This invention relates to apparatus and methods for ligating tissue, and more particularly to ligating cardiac tissue, and even more particularly to ligating tissue of the left atrium. In one preferred form of the present invention, ligation of the left atrial appendage is effected using a novel apparatus and method.
Atrial fibrillation is a common problem that afflicts millions of patients. Unfortunately, atrial fibrillation often results in the formation of a thrombus, or clot, in the appendage of the left atrium. This presents a problem, inasmuch as the thrombus can dislodge and embolize to distant organs, resulting in adverse events such as a stroke. For this reason, most patients with atrial fibrillation are treated with a blood thinner so as to help prevent the formation of a thrombus in the left atrial appendage. Unfortunately, blood thinners pose a substantial health risk in their own right, particularly in the elderly.
An alternative treatment for atrial fibrillation is the ligation of the atrial appendage at its base. This procedure occludes the space in which the thrombus can form, thereby substantially eliminating the risk of forming a clot in the left atrial appendage and/or preventing a clot in the appendage from embolizing. Surgeons have been ligating atrial appendages for years during open surgical procedures. Though effective, this approach requires general anesthesia and surgically opening the chest, which presents additional serious health risks to the patient. Therefore, such open-chest ligation of the atrial appendage is normally restricted to situations where the chest is already being surgically opened for other reasons, or where the patient is at a particularly high risk of embolizing.
Recently, catheter-based techniques have been developed for occluding the left atrial appendage space by placing mechanical devices inside the left atrial appendage. This is done under fluoroscopic and/or echocardiographic guidance without the need for a major chest incision or general anesthesia. Unfortunately, however, these techniques require the implantation of mechanical intracardiac devices which, over time, may result in clot formation, incomplete occluding of the appendage space, infection, etc.
These and other issues are addressed by the present invention, which comprises a novel catheter-based system which ligates the left atrial appendage (LAA) on the outside of the heart, preferably using a combination of catheters and/or instruments, e.g., a guide catheter positioned inside the left atrial appendage which may assist in locating the left atrial appendage and/or assist in the optimal placement of a ligature on the outside of the appendage, and a ligating catheter and/or instrument outside the heart in the pericardial space to set a ligating element at the neck of the left atrial appendage. As a result, this novel approach provides the advantages of both the open surgical approach (i.e., successful ligation of the atrial appendage on the outside of the heart, while avoiding implantation of a mechanical intracardiac device within the heart), and the catheter-based approach (i.e., providing rapid and reliable access to the left atrial appendage without the need for a major chest incision or general anesthesia).
The apparatus and method described herein are primarily intended, to ligate the left atrial appendage, however, the apparatus and method may also be used in the same or similar constructions to stabilize, suture, and/or ligate any other tissue in the body. By way of example but not limitation, using the apparatus and method described herein, other tissues of the heart (such as the left ventricle) may be manipulated so as to alter the conformational geometry of the heart into a more favorable shape.
In another form of the invention, there is provided a guide catheter for use in conjunction with a ligating catheter for ligating tissue, comprising:
a shaft having a distal end; and
an alignment element disposed on the distal end of the shaft, wherein the alignment element interacts with a counterpart alignment element on the ligating catheter so as to facilitate alignment of the ligating catheter with the guide catheter.
In another form of the invention, there is provided a guide catheter for use in conjunction with a ligating catheter for ligating tissue, comprising:
a shaft having a distal end; and
an expandable element connected to the distal end of the shaft, wherein the expandable element is configured to expand to a size corresponding to the interior of the left atrial appendage.
In another form of the invention, there is provided a ligating catheter for ligating tissue, comprising:
a hollow shaft having a distal end;
a ligating subassembly comprising a plurality of expandable arms arranged in an arcuate configuration and releasably supporting a ligating element thereon, the ligating subassembly being slidably received within the hollow shaft and adapted to move between (i) a retracted position wherein the expandable arms are received within the hollow shaft, and (ii) an extended position wherein the expandable arms project from the distal end of the hollow shaft, with the expandable arms holding the ligating-element radially outboard of the shaft when the ligating subassembly is in its second position.
In another form of the invention, there is provided a ligating catheter for ligating tissue, comprising:
a hollow shaft having a distal end;
a ligating subassembly comprising a plurality of expandable arms arranged in an arcuate configuration and releasably supporting a ligating element thereon, the ligating subassembly being slidably received within the hollow shaft and adapted to move between (i) a retracted position wherein the expandable arms are received within the hollow shaft, and (ii) an extended position wherein the expandable arms project from the distal end of the hollow shaft, with the expandable arms holding the ligating element radially outboard of the shaft when the ligating subassembly is in its second position;
an alignment element mounted to the shaft, wherein the alignment element interacts with a counterpart alignment element on a guide catheter disposed within the tissue to be ligated; and
gripping apparatus for gripping tissue, wherein the gripping apparatus comprises a suction tube mounted to the hollow shaft.
In another form of the invention, there is provided a system for ligating tissue comprising:
a guide catheter comprising:
a ligating catheter for ligating tissue, comprising:
In another form of the invention, there is provided a system for ligating tissue comprising:
a guide catheter comprising:
a ligating catheter for ligating tissue, comprising:
a gripping apparatus for gripping tissue, wherein the gripping apparatus comprises a suction tube mounted to the hollow shaft.
In another form of the invention, there is provided a method for ligating tissue, comprising:
positioning a guide catheter within the interior of the tissue to be ligated, wherein the guide catheter comprises an alignment element for interacting with a counterpart alignment element on a ligating catheter;
advancing a ligating catheter so as to position a ligating element about the tissue to be ligated, wherein the ligating catheter interacts with the alignment element on the guide catheter when positioning the ligating element about the tissue to be sutured; and
contracting the ligating element about the tissue, whereby to ligate the tissue.
In another form of the invention, there is provided a method for ligating tissue, comprising:
providing a guide catheter and a ligating catheter, wherein the guide catheter comprises an alignment element for interacting with a counterpart aligning element on the ligating catheter so as to facilitate alignment of the ligating catheter with the guide catheter;
positioning the guide catheter within the tissue to be ligated;
using the alignment elements align the ligating catheter with the guide catheter and about the tissue to be ligated; and
ligating the tissue with the ligating catheter.
In another form of the invention, there is provided a system for ligating tissue comprising:
a wire extending from the interior of the left atrial appendage, through the side wall of the left atrial appendage, and out the pericardium;
a guide catheter slidably mounted on the wire, comprising:
a ligating catheter for ligating tissue, comprising:
In another form of the invention, there is provided a method for performing a procedure on a body structure, comprising:
inserting a first device with an alignment element into the body structure;
positioning a second device outside of the body structure;
aligning the first device with the second device with the alignment element; and
performing a procedure on the body structure with the devices.
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which are to be considered together with the accompanying drawings wherein like numbers refer to like parts, and further wherein:
Looking first at
Looking next at
Looking now at
Looking next at
Looking next at
Alternatively, and more preferably, alignment element 90 is intended to work in conjunction with a guide catheter 100, wherein the guide catheter 100 is placed (e.g., endoluminally) within the interior of the left atrial appendage. In this construction, guide catheter 100 also comprises a radio-opaque material, and alignment element 90 and guide catheter 100 are placed in alignment by visualization.
Even more preferably, ligating catheter 2 and guide catheter 100 are provided with physical means (e.g., magnets, male and female connectors, wires and snares, etc.) to facilitate alignment of ligating catheter 2 and guide catheter 100. Thus, in one preferred construction, ligating catheter 2 has its alignment element 90 equipped with a reference magnet 95 at its distal tip. Guide catheter 100 in turn comprises an alignment element 102 having a reference magnet 105 at its distal tip. More particularly, with this preferred construction, ligating catheter 2 has the alignment element 90 which can be extended from the distal end of cylinder 5. On the distal end of alignment element 90 is the reference magnet 95. Alignment element 90 is put into proximity with the guide catheter 100, which has the alignment element 102 with reference magnet 105 mounted on its distal end. When these two alignment elements 90 and 102 are brought into proximity with one another, magnets 95 and 105 cause the alignment elements 90 and 102 to automatically align with one another.
For example, during left atrial appendage ligation, guide catheter 100 is passed endoluminally into the left atrium appendage under visual guidance such as fluoroscopy or ultrasound. The ligating catheter 2 is passed into the pericardium. The alignment element 90 of the ligating catheter is then extended from cylinder 5. Once alignment element 90 is placed into proximity with alignment element 102, magnets 95, 105 cause the two catheters to automatically align with one another, thereby causing ligating catheter 2 to assume a desired position with respect to the left atrial appendage. Then, ligating catheter 2 is utilized as described above to ligate the left atrial appendage.
Looking next at
Looking next at
Looking next at
Looking next at
In
Looking next at
In one preferred form of use, guide catheter 100 is passed endoluminally across the atrial septum and into the left atrium. Guide catheter 100 (
In one preferred use of this system, the practitioner gains percutaneous access to the femoral vein using the Seldinger or other standard technique, and the aforementioned sheath (not shown) is introduced under fluoroscopic guidance across the atrial septum. The magnetic tip 105 of the guide catheter is then advanced out of the aforementioned sheath and into the left atrial appendage, in the manner previously discussed.
The second instrument used with this iteration (i.e., the ligating catheter 2, as shown in
Once pericardial access is obtained, the second instrument (i.e., the ligating catheter 2, as shown in
Once the thin-walled tube 5 is in position, the intrapericardial tool (i.e., the ligating subassembly 30) is advanced down the thin-walled tube 5. In a preferred embodiment, the ligating catheter 2 comprises a central intrapericardial catheter or alignment element 90 at the end of which is one or more rare-earth magnets 95, as described previously. These magnets 95 are poled to attract the ligating catheter 2 to the guide catheter 100 (previously placed in the left atrial appendage) in an end-to-end orientation. The ligating catheter 2 may be flexible or, in another embodiment, is stiff with a malleable, deflectable tip.
Coaxial to this alignment element 90, and constructed in such a manner that it can be advanced or withdrawn relative to either the alignment element 90 or the thin-walled tube 5, is a tube 150 that ends in a funnel-like or trumpet-bell flare 160. The internal diameter of this flared tube 150 is significantly larger than the external diameter of the intrapericardial magnet-tipped alignment element 90 (over which the flared tube 150 slides) so as to allow vacuum to be conveyed from the back of the flared tube 150 to the distal flare 160. This flared end 160 acts as a suction cup to grasp the tip of the left atrial appendage 130 from outside the heart.
In a preferred embodiment, the ligating catheter's alignment element 90 is advanced (
Over the outside of this flared tube 150, but inside the lumen of the 24 French thin-walled tube 5, is a Nitinol stent-like structure or ligation subassembly 30 that can be advanced down the thin-walled tube 5 toward the tissue by way of a stiff catheter or other structure (i.e., the advancement/retraction control element 20) attached to its back end. This Nitinol structure 30 is designed to expand (once released from the constraints of the thin-walled outer tube 5) into a bell shaped crown (
Once the left atrial appendage is secured with suction, the Nitinol structure 30, and its attached snare 32, is advanced over the flared tube 150 toward the left atrial appendage. The flared tube 150 extends 2 or 3 centimeters beyond the end of the thin-wailed outer tube 5. As such, the Nitinol structure 30 begins to expand into a bell-shape which facilitates its advancement over the flared suction catheter 150, and over the left atrial appendage.
