The present disclosure relates to a valve cartridge extraction tool and, more specifically, to a valve including the valve cartridge extraction tool.
Backflow prevention valves are used to protect against back-siphonage into a potable water supply in a wide variety of applications such as in industrial plants, laboratories, laundries, swimming pools, lawn sprinkler systems and the like. During servicing, inspection or testing, internal components, such as a check valve cartridge, of the valve may need to be replaced. However, the internal components may be difficult to remove by hand. There is, therefore, a need for a solution to easily remove internal components from an installed valve.
In view of the above, an apparatus and method to remove the cartridge from a valve with relative ease and without the need for additional tools is disclosed herein. In one aspect of the present disclosure, a removal tool is a component of the valve and can be used to facilitate the relatively easy removal of the cartridge without the need for any additional tools.
One aspect of the present disclosure presents a valve assembly comprising a valve member body with an opening defined through the valve member body, a cartridge configured to fit into the valve member body through the opening, and an extraction tool with one or more pins defined on an upper surface, the tool configured to couple the cartridge to the valve member body and wherein the pins are configured to engage the cartridge to aid in coupling and decoupling the cartridge and the body.
Another aspect of the present disclosure presents a water control device comprising a member body defining a flow path extending between an inlet and an outlet, a port defined in the member body and extending into the flow path, a component lodged in the port, and an extraction tool removably secured to the member body to retain the component in the port, the tool including one or more pins, each pin having a free distal end configured to interact with the component. The extraction tool can be unsecured from the member body and the one or more pins then used to dislodge the component from the port.
Another aspect of the present disclosure includes an extraction tool comprising a hollow cylindrical body having an upper surface, a cylindrical outer sidewall, and an inner surface, one or more pins perpendicularly disposed on the upper surface of the body, each pin having a free distal end configured to interact with a cartridge, and one or more outward protrusions extending from the cylindrical outer sidewall, wherein each protrusion corresponds to a respective pin.
A further aspect of the present disclosure presents a method of removing a valve cartridge from a valve assembly, wherein the valve assembly comprises a valve member body with an opening, the valve cartridge disposed in the opening, a valve cartridge extraction tool, comprising one or more pins defined on an upper surface of the tool, and coupled to the valve member body to maintain the cartridge in the opening. The method of removing the valve cartridge from the valve assembly comprises uncoupling the tool from the valve member body, coupling the one or more pins to the cartridge, rotating the cartridge with the extraction tool to uncouple the cartridge from the valve member body, and removing the uncoupled cartridge.
Various aspects of the present disclosure are discussed herein with reference to the accompanying Figures. It will be appreciated that, for simplicity and clarity of illustration, elements shown in the drawings have not necessarily been drawn accurately or to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity or several physical components may be included in one functional block or element. Further, where considered appropriate, reference numerals may be repeated among the drawings to indicate corresponding or analogous elements. For purposes of clarity, however, not every component may be labeled in every drawing. The Figures are provided for the purposes of illustration and explanation and are not intended as a definition of the limits of the disclosure.
Aspects of the present disclosure overcome many of the known problems associated with cartridge removal in a valve assembly. These advantages, and other features of the technology disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain exemplary embodiments taken in combination with the drawings. It should be noted that directional indications such as vertical, horizontal, upward, downward, right, left, top, bottom and the like, are used with respect to the figures and not meant in a limiting manner.
Referring now to
Referring also to
The cartridge 300 is inserted into the cartridge loading port 202. Although not specifically shown, the cartridge 300 contains a valve member which allows water flow in only a single direction, similar to a cartridge shown and described in U.S. Pat. No. 9,546,475. The cartridge 300 resides in a flow path of the valve member body 200 and allows water to flow from an inlet 201 of the valve member body 200 through the flow path to an outlet 203 but does not allow reverse flow. O-rings or other seals are provided between the cartridge 300 and the body 200 to provide a fluid tight seal. Because of the O-rings, the cartridge 300 fits tightly within the body 200 such that insertion and removal is aided by the VCE tool 400.
The VCE tool 400 is placed over the cartridge 300 and is coupled, e.g., screwed down onto the valve member body 200, restraining the cartridge 300 in the valve member body 200. The hood 500 is then coupled onto the VCE tool 400 resulting in the fully assembled valve assembly 100 as shown in
Referring now to
Referring now to
As shown in
In the exemplary embodiment shown, the valve assembly 100 includes a hood 500 that is secured to and covers the VCE tool 400. However, it should be understood that a hood is not required in all applications, as the valve assembly, or other types of water control devices, may need not include the hood on the VCE tool 400.
Referring now to
In accordance with an aspect of the present disclosure, the hood 500 is placed over the VCE tool 400 such that the outward protrusions 412 of the VCE tool 400 are positioned to enter the corresponding outward protrusion entry points 516. For installation of the hood 500 onto the valve assembly 100, the hood 500 is rotated, e.g., counter clockwise, such that the outward protrusions 412 of the VCE tool 400 move along the capture tracks 518 and travel up along inclines 510 of the ramps 508 until the outward protrusions 412 of the VCE tool 400 rest in respective protrusion seats 512 of the ramps 508. Further travel of an outward protrusion 412 past the protrusion seat 512 is stopped by the vertical stop 514 of the ramp 508, thereby locking the hood 500 in place over the VCE tool 400.
