This disclosure relates generally to an apparatus and method for trimming a print sheet and registering the location of an image on the print sheet. The print sheet may be used as a cover for a hard cover book.
A print sheet may include one or more images printed on a standard size paper sheet. When used to form a case for a hard cover book, the print sheet must be trimmed to fit the specific dimensions of the book. After it is trimmed, the print sheet may be glued or otherwise secured to a rigid front panel, rigid back panel and rigid spine to form a book case which forms the front cover, the spine, and the back cover of a book. A book block (i.e. the stack of bound pages in the book) may be secured to the book case to complete the fabrication of the book.
In mass production of hard cover books, there is a large volume of print sheets featuring identical images, and all of the print sheets are trimmed to the same size. A large volume of print sheets may be trimmed with an industrial guillotine configured to cut through a stack of sheets at some specific distance from the edge of the stack for the specific dimensions of the hard cover book. In some cases fiducials or corner cut marks are used to visually indicate the expected cut position to the guillotine operator.
When the size and/or location of the images printed on the print sheets within a stack vary, the industrial guillotine may be impractical, requiring reconfiguration for each variation in size and/or location of the image on the print sheet. Therefore, in smaller scale production, the print sheet may be cut by hand. However, cutting by hand is time consuming and may be inaccurate.
Some steps in the case-making process require registering the trimmed sheet and this registration is typically done by moving the sheet so one edge (perhaps the top edge) contacts a stop bar and then the sheet is slid along this stop bar until an adjacent sheet side edge contacts a side stop. This process provides complete sheet registration. However, if the print sheet is not accurately trimmed, the printed graphics on the sheet may not be properly positioned. Case-making is the process of adhering a cover sheet to one or more rigid panels and folding the cover sheet around the panel edges for a neat appearance. Typically the amount of material folded over is approximately ¾″. When the cover material is printed, proper registration of the printing to the panel may be more important than the amount of material folded over. Direct registration of the cover sheet printing to the rigid panels is most desirable in the case-making process. When this is not practical, accurate trimming of the print sheet is important.
In one embodiment, an apparatus for trimming a print sheet is provided. The apparatus includes a base configured to receive a print sheet, and a cutter coupled to the base, the cutter arranged to cut at least a portion of the print sheet. The apparatus also includes a sensor system arranged to detect a guide line on the print sheet to align the print sheet relative to the cutter. The sensor system includes a first sensor configured to emit a first light beam through the print sheet, and a second sensor configured to emit a second light beam through the print sheet, where the first light beam is spaced apart from the second light beam. The apparatus further includes a controller in communication with the sensor system and the cutter, where the controller is configured to detect the presence of the guide line through the first and second light beams to align the guide line on the print sheet relative to the cutter.
In another embodiment, an apparatus for trimming a print sheet is provided. The apparatus includes a base configured to receive a print sheet, and a plate coupled to the base, the plate spaced apart from the base such that the print sheet is receivable between the plate and the base. The apparatus also includes a first vacuum chamber extending through the plate, with a first float positioned within the first vacuum chamber. In a first configuration, a vacuum is drawn in the first chamber moving the first float within the first vacuum chamber in a direction away from the base such that a print sheet is moveably receivable between the plate and the base. In a second configuration, a positive pressure is created in the first chamber, the positive pressure moving the first float within the first vacuum chamber in a direction towards the base to contact a print sheet positioned between the plate and the base.
In yet another embodiment, a method of registering the location of an image on a print sheet is provided. The method including providing a print sheet, the print sheet having a guide line which defines (or is related to) an outer perimeter of an image on the print sheet, emitting a first light beam through the print sheet to produce a first output, and emitting a second light beam through the print sheet to produce a second output, wherein the first light beam is spaced apart from the second light beam. The method also includes transmitting a signal including the first and second outputs to a controller, and moving the print sheet relative to the first and second light beams. The method further includes detecting the presence of the guide line through the first and second light beams to register the location of the outer perimeter of an image on the print sheet.