Once the Nitinol structure 30 has been advanced to the point where it is near the base of the left atrial appendage, the balloon 115 on the guide catheter 100 inside the appendage is inflated, preferably with a contrast material. The Nitinol structure is advanced under fluoroscopic guidance so that the tips of its bell-shaped crown 30 (and the suture snare 32) are beyond the inter-atrial balloon (
In a preferred form of the present invention, and looking now at
Additionally, if desired one or more of the magnets 95 and/or 105 may comprise an electromagnet. Such a construction permits the magnetic field to be selectively turned on and off, thus facilitating separation of the devices at the end of the procedure.
Furthermore, in the foregoing description, struts 45 are described as being preferably expanded by connecting them to one another with springs 50, whereby to render the struts self-expandable when they are advanced out of the distal end of cylinder 5. Alternatively, struts 45 may be expanded by other means, e.g., an expansion mechanism mounted to struts 45, or by making struts 45 out of a spring material (e.g., a superelastic material such as Nitinol), etc.
In one preferred form of the invention, the novel apparatus and method uniquely combine two or more of the following components:
(1) an elongated element such as a cylinder;
(2) an expandable element to help place the ligature over the tissue to be ligate;
(3) the ligature;
(4) an alignment mechanism; and
(5) an expandable element that helps guide the ligature into its proper position as the ligature is deployed.
In one aspect of the invention, an alignment system is provided for positioning a ligature delivery apparatus at a desired location around a tissue structure such as the left atrial appendage.
In another aspect of the invention, d tissue expander is provided for positioning a ligature at a desired location around a tissue structure such as the left atrial appendage.
And in another aspect of the invention, a radially-adjustable ligature delivery apparatus is provided for positioning a ligature at a desired location around a tissue structure such as the left atrial appendage. This delivery apparatus may be expandable.
In still another aspect of the invention, there is provided a ligature system which includes an alignment system, a tissue expander, and a radially-adjustable ligature delivery apparatus, and which is configured to position a ligature around a tissue structure such as a left atrial appendage.
And in still another aspect of the invention, there is provided a ligature system configured to position a ligature around a tissue structure such as the left atrial appendage without opening the chest.
And in still another aspect of the invention, there is provided a ligature system configured to position a ligature around a tissue structure such as the left atrial appendage without opening the chest, using at least two catheters entering the body from remote locations such as a vein, artery and/or through the skin.
In another aspect of the invention, there is provided a novel system comprising a guide member configured for placement within the left atrial appendage of a patient and adapted to provide a reference for positioning a ligature at a desired location around the left atrial appendage.
In yet another aspect of the invention, there is provided a ligature delivery apparatus having an alignment component configured for positioning a ligature at a desired location in response to the reference of the aforementioned guide member disposed within the left atrial appendage.
In still another aspect of the invention, there is provided a tissue expander configured for placement within the left atrial appendage and adapted to define a desired location for positioning a ligature.
In still another aspect of the invention, there is provided a reference catheter having both a guide member and a tissue expander for placement within the left atrial appendage.
In still another aspect of the invention, there is provided a radically-adjustable ligature delivery apparatus configured for placing a ligature at a desired location around the left atrial appendage of a patient.
In still another aspect of the invention, there is provided a delivery catheter having both an alignment component corresponding to the aforementioned guide member within the left atrial appendage of a patient and an adjustable ligature delivery apparatus for placing the ligature therearound.
In still another aspect of the invention, there is provided a delivery catheter having both an alignment component corresponding to the aforementioned guide member within the left atrial appendage of a patient and an adjustable ligature delivery apparatus for placing the ligature therearound, whereby the delivery apparatus contains an expandable element.
In still another aspect of the invention, there is provided a ligature system including both a reference catheter and an alignment catheter configured to correspond with one another so as to place a ligature at a desired location around the left atrial appendage of a patient.
In still another aspect of the invention, there is provided a ligature system including both a reference catheter and an alignment catheter configured to correspond with one another so as to place a ligature at a desired location around the left atrial appendage of a patient, in which either the reference catheter or the alignment catheter, or both, include an expandable element.
In another aspect of the invention, a device incorporating one or more of the above-identified components is placed in proximity to the tissue which is to be ligated. This can be done in many ways such as under direct visualization or under fluoroscopic, ultrasound, radiographic, CT, MRI, etc., guidance. Additionally, it can be further aligned by using such devices as alignment strands, magnets, etc.
And in another aspect of the invention, the apparatus and method may be used to ligate the left atrial appendage as follows. Access to the Pericardial space is acquired using standard techniques such as the Seldinger over-the-wire technique. For example, such device, which preferably comprises an elongated device such as a cylinder containing an expandable element, a ligature, and an alignment mechanism, is placed into the pericardium over a guidewire. For example, the elongated device can be a large catheter in which there is an expandable element, a ligature, and an alignment mechanism.
And in another aspect of the invention, a guide catheter is placed into the left atrium using standard techniques, such as transseptally, through the veins or retrograde across the mitral valve, etc. The guide catheter in the left atrium is then placed into the left atrial appendage under fluoroscopic guidance. At this point, the guide catheter is in the left atrial appendage and the ligating mechanism is disposed in connection with a deployment catheter in the pericardial space. The guide catheter in the left atrium and the deployment catheter in the pericardial space are then aligned with one another. This can be done using a variety of techniques. For example, one or both of the devices can be magnetized, thus allowing them to be aligned relative to one another using magnetic force. Alternatively, the guide catheter and deployment catheter can be “steered” into proximity using visual or ultrasonic guidance. Or the guide catheter in the left atrium can penetrate the left atrial appendage and be “snared” by the deployment catheter in the pericardium. At this point, the device in the pericardium is advanced into proximity with the left atrial appendage. A ligating apparatus is then deployed from the deployment catheter and advanced over the left atrial appendage. Preferably, the guide catheter inside the left atrium includes an expandable element such as a balloon. This expandable element is then expanded inside the left atrial appendage. In so doing, this expansion helps prevent the ligature from slipping or migrating off of the left atrial appendage as the ligature is tightened around the left atrial appendage. The ligature is then tightened around the left atrial appendage. The expandable element inside the left atrium is when contracted. The guide catheter inside the left atrial appendage is then backed out of the left atrial appendage. The procedure can be repeated as necessary. The guide catheter and deployment catheter are then removed from the body cavity.
Alternatively, the guide catheter inside the left atrial appendage may be removed after the ligature has been mostly placed, but before the final tightening of the ligature. This will allow the base of the left atrial appendage to be completely occluded after the guide catheter is withdrawn from the left atrial appendage.
The following text further illustrates a preferred manner for ligating the left atrial appendage. A trans-septal left atrial guide catheter that has (integral to its construction) a rare-earth magnet, or other alignment means, and an inflatable balloon, is of great utility in effectively occluding the left atrial appendage with a snare or ligature. The left atrial appendage is typically roughly conical in shape, with a slight neck or narrowing in the plane of the orifice where it joins the left atrium proper. To effectively exclude the left atrial appendage from the outside with a ligature or snare, the snare must be tightened precisely in this plane. Ideally, with the ligature tightened, the resultant left atrial geometry should be essentially spherical, with only a slight dimple visible from the endocardial or luminal aspect at the site of the obliterated orifice. If the snare is tightened above the plane of the orifice (toward the left atrial appendage tip), incomplete exclusion of the left atrial appendage may result in a persistent diverticulum of left atrial appendage, which may provide a site of stasis and thrombus formation in the fibrillating atrium. Conversely, if the snare is tightened below the plane of the orifice, there is a risk of injury to the circumflex coronary artery, which runs in the atrio-ventricular grove.
Snaring the left atrial appendage precisely and accurately in the optimal plane presents several technical challenges. In some individuals, the geometry of the left atrium and left atrial appendage may be such that the neck or narrowing between them is poorly defined, especially from the epicardial or outer aspect. Furthermore, because the left atrial appendage wall is thin and flexible, and the wall tension low (left atrial pressure is generally low, e.g., <20 mm Hg), the external geometry of the left atrial appendage-left atrial junction may be of little help in constraining the snare to the correct plane during tightening. This challenge is compounded by the fact that the anatomy is moving vigorously, even in the fibrillating atrium, due to translational motion from ventricular systole. A trans-septal left atrial guide catheter equipped with a magnetic tip and a large inflatable balloon such as described above enables snaring the left atrial appendage in the proper plane. More particularly, it is believed that identifying and capturing the tip of the left atrial appendage using just an intra-pericardial instrument under fluoroscopic or echocardiographic guidance may prove prohibitively challenging. At the same time, passing a catheter across the atrial septum into the left atrium, and subsequently positioning it in the apex of the left atrial appendage, is readily accomplished by those skilled in the art with catheters that are commercially available. Thus, positioning a guide catheter with a rare-earth magnet or other alignment mechanism) at the tip thereof in the left atrial appendage is readily achievable and thereby allows fluoroscopic guidance as to the position of the left atrial appendage apex, as well as enabling precise capturing of the apex with an intra-pericardial tool.
A balloon near the tip of the trans-septal left atrial guide catheter greatly facilitates positioning and tightening of the snare or ligature in the proper plane of the orifice between the left atrial appendage and left atrium. Preferably, the balloon is designed to inflate to approximately the size of the left atrial appendage. As the balloon is inflated, it is confined to the left atrial appendage by the neck or narrowing at the orifice between left atrial appendage and left atrium. This may be readily confirmed by echocardiographic examination, or fluoroscopy, especially if the balloon is inflated with a contrast agent. Separate ports in the guide catheter allow the contrast agent to be injected into the left atrial appendage and/or the left atrium proper to provide further confirmation of correct position of the inflated balloon.
The inflated balloon accentuates external geometric features at the left atrial appendage-left atrial junction. When the spherical balloon is inflated, the flexible left atrial appendage is distended and its shape changed (e.g., to spherical) to facilitate ligation. The junction between the left atrial appendage and left atrium becomes better defined, like a waist of a snowman. This constrains the snare or ligature to the proper plane during tightening. The balloon, and consequently the left atrial appendage, is inflated to a pressure significantly higher than that of the left atrium proper. As such, there is a significant differential in wall tension between the left atrial appendage and the left atrium. As the balloon is spherical, an attempt at snaring above the plane will result in the snare slipping off of the tense spherical surface toward the low tension, flexible neck. Radio-opaque contrast agent in the balloon, the ability to selectively inject contrast in the left atrial appendage and/or left atrium proper, and a radio-opaque snare or ligature greatly facilitate performing these procedures under fluoroscopic guidance. Once the left atrial appendage-left atrial junction is snared, the balloon is deflated and removed and the snare tightened completely.
In general, it should be appreciated that, among other things, the invention comprises the alignment of two devices, one within and one outside of a lumen, cardiac chamber, etc. Thus, the present invention could be used in the stomach to help with an endoscopic fundiplication.
The foregoing description is intended to illustrate preferred embodiments of the present invention. However, numerous changes may be made to the preferred embodiments without departing from the scope of the present invention. Thus, one or more of the steps of the method, and/or one or more of the components of the apparatus, may be modified or omitted. Also, the present apparatus and method may be used to ligate any tissue or like structure in the body.
