This application claims priority to an application filed in the Korean Industrial Property Office on Jan. 13, 2006 and assigned Serial No. 2006-004146, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to an apparatus and a method for transmitting/receiving a signal in a communication system, and more particularly to an apparatus and a method for transmitting/receiving a signal by using an Affine Permutation Matrix (APM)-Low Density Parity Check (LDPC) code, which is an improved structured LDPC code, in a communication system.
2. Description of the Related Art
Next-generation communication systems have evolved into the form of a packet service communication system for transmitting burst packet data to a plurality of Mobile Stations (MS), and the packet service communication system has been designed to be suitable for mass data transmission. Further, next-generation communication systems are actively considering using an LDPC code, together with a turbo code. The LDPC code is known to have an excellent performance gain at high-speed data transmission, and has an advantage in that it can enhance data transmission reliability by effectively correcting errors due to noise occurring in a transmission channel.
Reference will now be made to
Referring to
Next, reference will be made to
Referring to
Meanwhile, the LDPC code has performance approximating a channel capacity limit presented in Shannon's channel coding theorem. In order to generate an LDPC code having such good performance, a cycle and a density distribution on the Tanner graph of an LDPC code must be considered, and particularly consideration must be given to maximizing a girth on the Tanner graph. Here, “girth” denotes a minimum cycle length on the Tanner graph of a parity check matrix of the LDPC code. The reason why consideration must be given to maximizing the girth on the Tanner graph is that a cycle on the Tanner graph must be generally longer in order not to cause performance deterioration, such as an error floor, which occurs when there are many comparatively short-length cycles (for example, cycles having a length of 4), on the Tanner graph.
Thus, research is being conducted to provide schemes for generating a parity check matrix in such a manner so as not to produce short-length cycles on the Tanner graph, two typical ones of which are Scheme 1, in which short-length cycles are removed from a given random LDPC code, and Scheme 2, in which an LDPC code with no short-length cycle is algebraically generated. Scheme 2 is mainly used from these two schemes because the memory capacity required for storing parity check matrixes is large, and it is difficult to implement efficient LDPC encoding in the case of Scheme 1. Here, an LDPC code generated by applying Scheme 2 is called a structured LDPC code, and reference will now be made to a parity check matrix of a general structured LDPC code, with reference to
As illustrated in
Further, the permutation matrix corresponding to each block is referred to as a “block matrix”. In the case where the respective block matrixes within the parity check matrix are selected to only an identity matrix, if the location of a non-zero element in the first row of each block matrix is determined, then the locations of the remaining non-zero elements, that is, (L−1) number of elements, are determined. Thus, the memory capacity required for storing information on the overall parity check matrix is reduced to 1/L, as compared with that in the case where the locations of non-zero elements irregularly distributed in each block matrix are selected, that is, in the case where an LDPC code is generated by applying Scheme 1.
It can be noted from the foregoing that the structured LDPC code has improved performance by considering not only the memory capacity required for storing parity check matrix information, but also efficient encoding. However, the structured LDPC code which is currently proposed in the art has a drawback in that its cycle is affected by a parent matrix thereof, and an upper limit is restricted by several numerals related to its parent matrix irrespective of which code length and permutation matrixes are selected.
Accordingly, the present invention has been made to solve at least the above-mentioned problems occurring in the prior art, and an object of the present invention is to provide an apparatus and a method for transmitting/receiving a signal in a communication system.
A further object of the present invention is to provide an apparatus and a method for transmitting/receiving a signal using a structured LDPC code in a communication system.
A further object of the present invention is to provide an apparatus and a method for transmitting/receiving a signal using an APM-LDPC code, which is an improved structured LDPC code, in a communication system.
In order to accomplish these objects, the present invention generates an APM-LDPC codeword by encoding an information vector in an APM-LDPC encoding scheme, which is a preset structured LDPC encoding scheme, thereby making it possible to generate an LDPC code in the form of maximizing a girth while minimizing complexity.
The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the similar components are designated by similar reference numerals although they are illustrated in different drawings. Also, in the following description, a detailed description of known functions and configurations incorporated herein will be omitted when it may obscure the subject matter of the present invention. Further, it should be noted that only parts essential for understanding the operations according to the present invention will be described and a description of parts other than the essential parts will be omitted in order not to obscure the present invention.