In another embodiment, a method of trimming a print sheet is provided. The method includes providing a print sheet and providing a base and a spaced apart plate. The method also includes applying a vacuum through a first vacuum chamber in the plate, such that a float positioned within the first vacuum chamber moves within the first vacuum chamber in a direction away from the base such that the print sheet is moveably receivable between the plate and the base. The method further includes inserting the print sheet between the base and the plate, and creating a positive pressure within the first vacuum chamber, such that the float positioned within the first vacuum chamber moves within the first vacuum chamber in a direction towards the base to contact the print sheet.
In another embodiment, an apparatus for registering the location of an image on a print sheet is provided. The apparatus includes a base configured to receive a print sheet, and at least one wheel coupled to the base, the at least one wheel arranged to move the print sheet relative to the base. The apparatus also includes a sensor system arranged to detect a guide line on the print sheet which defines an outer perimeter of an image on the print sheet. The sensor system includes a first sensor configured to emit a first light beam through the print sheet, and a second sensor configured to emit a second light beam through the print sheet, where the first light beam is spaced apart from the second light beam. The apparatus also includes a controller in communication with the sensor system and the wheel, where the controller is configured to move the print sheet relative to the base, and to detect the presence of the guide line through the first and second light beams to register the location of the outer perimeter of an image on the print sheet.
In yet another embodiment, an apparatus for trimming a print sheet is provided. The apparatus includes a base configured to receive a print sheet, and a plate coupled to the base, the plate spaced apart from the base such that the print sheet is receivable between the plate and the base. A first chamber extends through the plate and a first float is positioned within the first chamber. In a first configuration, the first float is positioned within the first chamber in a location away from the base such that a print sheet is moveably receivable between the plate and the base, and in a second configuration, a pressure is created in the first chamber, the pressure moving the first float within the first chamber in a direction towards the base to contact a print sheet positioned between the plate and the base.
In another embodiment, a print sheet for use in the manufacturing of a book is provided. The print sheet includes a paper sheet, the paper sheet having a sheet opacity, and at least one image printed on the paper sheet. The print sheet also includes a guide line printed about at least two edges of the image, the guide line having a guide line opacity which is greater than the sheet opacity, such that a sensor including a light beam can detect the guide line to determine the location of the perimeter of the image on the print sheet.
Accuracy when trimming a print sheet is critical. Small errors associated with trimming a print sheet may cause the images on the print sheet to be off-center when coupled to a hard cover book. An error in trimming a print sheet may cut off a portion of the image, and/or may otherwise cause the print sheet to not fit properly around the hard cover book.
An industrial guillotine may be used to trim a large volume of print sheets when the images on the print sheet are identical, when the position of the images on the print sheet are all the same, and when the dimensions of the hard cover book are the same. However, when any of the above variables change, the use of an industrial guillotine becomes impractical, because the apparatus must be reconfigured for each change in the print sheet.
The rise of the digital printing press has led to a growing requirement to print books on demand. Accordingly, much of the book production process has been modified to accommodate smaller production run sizes. One prior approach to trimming a print sheet includes sensing the location and/or position of an image on a print sheet with expensive cameras and extensive programming which only work when the printed image on the print sheet is positioned to face the camera, and requires frequent adjustment of the camera for variations in sheet surface (glossy, matte, texture, nylon, polyester, no film, aqueous UV coating). Another prior approach to trimming a print sheet includes sensing the location and/or position of an image on a print sheet with retro-reflective sensors, but this also requires adjustment for variations in the type of sheet surfaces, ambient lighting, and for small variations in the distance from the sensor (due to sheet curl).
Print sheets are often film laminated with a nylon or polyester material before the trimming process. The laminated print sheets can be made with a gloss, matte, and/or textured finish. Film laminated print sheets tend to curl, typically curling parallel to the grain of the print paper and typically the curl is towards the film. Moisture absorption may cause the print sheet to extend (cross grain) and because the film does not equally expand, the film laminate sheet may curl.