This patent application is a continuation of, and claims priority to, U.S. patent application Ser. No. 12/124,023, filed on May 20, 2008, which issued as U.S. Pat. No. 9,271,819 on Mar. 1, 2016, which in turn is a continuation of, and claims priority to, U.S. patent application Ser. No. 10/963,371, filed on Oct. 11, 2004, which issued as U.S. Pat. No. 7,846,168 on Dec. 7, 2010, and which in turn claims priority to U.S. Provisional Patent Application Ser. Nos. 60/510,100 and 60/528,995, filed on Oct. 9, 2003 and Dec. 12, 2003, respectively. Each of these applications is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3496932 | Prisk et al. | Feb 1970 | A |
3677597 | Stipek | Jul 1972 | A |
3802074 | Hoppe | Apr 1974 | A |
3841685 | Kolodziej | Oct 1974 | A |
3999555 | Person | Dec 1976 | A |
4018229 | Komiya | Apr 1977 | A |
4030509 | Heilman et al. | Jun 1977 | A |
4078305 | Akiyama | Mar 1978 | A |
4181123 | Crosby | Jan 1980 | A |
4249536 | Vega | Feb 1981 | A |
4257278 | Papadofrangakis et al. | Mar 1981 | A |
4319562 | Crosby | Mar 1982 | A |
4428375 | Ellman | Jan 1984 | A |
4596530 | McGlinn | Jun 1986 | A |
4662377 | Heilman et al. | May 1987 | A |
4765341 | Mower et al. | Aug 1988 | A |
4817608 | Shapland et al. | Apr 1989 | A |
4901405 | Grover et al. | Feb 1990 | A |
4944753 | Burgess et al. | Jul 1990 | A |
4991578 | Cohen | Feb 1991 | A |
4991603 | Cohen et al. | Feb 1991 | A |
4998975 | Cohen et al. | Mar 1991 | A |
5033477 | Chin et al. | Jul 1991 | A |
5108406 | Lee | Apr 1992 | A |
5163942 | Rydell | Nov 1992 | A |
5163946 | Li | Nov 1992 | A |
5176691 | Pierce | Jan 1993 | A |
5181123 | Swank | Jan 1993 | A |
5226535 | Roshdy et al. | Jul 1993 | A |
5226908 | Yoon | Jul 1993 | A |
5242459 | Buelna | Sep 1993 | A |
5243977 | Trabucco et al. | Sep 1993 | A |
5269326 | Verrier | Dec 1993 | A |
5279539 | Bohan et al. | Jan 1994 | A |
5281238 | Chin et al. | Jan 1994 | A |
5300078 | Buelna | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5318578 | Hasson | Jun 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336231 | Adair | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5385156 | Oliva | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5398944 | Holster | Mar 1995 | A |
5403331 | Chesterfield et al. | Apr 1995 | A |
5405351 | Kinet et al. | Apr 1995 | A |
5417684 | Jackson et al. | May 1995 | A |
5423821 | Pasque | Jun 1995 | A |
5423830 | Schneebaum et al. | Jun 1995 | A |
5433457 | Wright | Jul 1995 | A |
5433730 | Alt | Jul 1995 | A |
5443481 | Lee | Aug 1995 | A |
5449361 | Preissman | Sep 1995 | A |
5449637 | Kadry | Sep 1995 | A |
5465731 | Bell et al. | Nov 1995 | A |
5494240 | Waugh | Feb 1996 | A |
5498228 | Royalty et al. | Mar 1996 | A |
5540711 | Kieturakis et al. | Jul 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5571161 | Starksen | Nov 1996 | A |
5591177 | Lehrer | Jan 1997 | A |
5609597 | Lehrer | Mar 1997 | A |
5624430 | Eton et al. | Apr 1997 | A |
5624453 | Ahmed | Apr 1997 | A |
5634895 | Igo et al. | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5676651 | Larson, Jr. et al. | Oct 1997 | A |
5678547 | Faupel et al. | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5682906 | Sterman et al. | Nov 1997 | A |
5683348 | Diener | Nov 1997 | A |
5683364 | Zadini et al. | Nov 1997 | A |
5683445 | Swoyer | Nov 1997 | A |
5693059 | Yoon | Dec 1997 | A |
5693091 | Larson, Jr. et al. | Dec 1997 | A |
5699748 | Linskey, Jr. et al. | Dec 1997 | A |
5702430 | Larson, Jr. et al. | Dec 1997 | A |
5707336 | Rubin | Jan 1998 | A |
5716367 | Koike et al. | Feb 1998 | A |
5716392 | Bourgeois et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735877 | Pagedas | Apr 1998 | A |
5741281 | Martin | Apr 1998 | A |
5752526 | Cosgrove | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5766216 | Gangal et al. | Jun 1998 | A |
5766217 | Christy | Jun 1998 | A |
5769863 | Garrison | Jun 1998 | A |
5779727 | Orejola | Jul 1998 | A |
5788715 | Watson, Jr. et al. | Aug 1998 | A |
5792151 | Heck et al. | Aug 1998 | A |
5797870 | March et al. | Aug 1998 | A |
5797929 | Andreas et al. | Aug 1998 | A |
5797946 | Chin | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5810845 | Yoon | Sep 1998 | A |
5814052 | Nakao et al. | Sep 1998 | A |
5823946 | Chin | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5840059 | March et al. | Nov 1998 | A |
5855586 | Habara et al. | Jan 1999 | A |
5865791 | Whayne | Feb 1999 | A |
5871531 | Struble | Feb 1999 | A |
5873876 | Christy | Feb 1999 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5882299 | Rastegar et al. | Mar 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895298 | Faupel et al. | Apr 1999 | A |
5897586 | Molina | Apr 1999 | A |
5900433 | Igo et al. | May 1999 | A |
5906579 | Vander Salm et al. | May 1999 | A |
5906620 | Nakao et al. | May 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5910124 | Rubin | Jun 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5921994 | Andreas et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
RE36269 | Wright | Aug 1999 | E |
5941819 | Chin | Aug 1999 | A |
5957936 | Yoon et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5964699 | Rullo et al. | Oct 1999 | A |
5968010 | Waxman et al. | Oct 1999 | A |
5972013 | Schmidt | Oct 1999 | A |
5984866 | Rullo et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5991668 | Leinders et al. | Nov 1999 | A |
5997525 | March et al. | Dec 1999 | A |
6006122 | Smits | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6015382 | Zwart et al. | Jan 2000 | A |
6045570 | Epstein et al. | Apr 2000 | A |
6048329 | Thompson et al. | Apr 2000 | A |
6059750 | Fogarty et al. | May 2000 | A |
6067942 | Fernandez | May 2000 | A |
6071281 | Burnside et al. | Jun 2000 | A |
6081738 | Hinohara et al. | Jun 2000 | A |
6083153 | Rullo et al. | Jul 2000 | A |
6090042 | Rullo et al. | Jul 2000 | A |
6095968 | Snyders | Aug 2000 | A |
6110170 | Taylor et al. | Aug 2000 | A |
6120431 | Magovern et al. | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6148230 | KenKnight | Nov 2000 | A |
6149595 | Seitz et al. | Nov 2000 | A |
6152144 | Lesh | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6152936 | Christy et al. | Nov 2000 | A |
6155968 | Wilk | Dec 2000 | A |
6157852 | Selmon et al. | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6162195 | Igo et al. | Dec 2000 | A |
6167889 | Benetti | Jan 2001 | B1 |
6199556 | Benetti et al. | Mar 2001 | B1 |
6200303 | Verrior et al. | Mar 2001 | B1 |
6206004 | Schmidt et al. | Mar 2001 | B1 |
6224584 | March et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6241667 | Vetter et al. | Jun 2001 | B1 |
6258021 | Wilk | Jul 2001 | B1 |
6266550 | Selmon et al. | Jul 2001 | B1 |
6280415 | Johnson | Aug 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6293906 | Vanden Hoek et al. | Sep 2001 | B1 |
6296630 | Altman et al. | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6311693 | Sterman et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6319201 | Wilk | Nov 2001 | B1 |
6333347 | Hunter et al. | Dec 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6379366 | Fleischman et al. | Apr 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6485407 | Alferness et al. | Nov 2002 | B2 |
6488689 | Kaplan et al. | Dec 2002 | B1 |
6494211 | Boyd et al. | Dec 2002 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6561969 | Frazier et al. | May 2003 | B2 |
6592552 | Schmidt | Jul 2003 | B1 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610072 | Christy et al. | Aug 2003 | B1 |
6613062 | Leckrone et al. | Sep 2003 | B1 |
6632229 | Yamanouchi | Oct 2003 | B1 |
6652555 | VanTassel et al. | Nov 2003 | B1 |
6656175 | Francischelli et al. | Dec 2003 | B2 |
6666861 | Grabek | Dec 2003 | B1 |
6692491 | Phan | Feb 2004 | B1 |
6733509 | Nobles et al. | May 2004 | B2 |
6736774 | Benetti et al. | May 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6786898 | Guenst | Sep 2004 | B2 |
6789509 | Motsinger | Sep 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6830576 | Fleischman et al. | Dec 2004 | B2 |
6985776 | Kane et al. | Jan 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7041111 | Chu | May 2006 | B2 |
7056294 | Khairkhahan et al. | Jun 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7063693 | Guenst | Jun 2006 | B2 |
7175619 | Koblish et al. | Feb 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7207988 | Leckrone et al. | Apr 2007 | B2 |
7226440 | Gelfand et al. | Jun 2007 | B2 |
7226458 | Kaplan et al. | Jun 2007 | B2 |
7264587 | Chin | Sep 2007 | B2 |
7294115 | Wilk | Nov 2007 | B1 |
7297144 | Fleischman et al. | Nov 2007 | B2 |
7309328 | Kaplan et al. | Dec 2007 | B2 |
7318829 | Kaplan et al. | Jan 2008 | B2 |
7326221 | Sakamoto et al. | Feb 2008 | B2 |
7331979 | Khosravi et al. | Feb 2008 | B2 |
7473260 | Opolski et al. | Jan 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7610104 | Kaplan et al. | Oct 2009 | B2 |
7618425 | Yamamoto et al. | Nov 2009 | B2 |
7722641 | van der Burg et al. | May 2010 | B2 |
7828810 | Liddicoat | Nov 2010 | B2 |
7846168 | Liddicoat et al. | Dec 2010 | B2 |
7905900 | Palermo et al. | Mar 2011 | B2 |
7918865 | Liddicoat et al. | Apr 2011 | B2 |
7967808 | Fitzgerald et al. | Jun 2011 | B2 |
8105342 | Onuki et al. | Jan 2012 | B2 |
8157818 | Gartner et al. | Apr 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8469983 | Fung et al. | Jun 2013 | B2 |
8636767 | McClain | Jan 2014 | B2 |
8715302 | Ibrahim et al. | May 2014 | B2 |
8771297 | Miller et al. | Jul 2014 | B2 |
8795297 | Liddicoat et al. | Aug 2014 | B2 |
8795310 | Fung et al. | Aug 2014 | B2 |
8814778 | Kiser et al. | Aug 2014 | B2 |
8932276 | Morriss et al. | Jan 2015 | B1 |
8961543 | Friedman et al. | Feb 2015 | B2 |
8986325 | Miller et al. | Mar 2015 | B2 |
