The invention concerns an apparatus and a method for the non-destructive separation of hardened material layers from a flat construction plane.
For building up three-dimensional objects in layers from “light-hardening” photopolymers, the most varied methods are provided in the literature, see “Automated Fabrication—Improving Productivity in Manufacturing” by Marshall Burns, 1993 (ISBN 0-13-119462-3).
Among the methods described are three variants in which the layer to be produced is selectively exposed on a transparent reference plane, a so-called “contact window”, through the latter, and polymerised/hardened. The three variants are sketched in
The method described here below is a further development of the method described in utility model DE-U-93 19 405.6 “Apparatus for manufacturing a three-dimensional object (model) on the principle of photohardening”.
To be able to separate the hardened material layer from the contact window/reference plane, in patents U.S. Pat. No. 5,171,490 (Efrem V. Fudim) and DE 41 25 534 A1 (EOS GmbH, Electro Optical Systems) is described a solution for a separating layer by means of a thin film of flexible plastic.
In selective exposure by laser or mask in differently shaped surface structures directly on one side of a transparent reference plane opposite the source of radiation, the resin polymerises in direct contact with this reference plane. The problem lies in separating the layer, which is constructed differently in its surface structure, from the transparent reference plane in such a way that it remains stuck to the previously produced layers, and both the resulting layer and the already produced part of the object is not deformed or even destroyed or torn off by the separating force and ultimately the object produced layer by layer remains stuck to the carrier plate throughout the building process.
Due to the use of a separating film proposed in the patents described above, the so-called peeling effect is used, that is, the film peels off the hardened polymer layer regularly due to the separating process, with the result that the separating forces are reduced in the Z-direction because of force vector resolution.
If the film serves as a separating layer from the transparent reference plane and if only the object to be built is moved away from the reference plane for the purpose of separation, the path of separation is much greater than the following layer thickness which is actually to be built because, due to the elastic tension in the film built up during the separating process, the necessary separating force must be built up for the actual peeling process. This moving or separating process costs extra time which must in each case be added to the polymerisation, time of a structural layer and so essentially determines the total building time of the building process. Moreover there is a risk that the film will be permanently plastically deformed, crease/corrugate and so a flat surface will no longer be formed. Here, depending on the surface of the layer polymerised at the transparent reference plane, an adhesion force between object or hardened layer and transparent reference plane is to be overcome. Since uneven surface structures are involved as a rule, the adhesion forces applied are also unevenly distributed.
It is the object of the invention to provide a solution for a separating layer and/or a separating method which, independently of
This object is achieved by an apparatus or a method with the characteristics according to claim 1 or 10 respectively. Developments are provided in the subsidiary claims.
Further characteristics and suitabilities are apparent from the description of practical examples with the aid of the figures. The figures show:
a: an arrangement as in
b to 3c: the operation of detachment of the already solidified layer 4 from the separating layer;
a and 5b: schematic views to illustrate the avoidance of adhesion of the film or separating layer 1 to the bottom plate 2;
An elastic, transparent/translucent material is used as the separating layer. The separating layer in this method can
A (transparent) film which is arranged between the bottom plate and the photopolymer is selected as the separating layer (
As the film does not adhere to the bottom plate and so does not form a solid, non-deformable unit with the bottom plate, it can be deformed elastically during the separation process, so that a so-called “peeling” or “pulling-off” process is caused at the hardened layer. Due to the elastic deformation of the separating layer or the pulling-off process, displacement/vector resolution of the separating force vector takes place, substantially facilitating the separation process (see
The material of the film can be selected for the separation process or optimised according to the photopolymer used.
An additional “anti-adhesion” effect and slight inhibition of radical polymerisation with acrylate systems can additionally be caused e.g. by the use of FEP, PTFE or PFA films.
The film can be exchanged without problems in case of damage or wear.
To improve maintenance or cleaning of the apparatus, the film in conjunction with an additional frame made of the same or different material can be structured into a kind of “basin” (see
If a film of high-elasticity material e.g. latex or silicone rubber is used, in addition a shearing effect can be used for the separation process. This effect is brought about by stretching the film in the reference plane during the separation process. Due to the combination of peeling and shearing effects, separation is facilitated and the path of separation is limited to the distance of the next layer thickness.
The arrangement in
Over the basin is located a carrier plate which can be raised and lowered in a vertical direction to the bottom plate by a linear unit.