The inventor of the present application recognized a need for an apparatus for trimming a paper sheet which can accurately trim paper sheets to different dimensions based upon the size and/or location of the images on the print sheet. The inventor also recognized that the prior approaches mentioned above both require the print sheet to be oriented with the printed image facing towards the camera/sensor. The inventor recognized that due to paper curl, feeding and manipulating the print sheets may sometimes work better with the printed image facing up and other times may work better with the printed image facing down. Accordingly, the inventor recognized a need for an apparatus which trims a print sheet where the printed image on the print sheet can be oriented either facing up or facing down.
Printed fiducials or cut marks are commonly used for trimming print sheets. These marks are typically located at the intended corners of trimmed sheet. The marks are typically an “L” shape where two short lines (typically less than 1″) meet at 90 degrees and the intersection of these lines indicate the intended cut position. These marks are typically used by industrial guillotine operators for visual alignment with the knife.
The inventor recognized that these cut marks have several deficiencies. First, it is assumed each pair of marks (indicating a cut position) will be parallel to the edge of the print sheet. Normal operation of a guillotine requires pushing a stack of sheets against a backstop, then moving the backstop (pushing the stack) toward the knife until the marks align with the knife. If the printed image (and cut marks) is not square with the sheet edges (perhaps the sheet itself is not square) there is no provision for this angular inaccuracy. Second, cut marks have thickness and the exact cut position relative to the mark is determined visually and is subjective. Also, graphics printed on a print sheet are often (but not always) center justified (center of graphics is at center of print sheet). Each cut mark must be identified in two axes. They must be recognized within an area, not just along a line. This means an automated process where print sheets are transported along one direction cannot use fixed position sensors to reliably locate the cut marks. Cut marks (and any fiducial) can be located using cameras and vision systems capable of scanning an area however vision systems are expensive and complex. They must be programmed to recognize the specific fiducial and ignore all else. They may require specific lighting and may require recalibration for different surface material or textures. Finally, describing and communicating to graphic designers and/or programmers the exact requirements for printed fiducials to be recognized by automated equipment utilizing vision systems may be difficult and error prone.
A simple solution that addresses all of the deficiencies stated above is to print a line of constant thickness (for example, in one embodiment, a line approximately 0.080″ thick) around the perimeter of the graphics. Each of these line segments may be recognized and utilized as a cut line. It is recognized that graphics may be printed as corner justified (one corner of graphics is located at one corner of the print sheet) and only require two cuts and therefore require only two cut lines. Use of a printed cut line allows the print sheet to be transported along one direction and a printed cut line to be recognized by one or more fixed position through beam sensors which are capable of distinguishing the change in opacity between the unprinted sheet and the printed line. The greatest differential in opacity may be desirable so in one embodiment, the cut line (guide line) is printed black. The content of the printed graphics is unknown and may abut the cut line. The content of the graphics (printed image) does not matter since the sensor recognizes the transition from low opacity (unprinted sheet) to high opacity (printed line) which is the outer edge of the line. Once the outer edge of the line is recognized, the sheet may be moved some programmable offset distance for proper cut positioning. The outer edge of the cut line is detected while the cut may be made at the inside edge of the line. It is recognized that the cut line need not be continuous. In one embodiment, the cut line (guide line) extends over a majority of a length and/or width of the printed image. The line is unnecessary except where it may be recognized by the sensor, but for simplicity of explanation and more flexibility and reliability in operation it may be best to print a continuous line along each edge of the graphics where a cut is to be made. Two sensors spaced apart some distance less than the minimum anticipated length of a printed cut line would allow a printed line to be aligned with a cutter.
As set forth in greater detail below, one aspect of the present invention is directed to an apparatus for trimming a print sheet that includes a sensor system arranged to detect a guide line on the print sheet to align the print sheet relative to a cutter. The guide line may be positioned around an image on the print sheet. The apparatus may be configured to move the print sheet to align the print sheet with the cutter such that the cutter removes substantially all, or at least a portion of, the guide line when trimming the print sheet. As discussed below, it is contemplated that the sensor system is aligned with the cutter such that once the sensor system detects a guide line, the print sheet is in position to be trimmed by the cutter. It is also contemplated that the sensor system is offset from the cutter, such that once the sensor system detects a guide line, the print sheet must be moved a programmed offset distance to align the guide line with the cutter. As set forth below, the sensor system may emit first and second light beams through the print sheet, and the apparatus may further include a controller configured to detect the presence of the guide line through the light beams to align the guide line on the print sheet relative to the cutter.