9089324 | McCaw et al. | Jul 2015 | B2 |
9186174 | Krishnan | Nov 2015 | B2 |
9198664 | Fung et al. | Dec 2015 | B2 |
9198683 | Friedman et al. | Dec 2015 | B2 |
9271819 | Liddicoat et al. | Mar 2016 | B2 |
9339295 | Fung et al. | May 2016 | B2 |
9408608 | Clark et al. | Aug 2016 | B2 |
9498223 | Miller et al. | Nov 2016 | B2 |
9522006 | Liddicoat et al. | Dec 2016 | B2 |
20010025132 | Alferness et al. | Sep 2001 | A1 |
20020017306 | Cox et al. | Feb 2002 | A1 |
20020022860 | Borillo et al. | Feb 2002 | A1 |
20020049457 | Kaplan | Apr 2002 | A1 |
20020058925 | Kaplan et al. | May 2002 | A1 |
20020062136 | Hillstead et al. | May 2002 | A1 |
20020068970 | Cox et al. | Jun 2002 | A1 |
20020099390 | Kaplan et al. | Jul 2002 | A1 |
20020103492 | Kaplan et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020111636 | Fleischman et al. | Aug 2002 | A1 |
20020111637 | Kaplan et al. | Aug 2002 | A1 |
20020147456 | Diduch et al. | Oct 2002 | A1 |
20030014049 | Koblish et al. | Jan 2003 | A1 |
20030024537 | Cox et al. | Feb 2003 | A1 |
20030045900 | Hahnen et al. | Mar 2003 | A1 |
20030065271 | Khoury | Apr 2003 | A1 |
20030069577 | Vaska et al. | Apr 2003 | A1 |
20030083542 | Alferness et al. | May 2003 | A1 |
20030083674 | Gibbens, III | May 2003 | A1 |
20030109863 | Francischelli et al. | Jun 2003 | A1 |
20030120264 | Lattouf | Jun 2003 | A1 |
20030158464 | Bertolero | Aug 2003 | A1 |
20030181942 | Sutton et al. | Sep 2003 | A1 |
20030187460 | Chin et al. | Oct 2003 | A1 |
20030236535 | Onuki et al. | Dec 2003 | A1 |
20040030335 | Zenati et al. | Feb 2004 | A1 |
20040034347 | Hall et al. | Feb 2004 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040049210 | VanTassel et al. | Mar 2004 | A1 |
20040059352 | Burbank et al. | Mar 2004 | A1 |
20040064138 | Grabek | Apr 2004 | A1 |
20040068267 | Harvie et al. | Apr 2004 | A1 |
20040078069 | Francischelli et al. | Apr 2004 | A1 |
20040102804 | Chin | May 2004 | A1 |
20040106918 | Cox et al. | Jun 2004 | A1 |
20040111101 | Chin | Jun 2004 | A1 |
20040116943 | Brandt et al. | Jun 2004 | A1 |
20040158127 | Okada | Aug 2004 | A1 |
20040162579 | Foerster | Aug 2004 | A1 |
20040225212 | Okerlund et al. | Nov 2004 | A1 |
20040225300 | Goldfarb et al. | Nov 2004 | A1 |
20040243176 | Hahnen et al. | Dec 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20050033280 | Francischelli et al. | Feb 2005 | A1 |
20050033287 | Sra | Feb 2005 | A1 |
20050033321 | Fleischman et al. | Feb 2005 | A1 |
20050043743 | Dennis | Feb 2005 | A1 |
20050043745 | Alferness et al. | Feb 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050085843 | Opolski et al. | Apr 2005 | A1 |
20050107824 | Hillstead et al. | May 2005 | A1 |
20050149068 | Williams et al. | Jul 2005 | A1 |
20050149069 | Bertolero et al. | Jul 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182417 | Pagano | Aug 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20060004323 | Chang et al. | Jan 2006 | A1 |
20060004388 | Whayne et al. | Jan 2006 | A1 |
20060009715 | Khairkhahan et al. | Jan 2006 | A1 |
20060020162 | Whayne et al. | Jan 2006 | A1 |
20060020271 | Stewart et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060034930 | Khosravi et al. | Feb 2006 | A1 |
20060100545 | Ayala et al. | May 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060212045 | Schilling et al. | Sep 2006 | A1 |
20060247672 | Vidlund et al. | Nov 2006 | A1 |
20060253128 | Sekine et al. | Nov 2006 | A1 |
20070010829 | Nobles et al. | Jan 2007 | A1 |
20070016228 | Salas | Jan 2007 | A1 |
20070027456 | Gartner et al. | Feb 2007 | A1 |
20070038229 | de la Torre | Feb 2007 | A1 |
20070060951 | Shannon | Mar 2007 | A1 |
20070083082 | Kiser et al. | Apr 2007 | A1 |
20070083225 | Kiser et al. | Apr 2007 | A1 |
20070083232 | Lee | Apr 2007 | A1 |
20070088369 | Shaw et al. | Apr 2007 | A1 |
20070100405 | Thompson et al. | May 2007 | A1 |
20070135822 | Onuki et al. | Jun 2007 | A1 |
20070149988 | Michler et al. | Jun 2007 | A1 |
20070179345 | Santilli | Aug 2007 | A1 |
20070249991 | Whayne et al. | Oct 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20070270637 | Takemoto et al. | Nov 2007 | A1 |
20070270891 | McGuckin, Jr. | Nov 2007 | A1 |
20080009843 | de la Torre | Jan 2008 | A1 |
20080015406 | Dlugos et al. | Jan 2008 | A1 |
20080033241 | Peh et al. | Feb 2008 | A1 |
20080033457 | Francischelli et al. | Feb 2008 | A1 |
20080039879 | Chin et al. | Feb 2008 | A1 |
20080097489 | Goldfarb et al. | Apr 2008 | A1 |
20080154260 | Hoof | Jun 2008 | A1 |
20080228265 | Spence et al. | Sep 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080269782 | Stefanchik et al. | Oct 2008 | A1 |
20080294174 | Bardsley et al. | Nov 2008 | A1 |
20080294175 | Bardsley et al. | Nov 2008 | A1 |
20080312664 | Bardsley et al. | Dec 2008 | A1 |
20090043317 | Cavanaugh et al. | Feb 2009 | A1 |
20090088778 | Miyamoto et al. | Apr 2009 | A1 |
20090157118 | Miller et al. | Jun 2009 | A1 |
20090182326 | Zenati et al. | Jul 2009 | A1 |
20090196696 | Otsuka et al. | Aug 2009 | A1 |
20100069925 | Friedman et al. | Mar 2010 | A1 |
20100094314 | Hernlund | Apr 2010 | A1 |
20100174296 | Vakharia et al. | Jul 2010 | A1 |
20100191253 | Oostman et al. | Jul 2010 | A1 |
20100331820 | Giuseppe et al. | Dec 2010 | A1 |
20110060350 | Powers et al. | Mar 2011 | A1 |
20110087270 | Penner et al. | Apr 2011 | A1 |
20110092997 | Kang | Apr 2011 | A1 |
20110106107 | Binmoeller et al. | May 2011 | A1 |
20110112537 | Bernstein et al. | May 2011 | A1 |
20110144660 | Liddicoat et al. | Jun 2011 | A1 |
20110295060 | Zenati et al. | Dec 2011 | A1 |
20120022558 | Friedman et al. | Jan 2012 | A1 |
20120209300 | Torrie | Aug 2012 | A1 |
20120330351 | Friedman et al. | Dec 2012 | A1 |
20130144311 | Fung et al. | Jun 2013 | A1 |
20140018831 | Kassab et al. | Jan 2014 | A1 |
20140171733 | Sternik | Jun 2014 | A1 |
20140222138 | Machold et al. | Aug 2014 | A1 |
20140276911 | Smith et al. | Sep 2014 | A1 |
20140303721 | Fung et al. | Oct 2014 | A1 |
20140336572 | Heisel et al. | Nov 2014 | A1 |
20140336676 | Pong et al. | Nov 2014 | A1 |
20140364901 | Kiser et al. | Dec 2014 | A1 |
20140364907 | White et al. | Dec 2014 | A1 |
20150018853 | Friedman et al. | Jan 2015 | A1 |
20150025312 | de Canniere | Jan 2015 | A1 |
20150173765 | Friedman et al. | Jan 2015 | A1 |
20150119884 | Fung et al. | Apr 2015 | A1 |
20150157328 | Miller et al. | Jun 2015 | A1 |
20150182225 | Morejohn et al. | Jul 2015 | A1 |
20150190135 | Ibrahim et al. | Jul 2015 | A1 |
20150223813 | Willisamson et al. | Aug 2015 | A1 |
20150250482 | Slaughter et al. | Sep 2015 | A1 |
20150272618 | Fung et al. | Oct 2015 | A1 |
20150374380 | Miller et al. | Dec 2015 | A1 |
20160008001 | Winkler et al. | Jan 2016 | A1 |
20160106421 | Eliachar et al. | Apr 2016 | A1 |
20160120549 | Fung et al. | May 2016 | A1 |
20160310144 | Kimura et al. | Oct 2016 | A1 |
20160317155 | Kimura et al. | Nov 2016 | A1 |
20160346028 | Rogers et al. | Dec 2016 | A1 |
20170290591 | Liddicoat et al. | Oct 2017 | A1 |
20170290592 | Miller et al. | Oct 2017 | A1 |
20180008342 | Ibrahim et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
101262823 | Dec 2011 | CN |
0 598 219 | May 1994 | EP |
0 625 336 | Nov 1994 | EP |
0 629 381 | Dec 1994 | EP |
1 010 397 | Jun 2000 | EP |
1 506 142 | Apr 1978 | GB |
H-6-319742 | Nov 1994 | JP |
7-296645 | Nov 1995 | JP |
7-299073 | Nov 1995 | JP |
11-507262 | Jun 1999 | JP |
2001-120560 | May 2001 | JP |
2002-512071 | Apr 2002 | JP |
2002-540834 | Dec 2002 | JP |
2002-540901 | Dec 2002 | JP |
2003-225241 | Aug 2003 | JP |
2004-000601 | Jan 2004 | JP |
2005-110860 | Apr 2005 | JP |
2005-296645 | Oct 2005 | JP |
2005-531360 | Oct 2005 | JP |
2007-504886 | Mar 2007 | JP |
2010-523171 | Jul 2010 | JP |
2012-522596 | Sep 2012 | JP |
WO-9401045 | Jan 1994 | WO |
WO-9404079 | Mar 1994 | WO |
WO-9408514 | Apr 1994 | WO |
WO-9604854 | Feb 1996 | WO |
WO-9640356 | Dec 1996 | WO |
WO-9711644 | Apr 1997 | WO |
WO-9743957 | Nov 1997 | WO |
WO-9953845 | Oct 1999 | WO |
WO-0059383 | Oct 2000 | WO |
WO-0061202 | Oct 2000 | WO |
WO-2003022133 | Mar 2003 | WO |
WO-2003022133 | Mar 2003 | WO |
WO-2003059174 | Jul 2003 | WO |
WO-2003059174 | Jul 2003 | WO |
WO-2003070133 | Aug 2003 | WO |
WO-2004002327 | Jan 2004 | WO |
WO-2004066828 | Aug 2004 | WO |
WO-2004066828 | Aug 2004 | WO |
WO-2005034767 | Apr 2005 | WO |
WO-2005034802 | Apr 2005 | WO |
WO-2005034802 | Apr 2005 | WO |
WO-2005084127 | Sep 2005 | WO |
WO-2005084127 | Sep 2005 | WO |
WO-2006096805 | Sep 2006 | WO |
WO-2006110734 | Oct 2006 | WO |
WO-2006110734 | Oct 2006 | WO |
WO-2006115689 | Nov 2006 | WO |
WO-2007037516 | Apr 2007 | WO |
WO-2007037516 | Apr 2007 | WO |
WO-2007056502 | May 2007 | WO |
WO-2008036408 | Mar 2008 | WO |
WO-2008036408 | Mar 2008 | WO |
WO-2008091612 | Jul 2008 | WO |
WO-2008091612 | Jul 2008 | WO |
WO-2008121278 | Oct 2008 | WO |
WO-2008121278 | Oct 2008 | WO |
WO-2009039191 | Mar 2009 | WO |
WO-2009039191 | Mar 2009 | WO |
WO-2009094237 | Jul 2009 | WO |
WO-2010006061 | Jan 2010 | WO |
WO-2010006061 | Jan 2010 | WO |
WO-2010048141 | Apr 2010 | WO |
WO-2010048141 | Apr 2010 | WO |
WO-2010115030 | Oct 2010 | WO |
WO-2012170652 | Dec 2012 | WO |
WO-2014164028 | Oct 2014 | WO |
Entry |
---|
Afibfacts.com (Date Unknown). “Cox-Maze III: The Gold Standard Treatment for Atrial Fibrillation: Developing a Surgical Option for Atrial Fibrillation,” located at <http://www.afibfacts.com/Treatment_Options_for_Atrial_Fibrillation/Cox-Maze_III%_3a_The_Gold_Standard_Treatment_ for_ Atrial_ Fibrillation >, last visited on Apr. 20, 2007, 4 pages. |
Al-Saady, N.M. et al. (1999). “Left Atrial Appendage: Structure, Function, and Role in Thromboembolism,” Heart 82:547-554. |
Albers, G.W. (Jul. 11, 1994). “Atrial Fibrillation and Stroke: Three New Studies, Three Remaining Questions,” Arch Intern Med 154:1443-1448. |
