The invention is more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, in which:
Like reference numerals refer to corresponding parts throughout the several views of the drawings.
Rather than record each trace stream independently, as done in the prior art, the current invention combines trace streams into one, common trace stream using a re-clocking scheme. The single stream inherently records items from all trace streams in the order in which they occurred so no post-processing alignment techniques are required. The invention utilizes synchronous dual-port memories (e.g., First-In-First-Out (FIFO) buffers) that are responsive to clock signals from a multiple clock domain and a local clock domain. Data writes to the memories are performed in accordance with the multiple clock domain signals, while data reads are performed using the local clock domain.
Similarly, a second processor 20_N generates second trace information in accordance with a second clock C_N The trace information is delivered to a trace formatter 22_N, which adds information to the trace information to identify the data source and clock domain. The trace formatter 22_N operates in response to the second clock C_N. The output of the trace formatter 22_N is applied to a synchronous dual-port FIFO 24. The synchronous dual-port FIFO 24 reads the trace information in accordance with the second clock C_N.
Control logic 26 coordinates the operation of each synchronous dual-port FIFO 24. When data is written to a synchronous dual-port FIFO 24, the dual-port FIFO 24 generates a non-empty signal, which is applied to the control logic 26. Preferably, the control logic 26 includes two sequential flip-flops to process the non-empty signal to insure signal stability.
If the multiple FIFOs do not have instructions (200—No), control proceeds to block 204. If the FIFOs are empty (204—No), control returns to block 200. Otherwise, if a single FIFO has instructions (204—Yes), the single FIFO is emptied 206 in accordance with the local clock C_L. Control then returns to block 200.
The control logic 26 may also be implemented to insert time stamps. In addition, the control logic 26 may be used to insert tag bits to indicate which stream the data originated from. This tag bit functionality may be used, for example, if the trace formatter 22 is omitted.
Returning to
The techniques of the invention are applicable to any trace environment. While the invention is disclosed in connection with processors, it should be understood that the reference to a processor includes logic and buses. Thus, for example, one processor may refer to a traditional processor, while another processor may refer to a bus. The techniques of the invention are scalable to any number of trace ports.
While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example, and not limitation. It will be apparent to persons skilled in the relevant computer arts that various changes in form and detail can be made therein without departing from the scope of the invention. For example, in addition to using hardware (e.g., within or coupled to a Central Processing Unit (“CPU”), microprocessor, microcontroller, digital signal processor, processor core, System on chip (“SOC”), or any other device), implementations may also be embodied in software (e.g., computer readable code, program code, and/or instructions disposed in any form, such as source, object or machine language) disposed, for example, in a computer usable (e.g., readable) medium configured to store the software. Such software can enable, for example, the function, fabrication, modeling, simulation, description and/or testing of the apparatus and methods described herein. For example, this can be accomplished through the use of general programming languages (e.g., C, C++), hardware description languages (HDL) including Verilog HDL, VHDL, and so on, or other available programs. Such software can be disposed in any known computer usable medium such as semiconductor, magnetic disk, or optical disc (e.g., CD-ROM, DVD-ROM, etc.). The software can also be disposed as a computer data signal embodied in a computer usable (e.g., readable) transmission medium (e.g., carrier wave or any other medium including digital, optical, or analog-based medium). Embodiments of the present invention may include methods of providing the apparatus described herein by providing software describing the apparatus and subsequently transmitting the software as a computer data signal over a communication network including the Internet and intranets.
It is understood that the apparatus and method described herein may be included in a semiconductor intellectual property core, such as a microprocessor core (e.g., embodied in HDL) and transformed to hardware in the production of integrated circuits. Additionally, the apparatus and methods described herein may be embodied as a combination of hardware and software. Thus, the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.