Another aspect of the present invention outlined below is directed to an apparatus for trimming a print sheet with a positioning mechanism which features a vacuum chamber. As discussed below, by adjusting the pressure within the vacuum chamber the positioning mechanism can move between an open position configured to receive a print sheet and a closed position in which the mechanism contacts the print sheet. As discussed below, this contact with the print sheet may create friction between the print sheet and the wheels used to move the print sheet. The apparatus may be configured such that the pressure within the vacuum chamber is variable between a vacuum being applied in a first direction and a positive pressure applied in the opposite direction. As described in more detail below, the vacuum chamber may extend through a plate, with a float positioned within the vacuum chamber. As shown in the figures, in one embodiment, the float is configured as a ball. In a first configuration, a vacuum is drawn in the chamber moving the float within the vacuum chamber away from the base such that a print sheet is moveably receivable between the plate and the base. In a second configuration, a positive pressure is created in the chamber moving the float within the vacuum chamber in a direction towards the base to contact a print sheet positioned between the plate and the base.
Another aspect of the present invention outlined below, is directed to an apparatus for registering the location of an image on a print sheet where the apparatus includes a sensor system arranged to detect a guide line on the print sheet which defines an outer perimeter of an image on the print sheet. The apparatus includes at least one wheel arranged to move the print sheet, and a controller configured to move the print sheet and detect the presence of the guide line through the first and second light beams to register the location of the outer perimeter of an image on the print sheet. Once the location of the outer perimeter of an image on a print sheet is registered, downstream manufacturing steps, including, but not limited to trimming the print sheet, aligning the print sheet relative to a rigid front panel, rigid back panel and rigid spine, folding an edge of the print sheet, and/or gluing the print sheet to a rigid panel or spine, can be performed with greater accuracy.
One illustrative embodiment of the present invention includes an apparatus for trimming a print sheet which includes all of the above mentioned features: a sensor system arranged to detect a guide line on the print sheet to align the print sheet relative to a cutter, a positioning mechanism which features a vacuum chamber, and a sensor system configured for registering the location of an image on a print sheet. However, it should be appreciated that other embodiments of the present invention are directed to an apparatus which includes only one or two of these features, as the invention is not so limited. For example, in one embodiment, the apparatus only includes the first sensor system, in another embodiment, the apparatus only includes the positioning mechanism, and in another embodiment, the apparatus may only include the sensor system configured for registering the location of an image on a print sheet, as the invention is not so limited.
Turning to
As shown in
As mentioned above, aspects of the present invention are directed to an apparatus for trimming a print sheet that includes a sensor system arranged to detect a guide line on the print sheet to align the print sheet relative to a cutter. As shown in
As shown in
The inventor of the present application recognized that by emitting a light beam through the translucent (at a specific range of wavelengths) print sheet, information about the location of the print sheet relative to the cutter can be obtained. For example, in one embodiment, the sensors 200a, 200b are analog output sensors which are configured for “through beam” operation with a sensor emitter (
In one particular embodiment, the sensor system utilizes a visible red light beam having a wavelength of approximately 680 nm. In another embodiment, a light beam having a different wavelength may be used. In one embodiment, the sensor system may include an infrared light beam.
As shown in
As shown in the embodiment illustrated in
As shown, in one embodiment, the second sensor 200b is configured to emit a second light beam through the print sheet 302. As shown in
The first and second light beams which pass through the fiber optic cables 202a, 202b may be oriented such that if the guide line 304 is substantially parallel to the edge of the print sheet, the first and second light beams may detect the guide line at substantially the same time. However, if the guide line is positioned differently, the apparatus may be configured to rotate the print sheet 302 once the first light beam detects the guide line until the second light beam also detects the guide line. This approach may help to ensure that the guide line is properly aligned relative to the cutter.