Alonso, M. et al. (Mar. 4, 2003). “Complications With Femoral Access in Cardiac Catheterization. Impact of Previous Systematic Femoral Angiography and Hemostasis With VasaSeal-Es® Collagen Plug,” Rev. Esp. Cardiol. 56(6):569-577. |
Aronow, W.S. et al. (Apr. 2009). “Atrial Fibrillation: The New Epidemic of the Age-ing World,” Journal of Atrial Fibrillation 1(6):337-361. |
Babaliaros, V.C. et al. (Jun. 3, 2008). “Emerging Applications for Transseptal Left Heart Catheterization: Old Techniques for New Procedures,” Journal of the American College of Cardiology. |
Bath, P.M.W. et al. (2005). “Current Status of Stroke Prevention in Patients with Atrial Fibrillation,” European Heart Journal Supplements 7(Supplement C):C12-C18. |
Benjamin, B.A. et al. (1994). “Effect of Bilateral Atrial Appendectomy on Postprandial Sodium Excretion in Conscious Monkeys,” Society for Experimental Biology and Medicine 2006: 1 page. |
Beygui, F. et al. (2005, e-pub. Oct. 21, 2005). “Multimodality Imaging of Percutaneous Closure of the Left Atrial Appendage.” Clinical Vianette. 1 page. |
Bisleri, G. et al. (Jun. 3, 2005). “Innovative Monolateral Approach for Closed-Chest Atrial Fibrillation Surgery,” The Annals of Thoracic Surgery 80:e22-e25. |
Björk, V.O. et al. (Aug. 1961). “Sequelae of Left Ventricular Puncture with Angiocardiography,” Circulation 24:204-212. |
Blackshear, J.L. et al. (Feb. 1996). “Appendage Obliteration to Reduce Stroke in Cardiac Surgical Patients With Atrial Fibrillation,” Ann. Thorac. Surg. 61(2), 13 pages. |
Blackshear, J.L. et al. (Oct. 1, 2003). “Thorascopic Extracardiac Obliteration of the Left Atrial Appendage for Stroke Risk Reduction in Atrial Fibrillation,” J. Am. Coll. Cardiol. 42(7):1249-1252. |
Bonanomi, G. et al. (Jan. 1, 2003). “Left Atrial Appendectomy and Maze,” Journal of the American College of Cardiology 41(1):169-171. |
Bonow, R.O. et al. (1998). “Guidelines for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Valvular Heart Disease),” Journal of the American Heart Association 98:1949-1984. |
Botham, R.J. et al. (May 1959). “Pericardial Tamponade Following Percutaneous Left Ventricular Puncture,” Circulation 19:741-744. |
Brock, R. et al. (1956). “Percutaneous Left Ventricular Puncture in the Assessment of Aortic Stenosis,” Thorax 11:163-171. |
Burke, R.P. et al. (1992). “Improved Surgical Approach to Left Atrial Appendage Aneurysm,” Journal of Cardiac Surgery 7(2):104-107. |
Canaccord Adams (Aug. 11, 2008). “A-Fib: Near a Tipping Point,” 167 pages. |
Chung, M.K. (Jul. 2003). “Current Clinical Issues in Atrial Fibrillation,” Cleveland Clinic Journal of Medicine 70(Supp. 3):S6-S11. |
Coffin, L.H. (Jun. 1985). “Use of the Surgical Stapler to Obliterate the Left Atrial Appendage,” Surgery. Gynecology & Obstetric 160:565-566. |
Connolly, S.J. (Sep. 7, 1999). “Preventing Stroke in Atrial Fibrillation: Why Are So Many Eligible Patients Not Receiving Anticoagulant Therapy?” Canadian Medical Association 161(5):533-534. |
Costa, R. et al. (2006). “Bi-Atrial Subxiphoid Epicardial Pacemaker in Superior Vena Cava Syndrome,” Arg. Bras. Cardiol. 87:e45-e47. |
Cox, J.L. et al. (Apr. 1991). “The Surgical Treatment of Atrial Fibrillation: IV. Surgical Technique,” J. Thorac. Cardiovasc. Surg. 101(4):584-592. |
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation I. Rationale and Surgical Results,” J. Thorac. Cardiovasc. Surg. 110(2):473-484. |
Cox, J.L. et al. (Aug. 1995). “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation II. Surgical Technique of the Maze III Procedure,” J. Thorac. Cardiovasc. Surg. 110(2):485-495. |
Cox, J.L. et al. (Nov. 1999). “Impact of the Maze Procedure on the Stroke Rate in Patients with Atrial Fibrillation,” J. Thorac. Cardiovasc. Surg. 118:833-840. |
Cox, J.L. et al. (2004). “The Role of Surgical Intervention in the Management of Atrial Fibrillation,” Texas Heart Institute Journal 31(3):257-265. |
Crystal, E. et al. (Jan. 2003). “Left Atrial Appendage Occlusion Study (LAAOS): A Randomized Clinical Trial of Left Atrial Appendage Occlusion During Routine Coronary Artery Bypass Graft Surgery for Long-term Stroke Prevention,” Am Heart J 145(1):174-178. |
D'Avila, A. et al. (Apr. 2003). “Pericardial Anatomy for the Interventional Electrophysiologist,” Journal of Cardiovascular Electrophysiology 14(4):422-430. |
D'Avila, A. et al. (Nov. 2007). “Experimental Efficacy of Pericardial Instillation of Anti-inflammatory Agents During Percutaneous Epicardial Catheter Ablation to Prevent Postprocedure Pericarditis,” Journal of Cardiovascular Electrophysiology 18(11):1178-1183. |
Demaria, A.N. et al. (Dec. 17, 2003). “Highlights of the Year JACC 2003,” Journal of the American College of Cardiology 42(12):2156-2166. |
Deneu, S. et al. (Jul. 11, 1999). “Catheter Entrapment by Atrial Suture During Minimally Invasive Port-access Cardiac Surgery,” Canadian Journal of Anesthesia 46(10):983-986. |
Deponti, R. et al. (Mar. 7, 2006). “Trans-Septal Catheterization in the Electrophysiology Laboratory: Data From a Multicenter Survey Spanning 12 Years,” Journal of the American College of Cardiology 47(5):1037-1042. |
Donal, E. et al. (Sep. 2005). “The Left Atrial Appendage, a Small, Blind-Ended Structure: A Review of Its Echocardiographic Evaluation and Its Clinical Role,” Chest 128(3):1853-1862. |
Donnino, R. et al. (2007). “Left Atrial Appendage Thrombus Outside of a ‘Successful’ Ligation,” European Journal of Echocardiography pp. 1-2. |
Dullum, M.K.C. et al. (1999). “Xyphoid MIDCAB: Report of the Technique and Experience with a Less Invasive MIDCAB Procedure,” Heart Surgery Forum 2(1):77-81. |
Feinberg, W.M. et al. (Mar. 13, 1995). “Prevalence, Age Distribution, and Gender of Patients With Atrial Fibrillation,” Arch Intern Med 155:469-473. |
Fieguth, H.G. et al. (1997). “Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection—Experimental Study in A Sheep Model,” European Journal of Cardio-Thoracic Surgery 11:714-721. |
Fisher, D.C. et al. (Dec. 1998). “Large Gradient Across a Partially Ligated Left Atrial Appendage,” Journal of the American Society of Echocardiography 11(12):1163-1165. |
Friberg, L. et al. (2006). “Stroke Prophylaxis in Atrial Fibrillation: Who Gets it and Who Does Not?” European Heart Journal 27:1954-1964. |
Friedman, P.A. et al. (Aug. 2009). “Percutaneous Epicardial Left Atrial Appendage Closure: Preliminary Results of an Electrogram Guided Approach,” Journal of Cardiovascular Electrophysiology 20(8):908-915. |
Fuster, V. et al. (Oct. 2001). “ACC/AHA/ESC Guidelines for the Management of Patients with Atrial Fibrillation,” European Heart Journal 22(20):1852-1923. |
Garcia-Fernandez, M.A. et al. (Oct. 1, 2003). “Role of Left Atrial Appendage Obliteration in Stroke Reduction in Patients With Mitral Valve Prosthesis,” Journal of the American College of Cardiology 42(7):1253-1258. |
Gardiner, G.A. Jr. et al. (Apr. 1986). “Complications of Transluminal Angioplasty,” Radiology 159:201-208. |
Gillinov, A.M. (2007). “Advances in Surgical Treatment of Atrial Fibrillation,” Stroke 38(part 2):618-623. |
Gilman, R.A. et al. (Apr. 1963). “Direct Left Ventricular Puncture,” California Medicine 98(4):200-203. |
Goodwin, W.E. et al. (Nov. 1950). “Translumbar Aortic Puncture and Retrograde Catheterization of the Aorta in Aortography and Renal Arteriography,” Annals of Surgery 132(5):944-958. |
Gottlieb, L.K. et al. (Sep. 12, 1994). “Anticoagulation in Atrial Fibrillation,” Arch Intern Med.154:1945-1953. |
Graffigna, A. et al. (1993). “Surgical Treatment of Wolff-Parkinson-White Syndrome: Epicardial Approach Without the Use of Cardiopulmonary Bypass,” J. Card. Surg. 8:108-116. |
Haissaguerre, M. et al. (Nov. 2005). “Catheter Ablation of Long-Lasting Persistent Atrial Fibrillation: Clinical Outcome and Mechanisms of Subsequent Arrhythmias,” Journal of Cardiovascular Electrophysiology 16(11):1138-1147. |
Halperin, J.L. et al. (Aug. 1988). “Atrial Fibrillation and Stroke: New Ideas, Persisting Dilemmas,” Journal of the American Heart Association 19(8):937-941. |
Halperin, J.L. et al. (Oct. 1, 2003). “Obliteration of the Left Atrial Appendage for Prevention of Thromboembolism,” Journal of the American College of Cardiology 42(7):1259-1261. |
Hammill, S.C. (May 2006). “Epicardial Ablation: Reducing the Risks,” J. Cardiovasc. Electrophysiol. 17:550-552. |
Hara, H. et al. (Jan. 2008). “Percutaneous Left Atrial Appendage Obliteration,” JACC: Cardiovascular Imagin 1(1):92-93. |
Hart, R.G. et al. (Nov. 2, 1999). “Atrial Fibrillation and Thromboembolism: A Decade of Progress in Stroke Prevention,” Annals of Internal Medicine 131(9):688-695. |
Hart, R.G. et al. (2001). “Atrial Fibrillation and Stroke: Concepts and Controversies,” Stroke 32:803-808. |
Hart, R.G. (Sep. 11, 2003). “Atrial Fibrillation and Stroke Prevention,” The New England Journal of Medicine 349(11):1015-1016. |
Healey, J.S. et al. (Oct. 2003). “Surgical Closure of the Left Atrial Appendage for the Prevention of Stroke: A Randomized Pilot Trial of Safety and Efficacy (The Left Atrial Appendage Occlusion Study—LAAOS),” presented at the Canadian Cardiovascular Congress 2003, Toronto, Canada, Abstract No. 666, 2 pages. |
Healey, J.S. et al. (Aug. 2005). “Left Atrial Appendage Occlusion Study (LAAOS): Results of a Randomized Controlled Pilot Study of Left Atrial Appendage Occlusion During Coronary Bypass Surgery in Patients At Risk for Stroke,” American Heart Journal 150(2):288-293. |
Hein, R. et al. (2005). “Patent Foramen Ovale and Left Atrial Appendage: New Devices and Methods for Closure,” Pediatric Cardiology 26(3):234-240. |
Heist, E.K. et al. (Nov. 2006). “Analysis of the Left Atrial Appendage by Magnetic Resonance Angiography in Patients with Atrial Fibrillation,” Heart Rhythm 3(11):1313-1318. |