When the outward protrusions 412 of the VCE tool 400 rest in respective protrusion seats 512 of the ramps 508, the hood 500 is maintained in tension against the VCE tool 400 such that a force is required to rotate the hood 500 in an opposite direction to back the protrusions 412 out of the seats 512. In one exemplary embodiment, the hood 500 can be rotated and removed from the VCE tool 400 by hand.
For the removal of the hood 500 from the valve assembly 100, the hood 500 is rotated in the opposite direction as compared to installation, e.g., clockwise, such that the outward protrusions 412 are displaced from the protrusion seats 512 and moved down the inclines 510 of the ramps 508. Once the protrusions 412 have travelled down the inclines 510 of the ramps 508, the hood 500 can be removed.
In one aspect of the present disclosure, a method of removing the cartridge 300 is provided. Referring now to
In another embodiment of the present disclosure, the VCE tool 400 has a closed upper surface in that it does not comprise the opening 402 defined on the upper surface 404. In this instance, the cylindrical outer sidewalls 414 of the VCE tool 400 are elongated to accommodate other components, e.g., the bonnet 302 of the cartridge 300.
Advantageously, the VCE tool provides additional torque and leverage in the installation/removal of the cartridge from the valve member body when compared to “finger-strength” installation/removal of the cartridge. The VCE tool being a part of the valve assembly eliminates the need for a separate tool for cartridge removal. Additionally, having a single part with two functions reduces the costs associated with servicing the system.
It should be appreciated that aspects of the subject technology can be implemented and utilized in numerous ways including, without limitation, as an apparatus, a system, a device, and a method for applications now known and later developed. Further, the functions of several elements may, in alternative embodiments, be carried out by fewer elements, or a single element. Similarly, in some embodiments, any functional element may perform fewer, or different, operations than those described with respect to the illustrated embodiment. Also, functional elements shown as distinct for purposes of illustration may be incorporated within other functional elements in a particular implementation.
While the subject technology has been described with respect to various embodiments, those skilled in the art will readily appreciate that various changes and/or modifications can be made to the subject technology without departing from the scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
213394 | Cornwal | Mar 1879 | A |
2310586 | Lohman | Feb 1943 | A |
2827921 | Sherman et al. | Mar 1958 | A |
3173439 | Griswold et al. | Mar 1965 | A |
3189037 | Modesto | Jun 1965 | A |
3429291 | Hoffman | Feb 1969 | A |
3837357 | Slaughter | Sep 1974 | A |
3837358 | Zieg et al. | Sep 1974 | A |
3859619 | Ishihara et al. | Jan 1975 | A |
3896850 | Waltrip | Jul 1975 | A |
3996962 | Sutherland | Dec 1976 | A |
4014284 | Read | Mar 1977 | A |
4244392 | Griswold | Jan 1981 | A |
4416211 | Hoffman | Nov 1983 | A |
4489746 | Daghe et al. | Dec 1984 | A |
4523476 | Larner | Jun 1985 | A |
4618824 | Magee et al. | Oct 1986 | A |
4667697 | Crawford | May 1987 | A |
4777979 | Twerdochlib | Oct 1988 | A |
4920802 | McMullin et al. | May 1990 | A |
4945940 | Stevens | Aug 1990 | A |
5008841 | McElroy | Apr 1991 | A |
5024469 | Aitken et al. | Jun 1991 | A |
5125429 | Ackroyd et al. | Jun 1992 | A |
5236009 | Ackroyd | Aug 1993 | A |
5287874 | Dixon | Feb 1994 | A |
5404905 | Lauria | Apr 1995 | A |
5425393 | Everett | Jun 1995 | A |
5520367 | Stowers | May 1996 | A |
5551473 | Lin et al. | Sep 1996 | A |
5566704 | Ackroyd et al. | Oct 1996 | A |
5597010 | Hoffman | Jan 1997 | A |
5669405 | Engelmann | Sep 1997 | A |
5713240 | Engelmann | Feb 1998 | A |
5901735 | Breda | May 1999 | A |
6062787 | Maddalena | May 2000 | A |
6123095 | Kersten et al. | Sep 2000 | A |
6170510 | King et al. | Jan 2001 | B1 |
6343618 | Britt et al. | Feb 2002 | B1 |
6349736 | Dunmire | Feb 2002 | B1 |
6374849 | Howell | Apr 2002 | B1 |
6471249 | Lewis | Oct 2002 | B1 |
6513543 | Noll et al. | Feb 2003 | B1 |