Although one of ordinary skill in the art will appreciate that a variety of types of known sensors may be implemented, in one particular embodiment, the sensors 200a, 200b are both Banner Model D10UNFP, available from Banner Engineering from Minneapolis, Minn. This type of sensor can be a dual output type, and can be used as analog output sensors with a voltage signal ranging from 0-10V DC. It is also contemplated that an analog current signal may be used. In one embodiment, dual digital output sensors may be used, and in one particular embodiment, single analog output sensors may be implemented.
One of ordinary skill in the art will also appreciate that a variety of types of controllers may also be utilized, but in one particular embodiment, the controller 220 is a Galil model DMC 4080 motion controller, available from Galil, Rocklin, Calif. The operating program may be written to scan the analog inputs using preset thresholds and it can be determined when there is nothing but air between the sensor emitter and the sensor receiver, when there is a white print sheet between the sensor emitter and the sensor receiver, and when there is a darkened guide line positioned between the sensor emitter and the sensor receiver. In one particular embodiment, the preset thresholds may be set at 6.0 V DC for detecting the white print sheet and 2.0 V DC for detecting the darkened guide line. Although most print sheets are white, the methods and apparatus described herein can operate with any color print sheet provided that the sensors can recognize the opacity difference between the print sheet and the guide line.
In one embodiment, the guide line may be a substantially black line on the print sheet. One of ordinary skill in the art would recognize that other darkened color shades may be used for the guide line and that the color of the guide line must differ from the color of the print sheet so that when a light beam of the sensor system passes through the guide line that the controller can detect the presence of the guide line on the print sheet.
As shown in
As shown in
The above described sensor system has been described with respect to aligning the guide line on the print sheet relative to a cutter. It is also contemplated that this above-described sensor system may be utilized for other aligning steps during the book making process, such as but not limited to, aligning an adhesive to the print sheet and/or hard cover book to secure the print sheet to the book and/or aligning the print sheet about a fold line to fold the print sheet about the cover, and/or aligning print sheets for processing within automated book case making machinery. For example, after the print sheet is trimmed, a controller may be configured to dispense an adhesive along a guide line positioned on the print sheet. Furthermore, a controller may be configured to fold the print sheet along a guide line positioned on the print sheet.
Accordingly, in one embodiment, an apparatus for registering the location of an image on a print sheet is provided. In one embodiment, this apparatus may not include a cutter. The apparatus includes a base configured to receive a print sheet, and at least one wheel arranged to move the print sheet relative to the base. The apparatus also includes a sensor system arranged to detect a guide line on the print sheet which defines an outer perimeter of an image on the print sheet. The sensor system may be substantially similar to the one described above and shown in
Turning back to
As mentioned above, aspects of the present invention are directed to an apparatus for trimming a print sheet with a print sheet positioning mechanism which features a vacuum chamber. As discussed below, by adjusting the pressure within the vacuum chamber the positioning mechanism can move between an open position configured to receive a print sheet and a closed position in which the mechanism contacts the print sheet. In one embodiment, this positioning mechanism may be utilized while trimming the print sheet to engage the print sheet with drive wheels used to move the print sheet into a desired position. It is also contemplated that this below-described positioning mechanism may be utilized for other steps during the book making process, such as but not limited to gluing an adhesive to the print sheet and/or hard cover book to secure the print sheet to the book, and/or folding the print sheet.
As shown in
The vacuum and the positive pressure may be drawn into the vacuum chambers 162 through two bores 152 (see
In one illustrative embodiment, the plate 160 is positioned above the base 120, such that a vacuum lifts the floats 170 up and out of engagement with the print sheet 302 and a positive pressure lowers the floats 170 to clamp down the print sheet. It is also contemplated that the plate 160 and base 120 may be configured differently, for example, flipping the assembly over, such that a pressure causes the float 170 to engage the print sheet and gravity disengages it. For example, in one embodiment, gravity may move the first float within the first chamber in a direction away from the base such that a print sheet is moveably receivable between the plate and the base. It is also contemplated that the floats could be replaced with steel balls or plastic coated steel balls that could be positioned magnetically, as the invention is not so limited.