Ho, I. et al. (Apr. 24, 2007). “Percutaneous Epicardial Mapping Ablation of a Posteroseptal Accessory Pathway,” Circulation 115:e418-e421. |
Ho, S.Y. et al. (Nov. 1999). “Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 10(11):1525-1533. |
Hoit, B.D. et al. (Jan. 1993). “Altered Left Atrial Compliance After Atrial Appendectomy. Influence on Left Atrial and Ventricular Filling,” Circulation Research 72(1):167-175. |
Inoue, Y. et al. (Jul.-Aug. 1997). “Video Assisted Thoracoscopic and Cardioscopic Radiofrequency Maze Ablation,” Asaio Journal 43(4):334-337, Abstract Only. |
Jaïs, P. et al. (2003). “Radiofrequency Ablation for Atrial Fibrillation,” European Society of Cardiology 5(Supplement H):H34-H39. |
Johnson, W.D. et al. (2000). “The Left Atrial Appendage: Our Most Lethal Human Attachment! Surgical Implications,” Euro. J. Cardiothoracic. Surg. 17:718-722. |
Jongbloed, M.R.M. et al. (2005). “Clinical Applications of Intracardiac Echocardiography in Interventional Procedures,” Heart 91:981-990. |
Kamohara, K. et al. (Aug. 2006). “Evaluation of a Novel Device for Left Atrial Appendage Exclusion: The Second-generation Atrial Exclusion Device,” The Journal of Thoracic and Cardiovascular Surgery 132(2):340-346. |
Kanderian, A.S. et al. (2008). “Success of Surgical Left Atrial Appendage Closure: Assessment by Transesophageal Echocardiography,” Journal of the American College of Cardiology 52(11):924-929. |
Kato, H. et al. (Aug. 1, 1996). “Evaluation of Left Atrial Appendage Stasis in Patients With Atrial Fibrillation Using Transesophageal Echocardiography With an Intravenous Albumin-Contrast Agent,” The American Journal of Cardiology 78:365-369. |
Katz, E.S. et al. (Aug. 2000). “Surgical Left Atrial Appendage Ligation is Frequently Incomplete: A Transesophageal Echocardiographic Study,” Journal of the American College of Cardiology 36(2):468-471. |
Kenner, H.M. et al. (Dec. 1966). “Intrapericardial, Intrapleural, and Intracardiac Pressures During Acute Heart Failure in Dogs Studied without Thoracotomy,” Circulation Research 19:1071-1079. |
Kerut, E.K. et al. (Jul. 2008). “Anatomy of the Left Atrial Appendage,” Echocardiography 25(6):669-673. |
Khargi, K. et al. (2005). “Surgical Treatment of Atrial Fibrillation: A Systematic Review,” European Journal of Cardiothoracic Surgery 27:258-265. |
Kim, K.B. et al. (Jan. 1998). “Effect of the Cox Maze Procedure on the Secretion of Atrial Natriuretic Peptide,” J. Thorac. Cardiovasc. Surg. 115(1):139-146; discussion 146-147. |
Kistler, P.M. et al. (May 2007). “The Left Atrial Appendage: Not Just an Innocent Bystander,” J. Cardiovasc Electrophysiol 18(5):465-466. |
Klein, H. et al. (Apr. 1990). “The Implantable Automatic Cardioverter-Defibrillator,” Herz 15(2):111-125, Abstract Only. |
Kolb, C. et al. (Feb. 2004). “Incidence of Antitachycardia Therapy Suspension Due to Magnet Reversion in Implantable Cardioverter Defibrillators,” Pace 27:221-223. |
Krikorian, J.G. et al. (Nov. 1978). “Pericardiocentesis,” Am. J. Med. 65(5):808-814. |
Krum, D. et al. (2004). “Visualization of Remnants of the left Atrial Appendage Following Epicardial Surgical Removal,” Heart Rhythm 1:249. |
Lacomis, J.M. et al. (Oct. 2003). “Multi-Detector Row CT of the Left Atrium and Pulmonary Veins before Radio-frequency Catheter Ablation for Atrial Fibrillation,” Radio Graphics 23:S35-S48. |
Lacomis, J.M. et al. (2007, e-pub. Oct. 17, 2007). “Dynamic Multidimensional Imaging of the Human Left Atrial Appendage,” Europace 9:1134-1140. |
Lee, R. et al. (1999). “The Closed Heart MAZE: A Nonbypass Surgical Technique,” The Annals of Thoracic Surgery 67:1696-1702. |
Levinson, M.L. et al. (1998). “Minimally Invasive Atrial Septal Defect Closure Using the Subxyphoid Approach,” Heart Surg. Forum 1(1):49-53, Abstract Only. |
Lewis, D.R. et al. (1999). “Vascular Surgical Intervention for Complications of Cardiovascular Radiology: 13 Years' Experience in a Single Centre,” Ann. R. Coll. Surg. Engl. 81:23-26. |
Li, H. (2007). “Magnet Decoration, Beautiful But Potentially Dangerous for Patients with Implantable Pacemakers or Defibrillators,” Heart Rhythm 4(1):5-6. |
Lindsay, B.D. (1996). “Obliteration of the Left Atrial Appendage: A Concept Worth Testing,” The Annals of Thoracic Surgery 61:515. |
Lip, G.Y.H. et al. (Jun. 2001). “Thromboprophylaxis for Atrial Flutter,” European Heart Journal 22(12):984-987. |
Lustgarten, D.L. et al. (May/Jun. 1999). “Cryothermal Ablation: Mechanism of Tissue Injury and Current Experience in the Treatment of Tachyarrhythmias,” Progress in Cardiovascular Diseases 41(6):481-498. |
Macris, M. et al. (Jan. 1999). “Minimally Invasive Access of the Normal Pericardium: Initial Clinical Experience with a Novel Device,” Clin. Cardiol. 22(Suppl. I):I-36-I-39. |
Maisch, B. et al. (Jan. 1999). “Intrapreicardial Treatment of Inflammatory and Neoplastic Pericarditis Guided by Pericardioscopy and Epicardial Biopsy-Results from a Pilot Study,” Clin. Cardiol. 22(Supp. I):I-17-I-22. |
Mannam, A.P. et al. (Apr. 1, 2002). “Safety of Subxyphoid Pericardial Access Using a Blunt-Tip Needle,” The American Journal of Cardiology 89:891-893. |
Mattox, K.L. et al. (May 1997). “Newer Diagnostic Measure and Emergency Management,” Ches Surg Clin N Am. 7(2):213-226, Abstract Only. |
McCarthy, P.M. et al. (2008). “Epicardial Atrial Fibrillation Ablation,” Chapter 23 in Contemporary Cardiology: Atrial Fibrillation, From Bench to Bedside, Natale, A. et al. eds., Humana Press,: Totowa, NJ, pp. 323-332. |
McCaughan, J.J. Jr., et al. (Nov. 1957). “Aortography Utilizing Percutaneous Left Ventricular Puncture,” located at <http://www.archsurg.com>, last visited on Apr. 7, 2009, 73:746-751, Abstract Only. |
McClelland, R.R. (1978). “Congenital Aneurysmal Dilatation of the Left Auricle Demonstrated by Sequential Cardiac Blood-Pool Scintiscanning.” J. Nucl. Med. 19(5):507-509. |
Melo, J. et al. (Apr. 21, 2008). “Surgery for Atrial Fibrillation in Patients with Mitral Valve Disease: Results at Five Years from the International Registry of Atrial Fibrillation Surgery,” The Journal of Thoracic and Cardiovascular Surgery 135(4):863-869. |
Miller, P.S.J. et al. (Feb. 2005). “Are Cost Benefits of Anticoagulation for Stroke Prevention in Atrial Fibrillation Underestimated?” Stroke 36:360-366. |
Miyasaka, Y. et al. (Jul. 11, 2006). “Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence,” Circulation 114:119-125. |
Morris, J.J. Jr. (1979). “Transvenous versus Transthoracic Cardiac Pacing,” Chapter 16 in Cardiac Pacing: A Concise Guide to Clinical Practice, pp. 239-245. |
Mráz, T. et al. (Apr. 2007). “Role of Echocardiography in Percutaneous Occlusion of the left Atrial Appendage,” Echocardiography 24(4):401-404. |
Naclerio, E.A. et al. (1979). “Surgical Techniques for Permanent Ventricular Pacing,” Chapter 10 in Cardiac Pacing: A Concise Guide to Clinical Practice, pp. 145-168. |
Nakai, T. et al. (May 7, 2002). “Percutaneous Left Atrial Appendage Occlusion (PLAATO) for Preventing Cardioembolism: First Experience in Canine Model,” Circulation 105:2217-2222. |
Nakajima, H. et al. (2004). “Consequence of Atrial Fibrillation and the Risk of Embolism After Percutaneous Mitral Commissurotomy: The Necessity of the Maze Procedure,” The Annals of Thoracic Surgery 78:800-806. |
Odell, J.A. et al. (1996). “Thorascopic Obliteration of the Left Atrial Appendage: Potential for Stroke Reduction?” Ann. Thorac. Surg. 61:565-569. |
O'Donnell, M. et al. (2005). “Emerging Therapies for Stroke Prevention in Atrial Fibrillation,” European Heart Journal 7(Supplement C):C19-C27. |
Omran, H. et al. (1997). “Left Atrial Appendage Function in Patients with Atrial Flutter,” Heart 78:250-254. |
Onalan, O. et al. (2005). “Nonpharmacologic Stroke Prevention in Atrial Fibrillation,” Expert Rev. Cardiovasc. Ther. 3(4):619-633. |
Onalan, O. et al. (2007). “Left Atrial Appendage Exclusion for Stroke Prevention in Patients With Nonrheumatic Atrial Fibrillation.” Stroke 38(part 2):624-630. |
Ostermayer, S. et al. (2003). “Percutaneous Closure of the Left Atrial Appendage,” Journal of Interventional Cardiology 16(6):553-556. |
Ota, T. et al. (2006). “Epicardial Atrial Ablation Using a Novel Articulated Robotic Medical Probe Via a Percutaneous Subxiphoid Approach,” National Institute of Health 1(6):335-340. |
Ota, T. et al. (Oct. 2007). “Impact of Beating Heart left Atrial Ablation on Left-sided Heart Mechanics,” The Journal of Thoracic and Cardiovascular Surgery 134:982-988. |
Pennec, P-Y. et al. (2003). “Assessment of Different Procedures for Surgical Left Atrial Appendage Exclusion,” The Annals of Thoracic Surgery 76:2167-2168. |
Perk, G. et al. (Aug. 2009). “Use of Real Time Three-Dimensional Transesophageal Echocardiography in Intracardiac Catheter Based Interventions,” J. Am Soc Echocardiogr 22(8):865-882. |
Pollick C. (Feb. 2000). “Left Atrial Appendage Myopathy,” Chest 117(2):297-308. |
Poulsen, T.S. et al. (Feb. 15, 2005). “Is Aspirin Resistance or Female Gender Associated With a High Incidence of Myonecrosis After Nonurgent Percutaneous Coronary Intervention?” J. Am. Coll. Cardiol. 45(4):635-636. |
Reznik, G. et al. (Oct. 1992). “Percutaneous Endoscopic Implantation of Automatic Implantable Cardioverter/Defibrillator (AICD): An Animal Study of a New Nonthoracotomy Technique,” J. Laparoendosc. Surg. 2(5):255-261, Abstract Only. |
Robicsek, F. (1987). “Closed-Chest Decannulation of Transthoracically Inserted Aortic Balloon Catheter without Grafting,” Journal of Cardiac Surgery 2(2):327-329. |
Ross, J. Jr. et al. (Jun. 3, 2008). “Transseptal Left Heart Catheterization: A 50-Year Odyssey,” Journal of the American College of Cardiology 51(22):2107-2115. |
Rubin, D.N. et al. (Oct. 1, 1996). “Evaluation of Left Atrial Appendage Anatomy and Function in Recent-Onset Atrial Fibrillation by Transesophageal Echocardiography,” Am J Cardiol 78:774-778. |