6581626 | Noll et al. | Jun 2003 | B2 |
6659126 | Dunmire et al. | Dec 2003 | B2 |
6675110 | Engelmann | Jan 2004 | B2 |
7506395 | Eldridge | Mar 2009 | B2 |
7934515 | Towsley et al. | May 2011 | B1 |
8220839 | Hall | Jul 2012 | B2 |
8997772 | Noll et al. | Apr 2015 | B2 |
9091360 | Frahm | Jul 2015 | B2 |
9239072 | Andersen | Jan 2016 | B1 |
9546475 | Lu | Jan 2017 | B2 |
9995605 | Konno et al. | Jun 2018 | B2 |
10132425 | Di Monte | Nov 2018 | B2 |
10561874 | Williams et al. | Feb 2020 | B2 |
10719904 | Yasumuro et al. | Jul 2020 | B2 |
10883893 | Shaw et al. | Jan 2021 | B2 |
10914412 | Doughty et al. | Feb 2021 | B2 |
10962143 | Cis et al. | Mar 2021 | B2 |
20030000577 | Noll et al. | Jan 2003 | A1 |
20040045604 | Dunmire et al. | Mar 2004 | A1 |
20040107993 | Stephens | Jun 2004 | A1 |
20050092364 | Furuya et al. | May 2005 | A1 |
20050199291 | Price et al. | Sep 2005 | A1 |
20060196542 | Yen | Sep 2006 | A1 |
20070181191 | Wittig et al. | Aug 2007 | A1 |
20070193633 | Howell et al. | Aug 2007 | A1 |
20070240765 | Katzman et al. | Oct 2007 | A1 |
20080289567 | Gordon | Nov 2008 | A1 |
20090194719 | Mulligan | Aug 2009 | A1 |
20120102702 | Mitchell | May 2012 | A1 |
20170023141 | Andersson | Jan 2017 | A1 |
20190043157 | Yasumuro et al. | Feb 2019 | A1 |
20190162341 | Chiproot | May 2019 | A1 |
20190323618 | Fletcher et al. | Oct 2019 | A1 |
20200141612 | Thibodeaux | May 2020 | A1 |
20210172157 | Burke et al. | Jun 2021 | A1 |
20210230850 | Bouchard et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
110081212 | Aug 2019 | CN |
1925477 | Dec 1970 | DE |
3525261 | Nov 1985 | DE |
202014102568 | Oct 2015 | DE |
2002213629 | Jul 2002 | JP |
2003060459 | Jul 2003 | WO |
2020023584 | Jan 2020 | WO |
Entry |
---|
Lead Free Master Series LF870V product specifications pages, ES-F-LF-870V 1826, 2018, 4 pages. |
Watt TK-99E Backflow Preventer Test Kit Product Specifications and Test Information, IS-TK99E 0829, 2009, 4 pages. |
Zurn Wilkins 300AR Series, Backflow Preventer Order Form No. 480-060, Apr. 2017, 2 pages. |
Watts Water Technologies Company, Installation, Maintenance & Repair Series 909, LF909, 909RPDA, LF909RPDA, 2016, 8 pages. |
Watts Water Company, Series 909RPDA for Health Hazard Applications, 2016, 4 pages. |
Watts Regulator Co., Watts ACV 113-6RFP Flood Protection Shutdown Valve for Health Hazard Applications, 2020, 4 pages. |
European Search Report for European Patent Application No. 20192133.5 dated Feb. 1, 2021, 9 pages. |
Ames Fire & Waterworks, division of Watts Industries, F-A-Spools/Flanges, 2001, 4 pages. |
Watts, S-RetroFit-Simple, 2017, 2 pages. |
Zurn Industries, LLC vs. Conbraco Industries, Inc., Complaint for patent infringement, United States District Court for the Center District of California Western Division, Case No_ 2.16-CV-5656, Jul. 29, 2016; 5 pages. |
Wilkins Company, Model 375/475MS Series, Installation, Maintenance and Instruction Sheet, 2006, 1 page. |
Watts, “Double Check Valve Assembly Backflow Preventers, Bronze,” Article 1, 2021, 6 pages. |
Watts, “Reduced Pressure Zone Assembly Backflow Preventers, Bronze Body, Sizes 1/4-2 IN,” Article 1, 2021, 16 pages. |
Miscellaneous Communication issued in European patent application No. 20211811.3, dated Apr. 5, 2021, 8 pages. |
Office Action issued in corresponding Chinese patent application No. 20201920527.3, dated Mar. 10, 2021, 1 page (translation unavailable). |
International Search Report and Written Opinion issued in corresponding international patent application No. PCT/US2021/046208, dated Dec. 1, 2021, 8 pages. |
Appolo Valves PVB4A Series Installation, Operation and Maintenance Manual for Model PVB4A 1/2″-2″ Pressure Vacuum Breaker Backflow Preventer, dated Jan. 11, 2012, 12 pages. |
Apollo Valves PVB4A Series Installation, Operation, and Maintenance Manual, copyright May 2009, 9 pages. |
Watts Water Technologies Company Brochure ES LF800M4QT for Health Hazard Applications Lead Free Series LF8 M4QT Anti-Siphon Vacuum Breakers Sizes 1/2″-2″, copyright 2013, 4 pages. |
Conbraco BFMMPVB Maintenance Manual for Series 4V-500 1/2″-2″ Pressure Type Vacuum Breaker, Apr. 2002, Conbraco Industries, Inc., Matthews, North Carolina 28106, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210230850 A1 | Jul 2021 | US |