In one illustrative embodiment shown in
The inventor recognized that using the air pressure over the floats 170 instead of using a weighted ball without air pressure may have at least two benefits. First, it adds very little moving mass to the apparatus. Second, it is easily adjustable for various types of print sheets. Furthermore, the illustrated embodiment includes two spaced apart vacuum chamber 162 and associated floats 170. It is contemplated that an apparatus could employ only one vacuum chamber 162 and float 170, as the invention is not so limited. However, it may be desirable to have a plurality of vacuum chambers 162 and floats 170 to prevent undesirably movement of the print sheet during the trimming process.
In one illustrative embodiment shown in
According to one embodiment, air cylinders 164 are provided to selectively lower the plate 160 towards the base 120 to clamp the print sheet into position before trimming the print sheet. When a print sheet 302 is being fed into the apparatus or when the print sheet is being manipulated into position, the distance between the plate 160 and the base 120 may be approximately 0.06 inches, allowing the print sheet 302 to move freely. When the guide lines of the print sheet 302 have been aligned relative to the cutter 130 and the print sheet is ready to be trimmed, the air cylinders 164 may be actuated to cause the plate 160 to move down towards the base 120 to clamp the print sheet 302 in position during the cut.
As mentioned above, the present invention also contemplates a method of registering the location of an image on a print sheet. The method includes providing a print sheet 302, the print sheet having a guide line 304. The method further includes emitting a first light beam through the print sheet 302 to produce a first output, and emitting a second light beam through the print sheet 302 to produce a second output, where the first light beam is spaced apart from the second light beam. The print sheet is moved relative to the first and second light beams, and a signal including the first and second outputs is transmitted to a controller to detect the presence of the guide line through the first and second light beams to register the location of the outer perimeter of an image on the print sheet. As mentioned above, in one embodiment, the first and second outputs are analog voltage outputs. Other types of outputs, including but not limited to current outputs are also contemplated as the invention is not limited in this respect. Additionally sensors having multiple digital outputs may be used.
In one embodiment, the method further includes moving the print sheet 302 based upon the first and second outputs to align the guide line 304 on the print sheet 302 relative to a cutter 130. Once the guide line 304 is aligned relative to the first and second light beams, the controller 220 may activate the cutter 130 to cut at least a portion 306 of the print sheet 302.
In one embodiment, once the guide line 304 is aligned with the light beams, the print sheet 302 may be moved a programmed offset distance to align the guide line with the cutter 130 such that the cutter is configured to remove the guide line 304 from the print sheet 302. This programmed offset distance may be substantially equal to the distance that the sensor fiber optic cables 202a, 202b (and associated light beams) are offset from the cutter 130. Thereafter, the controller 220 may activate the cutter 130 to cut at least a portion of the print sheet.
In one embodiment, the method further includes detecting an edge of the print sheet to calculate the distance between the guide line 304 and the edge of the print sheet 302. As mentioned above, the sensor system may be programmed to produce a first output (which may indicate a change in voltage and/or current) when the light beam detects the print sheet, and a second output when the light beam detects the guide line. The controller can calculate the distance between the guide line and the edge by determining the rotation of the wheels to advance the print sheet between the two positions. One of ordinary skill in the art would appreciate that the controller can be programmed to obtain the edge location of both the print sheet and the guide line.
In one embodiment, a stack 300 of print sheets having common dimensions is loaded onto the lift table 110 and the operator may enter the sheet length and width dimensions into the operating system. These dimensions may be used to re-center the print sheet after each cut. By using the pre-trim sheet dimensions and recognizing and recording the sheet edge position and tracking the distance traveled from that position to the guide line and the cut position, the dimension of the remainder of the sheet (perpendicular to the knife) is known, and the remainder of the sheet can be driven and stopped so that the centerline of the sheet is between the two drive wheels. Once centered, the wheels can be driven in opposite directions to cause the sheet to rotate. The wheels may be driven a programmable number of degrees to cause either a substantially 90 degree or a substantially 180 degree rotation of the sheet. The rotation accuracy (+/−5 degrees) may not be critical as the sensors may realign the sheet for accurate cutting.