The present invention provides an apparatus and a method for transmitting/receiving a signal in a communication system. Further, the present invention provides an apparatus and a method for transmitting/receiving a signal using an Affine Permutation Matrix (“APM”)-Low Density Parity Check (“LDPC”) code, which is an improved structured LDPC code, in a communication system. Further, although separately described and illustrated herein, it is clear that a procedure of transmitting a signal using the APM-LDPC code of the present invention may be applied to a signal transmission apparatus of a communication system, which has a structure as illustrated in
First, assume that ZL={0, 1, . . . , L−1} is an integer ring of modulo L, and Z*L={iεZL|gcd(i,L)=1}. Further, for aεZ*L and bεZL, an Affine function ƒ(a,b) on ZL, which is defined by ƒ(a,b)(x)=ax+b, can be considered. The Affine function ƒ(a,b) can also be extended to an L×L permutation matrix Pƒ
Hereinafter, for the convenience of explanation, the permutation matrix Pƒ
Consider an LDPC code C whose length is nL and which has a parity check matrix H as given in the following Equation (2):
In Equation (2), ƒij has a value of an Affine function related to (aij,bij)εZ*L×ZL for i and j or a value of ∞.
A structured LDPC code generated by applying the parity check matrix H including Affine permutation matrixes is referred to as an “APM-LDPC code”. Here, if the exponent aij of the Affine permutation matrix is equal to 1, pƒ
For the purpose of this discussion, several terms are defined below:
(1) Parent Matrix
An m×n binary matrix M(H) can be generated by substituting zero matrixes and Affine permutation matrixes, included in a parity check matrix as expressed by Equation (2), with 0 and 1, respectively, and the matrix generated in this way is referred to as a “parent matrix”.
(2) Function Matrix
A function matrix F(H) of the above-mentioned parity check matrix H may be defined by the following Equation (3):
(3) Function Extension
The parity check matrix H is generated by extending an m×n function matrix to an m×n matrix defined on PL, and such an extension procedure, expressed by H=EL(F), is referred to as a “function extension” procedure.
(4) Block Cycle and Overlap
If a cycle with a length of 2l exists on the Tanner graph of the parent matrix M(H), then such a cycle is referred to as a “2l-sized block cycle”. Further, if one Affine permutation matrix belongs to two or more block cycles, then this is referred to as an “overlap between block cycles”.
(5) Function Chain
If a 2l-sized block cycle corresponding to 2l number of Affine permutation matrixes Pƒ
(6) Connected Block Cycle
Reference will now be made to
As illustrated in
(7) Composition of Functions
Given ƒj, 1≦i≦s, a composition sequence can be defined by the following Equation (4):
In Equation (4), “∘” is a symbol indicating composition of functions. Here, ƒ∘g(x)=ƒ(g(x)). If ƒi=ƒ for all i, then this is abbreviated to ƒs(x), and ƒ1(x) is an inverse function of ƒ(x). For the convenience of explanation, an operation as given in the following Equation (5) is now defined:
(8) Characteristic Function of Function Chain
For a given function chain (ƒ1, . . . ,ƒ2l), its characteristic function z(x) is defined as
and if all ƒi(x) are Affine functions, then the characteristic function z(x) is also an Affine function.
Next, reference will be made to cycle properties of the APM-LDPC code.
Owing to the inherent structure of the APM-LDPC code's parity check matrix, the cycle properties of the APM-LDPC code can be algebraically analyzed with ease. Now, an upper limit for a girth of the APM-LDPC code will be detected, and the detected upper limit will be described in comparison with the upper limit of a QC-LDPC code. Here, the girth indicates a minimum cycle length on the Tanner graph of a parity check matrix.
First, Theorem 1, as will be described below, presents the necessary and sufficient condition under which the APM-LDPC code has a cycle.
Theorem 1
It is assumed that (ƒ1, . . . , ƒ2l) is a function chain which corresponds to a 2l-sized block cycle of an APM-LDPC code, and has a parity check matrix H and a characteristic function z(x). Further, let r be a minimum positive integer satisfying the following Equation (6):
zr(x0)≡x0 mod L (6)
In Equation (6), x0εZL, and thus the block cycle corresponds to a cycle which has a length of 2lr on the Tanner graph of the APM-LDPC code.
Further, when z(x)=ax+b for (a,b)εZ*L×ZL, zr(x)=arx+(ar−1+ . . . +a+1)b. Thus, a solution x0 satisfying zr(x0)=x0 exists, which is identical to gcd(ar−1,L)|(ar−1+ar−2+ . . . +a+1)b. When a=1, Equation (6) is under the same condition as rb≡0 mod L. Further, since the QC-LDPC code is an LDPC code having an Affine function in the form of ƒij(x)=x+bij, Theorem 2 can be defined as follows:
Theorem 2
It is assumed that (ƒ1, . . . , ƒ2l) is a function chain which corresponds to a 2l-sized block cycles of an QC-LDPC code and has ƒi(x)=x+bi, and that r is a minimum positive integer satisfying the following Equation (7):
Thus, the block cycle is a cycle which has a length of 2lr on the Tanner graph of the QC-LDPC code.