Ruchat, P. et al. (2002). “Off-pump Epicardial Compartmentalization for Ablation of Atrial Fibrillation,” Interactive Cardio Vascular and Thoracic Surgery 1:55-57. |
Salzberg, S.P. et al. (2008). “Surgical Left Atrial Appendage Occlusion: Evaluation of a Novel Device with Magnetic Resonance Imaging,” European Journal of Cardiothoracic Surgery 34:766-770. |
Sapp, J. et al. (Dec. 2001). “Electrophysiology and Anatomic Characterization of an Epicardial Accessory Pathway.” Journal of Cardiovascular Electrophysiology 12(12):1411-1414. |
Scharf, C. et al. (2005). “Catheter Ablation for Atrial Fibrillation: Pathophysiology, Techniques, Results and Current Indications,” Continuous Medical Education 8:53-61. |
Scherr, D. et al. (Apr. 2009). “Incidence and Predictors of left Atrial Thrombus Prior to Catheter Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 20(4):379-384. |
Schmidt, H. et al. (Sep. 2001). “Prevalence of Left Atrial Chamber and Appendage Thrombi in Patients With Atrial Flutter and Its Clinical Significance,” Journal of the American College of Cardiology 38(3):778-784. |
Schneider, B. et al. (2005, e-pub. Aug. 22, 2005). “Surgical Closure of the Left Atrial Appendage—A Beneficial Procedure?” Cardiology 104:127-132. |
Schweikert, R.A. et al. (Sep. 16, 2003). “Percutaneous Pericardial Instrumentation for Endo-Epicardial Mapping of Previously Failed Ablation,” Circulation 108:1329-1335. |
Schweikert, R.A. et al. (2005). “Epicardial Access: Present and Future Applications for Interventional Electrophysiologists,” Chapter 25 in New Arrhythmia Technolqies, Wang, P.J. ed., Blackwell Publishing, pp. 242-256. |
Seferovic, P. et al. (Jan. 1999). “Initial Clinical Experience with the PerDUCER® Device: Promising New Tool in the Diagnosis and Treatment of Pericardial Disease,” Clin. Cardiol. 22(Supp I):I-30-I-35. |
Sengupta, P.P. et al. (2005). “Transoesophageal Echocardiography,” Heart 91:541-547. |
Sharada, K. et al. (2005). “Non-Surgical Transpericardial Catheter Ablation of Post-Infarction Ventricular Tachycardia,” Indian Heart J 57:58-61. |
Sievert, H. et al. (Apr. 23, 2002). “Percutaneous Left Atrial Appendage Transcatheter Occlusion to Prevent Stroke in High-Risk Patients With Atrial Fibrillation,” Circulation 105:1887-1889. |
Singer, D.E. et al. (Sep. 2004). “Antithrombotic Therapy in Atrial Fibrillation: The Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy,” Chest 126(3):429S-456S. |
Smith, P.W. et al. (Nov. 1956). “Diagnosis of Mitral Regurgitation by Cardioangiography,” Circulation 14:847-853. |
Soejima, K. et al. (2004). “Subxiphoid Surgical Approach for Epicardial Catheter-Based Mapping and Ablation in Patients With Prior Cardiac Surgery or Difficult Pericardial Access,” Circulation 110:1197-1201. |
Sosa, E. et al. (1996). “A New Technique to Perform Epicardial Mapping in the EP Laboratory,” J. Cardiovasc. Electrophysiol. 7(6):531-536. |
Sosa, E. et al. (Mar. 1998). “Endocardial and Epicardial Ablation Guided by Nonsurgical Transthoracic Epicardial Mapping to Treat Recurrent Ventricular Tachycardia,” J. Cardiovasc. Elecytophysiol. 9(3):229-239. |
Sosa, E. et al. (Dec. 14, 1999). “Different Ways of Approaching the Normal Pericardial Space,” Circulation 100(24):e115-e116. |
Sosa, E. et al. (Jul. 15, 2002). “Gaining Access to the Pericardial Space,” The American Journal of Cardiology 90:203-204. |
Sosa, E. et al. (Apr. 2005). “Epicardial Mapping and Ablation Techniques to Control Centricular Tachycardia,” Journal of Cardiovasc. Electrphsiol. 16(4):449-452. |
Sparks, P.B. et al. (2001). “Is Atrial Flutter a Risk Factor for Stroke?” Journal of the American College of Cardiology 38(3):785-788. |
Spodick, D.H. (Nov. 1970). “Medical History of the Pericardium,” The American Journal of Cardiology 26:447-454. |
Stewart, J.M. et al. (Apr. 1992). “Bilateral Atrial Appendectomy Abolishes Increased Plasma Atrial Natriuretic Peptide Release and Blunts Sodium and Water Excretion During Volume Loading in Conscious Dogs,” Circulation Research 70(4):724-732. |
Stewart, S. (1974). “Placement of the Sutureless Epicardial Pacemaker Lead by the Subxiphoid Approach,” Ann. of Thoracic Surg. 18(3):308-313. |
Stoddard, M.F. et al. (1995). “Left Atrial Appendage Thrombus is not Uncommon in Patients with Acute Atrial Fibrillation and a Recent Embolic Event: A Transesophageal Echocardiographic Study,” J. Am. Coll. Cardiol. 25:452-459, Abstract Only. |
Stokes, K. (Jun. 1990). “Implantable Pacing Lead Technology,” IEEE Engineering in Medicine and Biology pp. 43-49. |
Stöllberger, C. et al. (2000). “Is the Left Atrial Appendage Our Most Lethal Attachment?” European Journal of Cardio-Thoracic Surgery 18:625-626. |
Stöllberger, C. et al. (Dec. 2003). “Elimination of the Left Atrial Appendage to Prevent Stroke or Embolism?: Anatomic, Physiologic, and Pathophysiologic Considerations,” 124(6):2356-2362. |
Stöllberger, C. et al. (2006). “Stroke Prevention by Means of Epicardial Occlusion of the Left Atrial Appendage,” Journal of Thoracic and Cardiovascular Surgery 132(1):207-208. |
Stöllberger, C. et al. (2007). “Arguments Against Left Atrial Appendage Occlusion for Stroke Prevention,” Stroke 38:e77. |
Stöllberger, C. et al. (2007). “Leave the Left Atrial Appendage Untouched for Stroke Prevention!” Journal of Thoracic and Cardiovascular Surgery 134(2):549-550. |
Su, P. et al. (Sep. 2008, e-pub. May 8, 2007). “Occluding the Left Atrial Appendage: Anatomical Considerations,” Heart 94(9):1166-1170. |
Subramanian, V.A. (Jun. 1997). “Less Invasive Arterial CABG on a Beating Heart,” Ann. Thorac. Surg. 63(6 Suppl.):S68-S71. |
Subramanian, V.A. et al. (Dec. 1997). “Minimally Invasive Direct Coronary Artery Bypass Grafting: two-Year Clinical Experience,” Ann. Thorac. Surg. 64(6):1648-1653, Abstract Only. |
Suehiro, S. et al. (1996). “Echocardiography—Guided Pericardiocentesis With a Needle Attached to a Probe,” Ann. Thoracic Surg. 61:741-742. |
Sun, F. et al. (Feb. 2006). “Subxiphoid Access to Normal Pericardium with Micropuncture Set: Technical Feasibility Study in Pigs,” Radiology 238(2):719-724. |
Szili-Torok, T. et al. (2001). “Transseptal Left heart Catheterisation Guided by Intracardiac Echocardiography,” Heart 86:e11-e15. |
Tabata, T. et al. (Feb. 1, 1998). “Role of Left Atrial Appendage in left Atrial Reservoir Function as Evaluated by Left Atrial Appendage Clamping During Cardiac Surgery,” The American Journal of Cardiology 81:327-332. |
Tomar, M. et al. (Jul.-Aug. 2006). “Transcatheter Closure of Fossa Ovalis Atrial Septal Defect: A Single Institutional Experience,” Indian Heart Journal58(4):325-329. |
Troughton, R.W. et al. (Feb. 28, 2004). “Pericarditis,” The Lancet 363:717-727. |
Ulicny K.S. et al. (Jun. 1992). “Conjoined Subrectus Pocket for Permanent Pacemaker Placement in the Neonate,” Ann Thorac Surg. 53(6):1130-1131, Abstract Only. |
Valderrabano, M. et al. (Sep. 2004). “Percutaneous Epicardial Mapping During Ablation of Difficult Accessory Pathways as an Alternative to Cardiac Surgery,” Heart Rhythm 1(3):311-316. |
Von Korn, H. et al. (2006). “Simultaneous Combined Interventional Percutaneous Left Atrial Auricle and Atrial Septal Defect Closure,” Heart 92:1462. |
Wang, T.J. et al. (Aug. 27, 2003). “A Risk Score for Predicting Stroke or Death in Individuals With New-Onset Atrial Fibrillation in the Community,” American Medical Association 290(8):1049-1056. |
Watkins, L. et al. (Nov. 1982). “Implantation of the Automatic Defibrillator: The Subxiphoid Approach,” Ann. of Thoracic Surg. 34(5):515-520. |
W.L. Gore & Associates (Aug. 11, 2006). “Gore Helex™ Septal Occluder,” located at <http://www.fda.gov/cdrh/pdf5/p050006a.pdf>, last visited on Jun. 14, 2007, 3 pages. |
Wolber, T. et al. (Jan. 2007). “Potential Interference of Small Neodymium Magnets with Cardiac pacemakers and Implantable Cardioverter-defibrillators,” Heart Rhythm 4(1):1-4. |
Wolf, P.A. et al. (Oct. 1978). “Epidemiologic Assessment of Chronic Atrial Fibrillation and Risk of Stroke: The Fiamingham Study,” Neurology 28:973-977. |
Wolf, P.A. et al. (Aug. 1991). “Atrial Fibrillation as an Independent Risk Factor for Stroke: The Framingham Study,” Stroke 22(8):983-988. |
Wolf, P.A. et al. (Feb. 9, 1998). “Impact of Atrial Fibrillation on Mortality, Stroke, and Medical Costs,” Arch Intern Med 158:229-234. |
Wong, J.W.W. et al. (2006). “Impact of Maze and Concomitant Mitral Valve Surgery on Clinical Outcomes,” The Annals of Thoracic Surgery 82:1938-1947. |
Wongcharoen, W. et al. (Sep. 2006). “Morphologic Characteristics of the Left Atrial Appendage, Roof, and Septum: Implications for the Ablation of Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology 17(9):951-956. |
Wood, M.A. (Jan. 2006). “Percutaneous Pericardial Instrumentation in the Electrophysiology Laboratory: A Case of Need,” Heart Rhythm 3(1):11-12. |
Wudel, J.H. et al. (Apr. 3, 2008). “Video-Assisted Epicardial Ablation and left Atrial Appendage Exclusion for Atrial Fibrillation: Extended Follow-Up.” The Annals of Thoracic Surgery 85:34-38. |
Wyse, D.G. et al. (Dec. 5, 2002). “Of ‘Left Atrial Appendage Amputation, Ligation, or Occlusion in Patients with Atrial Fibrillation’,” N Engl J Med 347(23):1825-1833, Abstract Only. |
Yamada, Y. et al. (Aug. 2006). “Video-Assisted Thoracoscopy to Treat Atrial Tachycardia Arising from Left Atrial Appendage,” Journal of Cardiovascular Electrophysiology 17(8):895-898. |
Zapolanski, A. et al. (May 2008). “Safe and Complete Exclusion of the left Atrial Appendage, A Simple Epicardial Approach,” Innovations 3(3):161-163. |
Zenati, M.A. et al. (Sep. 2003). “Left Heart Pacing Lead Implantation Using Subxiphoid Videopericardioscopy,” Journal of Cardiovascular Electrophysiology 14(9):949-953. |