In another embodiment, a third sensor may be added to the apparatus spaced apart from the fiber optic cables 202a, 202b (and associated light beams) on the side opposite the drive wheel. In one embodiment, the third sensor may be positioned along the cap plate 150 with its associated fiber optic cables extending through the cap plate 150 (similar to the configuration of the fiber optic cables associated with the first and second sensors). As illustrated in the top view shown in
In yet another embodiment, to gain dimensional data, one could drive the first edge of the print sheet to the first sensor, and then drive the sheet a known distance further (for example, 6 inches), stop and rotate the print sheet approximately 180 degrees, and then drive the sheet backward until the sensor identifies the other (opposite) sheet edge.
In one embodiment, the method of trimming a print sheet involves cutting the print sheet and thereafter using the sensors to determine whether the guide line was completely removed from the print sheet. The sensors may emit first and second light beams and a signal may be transmitted to the controller to determine whether either the print sheet or the guide line is present. If the apparatus detects that at least a portion of the print sheet or guide line remains, the cutter may re-cut at least a portion of the print sheet. In one embodiment all or a portion of the guide line may remain after the cut, as the invention is not so limited.
As mentioned above, in one embodiment, the cutter 130 is a circular knife configured to move along the shear bar 140. In one embodiment, the circular knife may be positioned substantially parallel to the shear bar 140 configured to travel substantially parallel to the shear bar. In another embodiment, the circular knife may be configured to rock so that in either travel direction, the leading edge is in contact with the shear bar. Setting the knife can be difficult. When a knife is not properly set, the knife and shear bar assembly may cut better in one direction and less reliable in the opposite direction. In a less reliable cut, the circular knife may ride up over the print sheet while folding it along the shear bar, or the circular knife makes a partial cut before riding up and onto the sheet.
Accordingly, in one embodiment, after each cut, the sensors checks for the presence of material (checking for either white print sheet or darkened guide line). It may be desirable for the sensors to detect no material present after a complete cut. In one embodiment, after each cut, the wheels may drive the sheet backward, away from the knife to allow the sensors to check for the presence of material. In one embodiment, the wheels drive the sheet backwards approximately 0.5 inches which may be approximately equal to or greater than the programmed offset distance.
If the controller detects the presence of material (either guide line or white print sheet), the wheels may drive the sheet back to the cut position to initiate a re-cut. In one embodiment, the circular knife is positioned at a first end of the shear bar 140 before the first cut, and the knife is positioned at the second opposite end of the shear bar before the re-cut. Therefore, the knife may move in a second opposite direction for the re-cut. As mentioned above, the circular knife may cut better in one direction than the second opposite direction. Accordingly, this movement of the knife in the opposite direction for the re-cut may be more effective for cutting. After the re-cut, the wheels may again drive the print sheet back and the cut may be checked.
In one embodiment, when an incomplete cut is detected, the travel direction of the circular knife is recorded and reported at a machine control station. This information may be helpful to the machine operator to determine which direction the circular knife should be adjusted to be more parallel to the shear bar.
As shown in
As mentioned above, after a print sheet has been trimmed, it may be glued or otherwise secured to rigid panels and a spine. It is also contemplated that the print sheet may be configured as a dust jacket which is folded around (but not glued to) a hard cover book.
As mentioned above, the present invention also contemplates a method of trimming a print sheet which involves positioning the print sheet. The method includes, providing a print sheet and providing a base and a spaced apart plate. A vacuum is applied through first and second vacuum chambers in the plate, such that floats positioned within the vacuum chambers move within the chamber in a direction away from the base such that the print sheet is moveably receivable between the plate and the base. The print sheet is inserted between the base and the plate, and a positive pressure is then created within the first and second vacuum chambers, such that the floats positioned within the chambers move within the chambers in a direction towards the base to contact the print sheet positioned between the plate the base, which may engage the print sheet to the drive wheels.
The method may include moving at least a portion of the print sheet once the print sheet is positioned between the plate and the base. Thereafter, the above-described air cylinders may be used to clamp the print sheet between the plate and the base and then the print sheet may be cut. After cutting, the plate 160 may be elevated away from the print sheet so that the print sheet can then be moved relative to the base. Once a first portion of the print sheet is cut, the print sheet may be re-centered and rotated approximately 90 degrees relative to the base, registered and thereafter, the steps of clamping the print sheet and then cutting at least a portion of the print sheet may be repeated.
