying element 13 and the conveying element 14 or between the surface 32 of the trough segment 27 and the likewise curved surface 33 of the trough segment 22 is produced in the region of the taking-over position 17. The radius of the curvature of the surface 33 corresponds to the radius of the track curve 18. The trough segments 27 are arranged at a distance from one another in extended state, that is, describing the track curve 19 with the surface 32.
The method is described in detail below using
The basic principle of the process having the main functions of “rotate articles by 90°” and “reduce transport speed of the articles” can be described using
After taking-over the double tobacco sticks in segment E, in which the double tobacco sticks are guided one after the other from trough segment 22 into trough segment 27, the speed is reduced in segment F. The speed reduction, that is the braking process, takes place transversely to the axial alignment of the articles (y direction in
The exact transfer of double tobacco sticks in segment C or E is illustrated in more detail using
Further embodiments with the corresponding process steps are illustrated using
In the embodiment of
In the embodiment according to
It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
03090356 | Oct 2003 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3825105 | Cristiani | Jul 1974 | A |
4406197 | Bardenhagen et al. | Sep 1983 | A |
4827948 | Schumacher | May 1989 | A |
4938337 | Jowitt et al. | Jul 1990 | A |
5154278 | Deutsch | Oct 1992 | A |
5154687 | Jeslis | Oct 1992 | A |
5255777 | Pawelko | Oct 1993 | A |
5267577 | Rizzoli et al. | Dec 1993 | A |
5322157 | Dahlgrun | Jun 1994 | A |
5480021 | Belvederi et al. | Jan 1996 | A |
5988354 | Spatafora et al. | Nov 1999 | A |
6325201 | Bailey et al. | Dec 2001 | B1 |
6648122 | Hirsch et al. | Nov 2003 | B1 |
6672446 | Boldrini et al. | Jan 2004 | B1 |
7070039 | Dombek | Jul 2006 | B1 |
20020043269 | Boldrini et al. | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
1105324 | Apr 1961 | DE |
3128059 | Apr 1982 | DE |
1174047 | Jan 2002 | EP |
9956568 | Nov 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20050082141 A1 | Apr 2005 | US |