Using Theorems 1 and 2, cycles of the APM-LDPC code and the QC-LDPC code can be expressed by a simple equation, which makes it possible to remove short-length cycles on the Tanner graph. This will be described below.
First of all, it is assumed that matrixes, as given in the following Equation (8), exist:
In Equation (8), F1 and F2 are defined in A7, and F3 is defined in A8. Further, for the matrixes, each function chain corresponding to a 4-sized block cycle can be expressed by the following Equation (9):
F1:(2x+1,3x,4x,5x), F2:(2x+3,3x+1,x+1,4x+5), F3: (x,3x,3x,5x+1) (9)
Thus, each characteristic function corresponding to each of the function chains can be expressed by the following Equation (10):
z1(x)=x+6,z2(x)=6x+1,z3(x)=5x+1 (10)
In the case of z1(x) in Equation (10), the minimum positive integer satisfying Equation (6) is r=7, which indicates a cycle having a size of 4×7=28 on the Tanner graph H1=E7(F1). Further, in the case of z2(x) in Equation (10), the minimum positive integer satisfying Equation (6) for x=4 is r=1, and for the remaining x, the minimum positive integer satisfying Equation (6) is r=2, which indicates that one cycle with a size of 4 and three cycles with a size of 8 exist on the Tanner graph H2=E7(F2). Further, in the case z3(x) in Equation (10), the minimum positive integer satisfying Equation (6) is r=8, which indicates that one cycle with a size of 32 exists on the Tanner graph H3=E8(F3).
In addition, although the cycle structure of the QC-LDPC code is greatly affected by the parent matrix, the APM-LDPC code is less affected by the parent matrix when compared with the QC-LDPC code, which can be demonstrated using Theorem 3.
Theorem 3
It is assumed that p number of overlaps exist between a 2l-sized block cycle and a 2k-sized block cycle in an APM-LDPC code defined by an L×L Affine permutation matrix, and that function chains as given in the following Equation (11) correspond to the block cycles, respectively:
function chain 1: (ƒ1,ƒ2, . . . ,ƒp,ƒp+1,ƒ2l)
function chain 2: (g1,g2, . . . ,gp,gp+1, . . . ,g2k) (11)
In Equation (11), ƒi=gj for i=1, 2, . . . , p. Further, it is assumed that function chains 1 and 2 have characteristic functions of z1(x)=a1x+b1 and z2(x)=a2x+b2, respectively. Further, if it is assumed that r is a minimum positive integer satisfying r(b1−b2+a1b2−a2b1)≡0 mod L, the minimum cycle of the APM-LDPC code is 2r(2l+2k−p).
Irrespective of the size of the Affine permutation matrix, cycles caused by the overlaps between the block cycles may exist in the Tanner graph of the APM-LDPC code. Thus, if it is possible to remove as many block cycle overlaps as possible from a parent matrix, many short-length cycles in a corresponding parity check matrix can be avoided. However, even if there is no overlap between block cycles, the upper limit of a girth is restricted by numerals related to two connected block cycles.
Theorem 4
As illustrated in
function chain 1: (ƒ1,ƒ2, . . . ,ƒ2l)
function chain 2: (g1,g2, . . . ,g2k) (12)
Further, it is assumed that the connected blocks are (Ph
Further, let r be a minimum positive integer satisfying the following Equation (13):
r(a3b1(a4−1)−b4(a1−1)−b3(a1−1)(a4−1))≡0 mod L, when p≧1
r(b1−b2+a1b2−a2b1)≡0 mod L, when p=0 (13)
In this case, a girth of the corresponding APM-LDPC code is 4r(l+k+p).
Theorem 5
If it is assumed that for a prime number L, two different block cycles, whose sizes are 2l and 2k, respectively, are connected with each other by p number of blocks in a parity check matrix of an APM-LDPC code defined by an L×L Affine permutation matrix, a girth of the APM-LDPC code is 4(l+k+p).
As described above, the present invention has an advantage in that it is possible to transmit/receive a signal using an APM-LDPC code. Further, the present invention makes it possible to generate an APM-LDPC code corresponding to an LDPC code which maximizes a girth while minimizing complexity, thereby providing an APM-LDPC code with superior performance.
While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2006-0004146 | Jan 2006 | KR | national |
Number | Date | Country |
---|---|---|
WO 2004028074 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070204198 A1 | Aug 2007 | US |