Zenati, M.A. et al. (2004). “Mechanical Function of the Left Atrial Appendage Following Epicardial Bipolar Radiofrequency Ablation,” Cardiothoracic Techniques and Technologies X, Abstract 121A, p. 176. |
Zenati, M.A. et al. (2005). “Modification of the Left Atrial Appendage,” Chapter 12 in Innovative Management of Atrial Fibrillation, Schwartzman, David ed., Blackwell Science Ltd., 5 pages. |
European office Action dated Aug. 16, 2011, for European Patent Application No. 04794730.4, filed on Oct. 11, 2004, 7 pages. |
Japanese Office Action dated Nov. 2, 2010, for Japanese Patent Application No. 2006-534449, filed on Oct. 11, 2004, English translation included, 5 pages. |
Japanese Office Action dated Aug. 23, 2011, for Japanese Patent Application No. 2006-534449, filed on Oct. 11, 2004, English translation, 2 pages. |
Supplementary Search Report dated Mar. 14, 2011, for EP Application No. 04 794 730.4, filed on Oct. 11, 2004, 4 pages. |
Non-Final Office Action dated Mar. 13, 2008 for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 13 pages. |
Non-Final Office Action dated Aug. 6, 2008 for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 14 pages. |
Final Office Action dated Jun. 22, 2009, for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 11 pages. |
Notice of Allowance dated Sep. 17, 2010, for U.S. Appl. No. 10/963,371, filed Oct. 11, 2004, 7 pages. |
Non-Final Office Action dated Jun. 26, 2009, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 9 pages. |
Final Office Action dated Apr. 14, 2010, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 7 pages. |
Notice of Allowance dated Sep. 17, 2010, for U.S. Appl. No. 11/600,671, filed Nov. 15, 2006, 7 pages. |
Non-Final Office Action dated Jul. 22, 2010, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 10 pages. |
Final Office Action dated Apr. 26, 2011, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 9 pages. |
Non-Final Office dated Jan. 16, 2013, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 10 pages. |
Final Office Action dated Nov. 8, 2013, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 15 pages. |
Notice of Allowance dated Apr. 3, 2014, for U.S. Appl. No. 12/037,802, filed Feb. 26, 2008, 8 pages. |
Non-Final Office Action dated Mar. 7, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 13 pages. |
Final Office Action dated Oct. 18, 2012, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 15 pages. |
Non-Final Office Action dated May 31, 2013, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 14 pages. |
Non-Final Office Action dated May 4, 2015, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 8 pages. |
Notice of Allowance dated Oct. 21, 2015, for U.S. Appl. No. 12/124,023, filed May 20, 2008, 9 pages. |
Non-Final Office Action dated Dec. 30, 2009, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages. |
Final Office Action dated Jul. 21, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 10 pages. |
Notice of Allowance dated Nov. 24, 2010, for U.S. Appl. No. 11/400,714, filed Apr. 7, 2006, 8 pages. |
Non-Final Office Action dated Dec. 22, 2011, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Final Office Action dated Jul. 11, 2012, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Non-Final Office Action dated Apr. 2, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Final Office Action dated Aug. 12, 2014, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 6 pages. |
Non-Final Office Action dated Oct. 28, 2015, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 9 pages. |
Final Office Action dated Apr. 1, 2016, for U.S. Appl. No. 13/033,532, filed Feb. 23, 2011, 8 pages. |
Non-Final Office Action dated Nov. 15, 2010, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 18 pages. |
Non-Final Office Action dated Apr. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 20 pages. |
Final Office Action dated Oct. 28, 2011, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages. |
Non-Final Office Action dated Sep. 18, 2013, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 15 pages. |
Notice of Allowance dated Mar. 4, 2014, for U.S. Appl. No. 12/055,213, filed Mar. 25, 2008, 9 pages. |
Non-Final Office Action dated Oct. 27, 2011, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 11 pages. |
Final Office Action dated May 4, 2012, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages. |
Non-Final Office Action dated Jun. 17, 2014, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 7 pages. |
Final Office Action dated Nov. 14, 2014, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages. |
Non-Final Office Action dated Sep. 10, 2015, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 13 pages. |
Final Office Action dated Mar. 17, 2016, for U.S. Appl. No. 12/363,359, filed Jan. 30, 2009, 10 pages. |
Non-Final Office Action dated Nov. 9, 2011, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 10 pages. |
Final Office Action dated May 16, 2012, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 8 pages. |
Notice of Allowance dated Apr. 1, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages. |
Notice of Allowance dated Dec. 29, 2014, for U.S. Appl. No. 12/363,381, filed Jan. 30, 2009, 9 pages. |
Non-Final Office Action dated Feb. 17, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 14 pages. |
Final Office Action dated Sep. 20, 2011, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages. |
Non-Final Office Action dated Apr. 2, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 5 pages. |
Final Office Action dated Jul. 24, 2012, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages. |
Notice of Allowance dated Feb. 22, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 8 pages. |
Notice of Allowance dated Mar. 18, 2013, for U.S. Appl. No. 12/212,511, filed Sep. 17, 2008, 6 pages. |
Non-Final Office Action dated Mar. 29, 2013, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 16 pages. |
Final Office Action dated Jan. 13, 2014, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 10 pages. |
Non-Final Office Action dated Nov. 10, 2014, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 10 pages. |
Notice of Allowance dated Jul. 22, 2015, for U.S. Appl. No. 12/752,873, filed Apr. 1, 2010, 8 pages. |
Non-Final Office Action dated Feb. 5, 2014 for U.S. Appl. No. 13/086,389 filed Apr. 13, 2011, 16 pages. |
Non-Final Office Action dated Jan. 15, 2015, for U.S. Appl. No. 13/086,389, filed Apr. 13, 2011, 16 pages. |
Non-Final Office Action dated May 3, 2013, for U.S. Appl. No. 13/086,390, filed Apr. 13, 2011, 10 pages. |
Final Office Action dated Oct. 22, 2013, for U.S. Appl. No. 13/086,390, filed Apr. 13, 2011, 6 pages. |
Notice of Allowance dated Mar. 20, 2014 for U.S. Appl. No. 13/086,390, filed Apr. 13, 2011, 8 pages. |
Non-Final Office Action dated Dec. 2, 2015, for U.S. Appl. No. 14/309,835, filed Jun. 19, 2014, 8 pages. |
Non-Final Office Action dated Mar. 31, 2015, for U.S. Appl. No. 13/490,919, filed Jun. 7, 2012, 14 pages. |
Final Office Action dated Nov. 18, 2015, for U.S. Appl. No. 13/490,919, filed Jun. 7, 2012, 10 pages. |
Notice of Allowance dated Apr. 11, 2016, for U.S. Appl. No. 14/195,797 filed Mar. 3, 2014, 14 pages. |
Notice of Allowance dated Jul. 19, 2016, for U.S. Appl. No. 13/490,919, filed Jun. 7, 2012, 10 pages. |
U.S. Appl. No. 15/080,410, filed Mar. 24, 2016, by Fung et al. |
U.S. Appl. No. 15/080,398, filed Mar. 24, 2016, by Fung et al. |
Extended European Search Report dated Jul. 10, 2015, for European Patent Application No. 15153029.2, filed on Mar. 25, 2008, 6 pages. |
Extended European Search Report dated Feb. 10, 2017, for EP Application No. 10 759 425.1, filed on Apr. 1, 2010, 7 pages. |
Partial European Search Report dated Dec. 8, 2017, for EP Application No. 17 166 951.8, filed on Sep. 17, 2008, 16 pages. |
Extended European Search Report dated Mar. 15, 2018, for EP Application No. 17 166 951.8, filed on Sep. 17, 2008, 14 pages. |
International Search Report dated May 19, 2008, for PCT Application No. PCT/US06/013459, filed on Apr. 7, 2006, 1 page. |
International Search Report dated Feb. 27, 2007, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 5 pages. |
International Search Report dated Jul. 30, 2010, for PCT Application No. PCT/US2008/076703, filed on Sep. 17, 2008, 2 pages. |
International Search Report dated Jun. 1, 2010, for PCT Application No. PCT/US2010/029668, filed on Apr. 1, 2010, 2 pages |
Written Opinion dated May 19, 2008, for PCT Application No. PCT/US06/013459, filed on Apr. 7, 2006. 6 pages. |
Written Opinion of the International Searching Authority dated Feb. 27, 2007, for PCT Application No. PCT/US2008/003938, filed on Mar. 25, 2008, 10 pages. |
Written Opinion of the International Searching Authority dated Jul. 30, 2010, for PCT Application No. PCT/US2008/076703, filed on Sep. 17, 2008, 8 pages. |
Written Opinion of the International Searching Authority dated Jun. 1, 2010, for PCT Application No. PCT/US2010/029668, filed on Apr. 1, 2010, 8 pages. |
Final Office Action dated Jun. 8, 2017, for U.S. Appl. No. 14/625,540, filed Feb. 18, 2015, 14 pages. |
Non-Final Office Action dated Dec. 2, 2016, for U.S. Appl. No. 14/625,540, filed Feb. 18, 2015, 20 pages. |
Non-Final Office Action dated Jan. 12, 2018, for U.S. Appl. No. 14/928,836, filed Oct. 30, 2015, 12 pages. |
Non-Final Office Action dated Jan. 26, 2018, for U.S. Appl. No. 14/625,540, filed Feb. 18, 2015, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20160235412 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
60528995 | Dec 2003 | US | |
60510100 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12124023 | May 2008 | US |
Child | 15041777 | US | |
Parent | 10963371 | Oct 2004 | US |
Child | 12124023 | US |