As shown in
The following illustrates a series of exemplary steps which may be performed with a trimming apparatus according to the present invention:
1. Initial state: lift table down, clamp assembly up, waste diverter up, vacuum over floats.
2. The print sheet pile lift table is raised and the feeder vacuum cups grab the top print sheet.
3. The print sheet is carried forward so the leading edge engages left and right drive wheels.
4. Vacuum cups release sheet, vacuum over floats turned off, positive pressure over floats turned on.
5. Both wheels drive sheet toward sensors.
6. Each sensor recognizes the sheet edge and controller records the edge position.
7. Each wheel continues to drive the sheet, moving the printed black guide line toward the sensors.
8. Each wheel stops, independent of the other, when the associated sensor recognizes the black guide line.
9. Each wheel moves a programmable “offset” distance to compensate for distance between the sensors and the knife.
10. The amount of material to be cut away is calculated and recorded in the controller so the centerline position of remainder can be calculated.
11. The clamp assembly lowers onto the sheet and the circular knife traverses the shear bar trimming the waste material from the sheet (
12. The print sheet is driven so the calculated center of the remainder material is centered over the drive wheels.
13. The sheet is rotated ¼ turn by driving wheels in opposite directions a programmable amount.
14. The sheet is driven backwards to locate and record the sheet edge position nearest the knife.
15. The sheet is driven forward—each wheel stops when associated sensor recognizes the guide line.
16. Each wheel moves a programmable “offset” distance to compensate for distance between the sensors and the knife.
17. The amount of material to be cut away is calculated and recorded in the controller so the centerline position of remainder can be calculated.
18. The clamp assembly lowers onto the sheet and the circular knife traverses the shear bar trimming the waste material from the sheet (
19. The print sheet is driven so the calculated center of the remainder material is centered over the drive wheels.
20. The sheet is rotated ¼ turn by driving wheels in opposite directions a programmable amount (
21. The sheet is driven backwards to locate and record the sheet edge position nearest the knife.
22. The sheet is driven forward—each wheel stops when associated sensor recognizes the guide line.
23. Each wheel moves a programmable “offset” distance to compensate for distance between the sensors and the knife.
24. The amount of material to be cut away is calculated and recorded in the controller so the centerline position of remainder can be calculated.
25. The clamp assembly lowers onto the sheet and the circular knife traverses the shear bar trimming the waste material from the sheet.
26. The print sheet is driven so the calculated center of the remainder material is centered over the drive wheels.
27. The sheet is rotated ¼ turn by driving wheels in opposite directions a programmable amount.
28. The sheet is driven backwards to locate and record the sheet edge position nearest the knife.
29. The sheet is driven forward—each wheel stops when associated sensor recognizes the guide line.
30. Each wheel moves a programmable “offset” distance to compensate for distance between the sensors and the knife.
31. The clamp assembly lowers onto the sheet and the circular knife traverses the shear bar trimming the waste material from the sheet.
32. The diverter gate is lowered (
33. Both wheels drive the trimmed sheet out of the machine, across the diverter gate, and onto the outfeed table.
34. Lift diverter gate.
The foregoing detailed description has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the particular disclosed embodiments. Numerous variations and configurations will be apparent in light of this disclosure. Thus its intended that the scope of the invention be defined not be this detailed description, but rather by the claims appended hereto.
This application claims the benefit of U.S. Provisional Application No. 62/323,366, filed Apr. 15, 2016, and U.S. Provisional Application No. 62/343,474, filed May 31, 2016, both of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6354502 | Hagstrom | Mar 2002 | B1 |
7077120 | Funakoshi | Jul 2006 | B2 |
7249903 | Shaw, III | Jul 2007 | B2 |
8870363 | Ipponyari | Oct 2014 | B2 |
9039313 | Tsunoda | May 2015 | B2 |
Number | Date | Country | |
---|---|---|---|
20170297352 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62323366 | Apr 2016 | US | |
62343474 | May 2016 | US |