For the first layer, the carrier plate is submerged in the material to such an extent that depth hardening of the selectively exposed photopolymer (e.g. by multimedia projector or laser) ensures firm bonding to the lower side of the carrier plate.
If the carrier plate together with the hardened layer(s) is lifted, the film comes away from the lower side of the hardened material layer by a kind of peeling/pulling-off process if the force vectors between hardened material layer and film for separation exhibit a large enough horizontal component (FTrenn XY) (
The horizontal force component (FTrenn XY) comes about by the fact that, when the object is lifted, the film between the frame mounting and the region adhering to the hardened material layer is elastically deformed or stretched and, with the varying setting angle α of the film relative to the material layer, the direction of application of force also moves out of the vertical.
The carrier plate must in this case be lifted to such an extent that the film can completely separate from the hardened surface and return to its original state by subsequent relaxation.
Fresh, liquid material for the following layer to be hardened is automatically entrained by the growing wedge-shaped gap between film and hardened layer during the separation process.
An alternative for preventing adhesion of the film to the bottom plate and ensuring supply of air and hence preventing the film from being sucked against the plane/bottom plate can be transposed by deliberately produced surface roughness or structuring
If the film e.g. attains sufficient inherent rigidity or is suitably stretched, under certain circumstances the transparent reference plate can be completely dispensed with.
In a further embodiment, film and transparent reference plate are arranged in such a way that between plate and film is formed a flat chamber which is filled with a liquid or gaseous medium. A partial pressure can be applied to the chamber to speed up the separation/peeling process and reduce lifting/lowering of the carrier plate together with object during the separation process to a minimum, namely the following layer thickness.
The partial pressure or vacuum is applied when the object is lifted to the next layer thickness in order to force elastic deformation of the film and increase the setting angle α of the film in the edge region outside the contour of the adhering hardened surface until the peeling process begins.
The partial pressure or vacuum is applied until the film has completely come away from the hardened layer and relaxed.
To avoid the problem of plastic deformation and creep of the film in continuous operation, a high-elasticity film which is stretched during the separation process can be used. For this purpose the film is mounted e.g. over two opposed rollers (see
The mounting of the film between the rollers held in a frame can be such that a basin is formed, in which the liquid photopolymer is located (see
An alternative to the film is offered by the application of an optically transparent silicone layer to the glass plate oriented towards the photopolymer. During the separation process the silicone layer facing towards the photopolymer behaves in principle like the film, i.e. in the whole silicone layer elastic deformation takes place and the internal stresses in the silicone layer lead to the regions of the silicone layer which adhere to the hardened material layer being peeled off.
It is important here that good adhesion of the silicone layer to the bottom plate (glass plate) is ensured, or the adhesion between silicone layer and bottom plate is greater by a multiple than the adhesion between silicone layer and hardened material.
By recessing a frame from the same silicone material, a basin is also formed to hold the liquid photopolymer (see
The methods described above with film or silicone are not confined to the arrangement described above. Their use is also conceivable in the variants shown, see
Number | Date | Country | Kind |
---|---|---|---|
101 19 817 | Apr 2001 | DE | national |
This application is a division of Ser. No. 10/127,997, filed on Apr. 23, 2002, now U.S. Pat. No. 7,195,472.
Number | Name | Date | Kind |
---|---|---|---|
4961154 | Pomerantz et al. | Oct 1990 | A |
5059359 | Hull et al. | Oct 1991 | A |
5122441 | Lawton et al. | Jun 1992 | A |
5143817 | Lawton et al. | Sep 1992 | A |
5171490 | Fudim | Dec 1992 | A |
5192559 | Hull et al. | Mar 1993 | A |
5198159 | Nakamura et al. | Mar 1993 | A |
5271882 | Shirahata et al. | Dec 1993 | A |
5391072 | Lawton et al. | Feb 1995 | A |
5447822 | Hull et al. | Sep 1995 | A |
5529473 | Lawton et al. | Jun 1996 | A |
5824252 | Miyajima | Oct 1998 | A |
6027682 | Almquist et al. | Feb 2000 | A |
6563207 | Shinma | May 2003 | B2 |
6652799 | Seng et al. | Nov 2003 | B2 |
Number | Date | Country |
---|---|---|
41 25 534 | Feb 1993 | DE |
93 19 405.6 | May 1994 | DE |
Number | Date | Country | |
---|---|---|---|
20070063389 A1 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10127997 | Apr 2002 | US |
Child | 11599885 | US |