The invention relates to an apparatus and a method for determining the velocity of a remotely sensed object using wave energy such as sound, in particular ultrasound, or electromagnetic radiation. A synthetic aperture imaging techniques, where the received signals for a number of transmissions are grouped to form similar but spatially shifted images, is used to determine movement of the object, in particular blood flow. By using a number of pulse emissions, the inter-pulse movement can be estimated and the velocity found from the estimated movement and the time between pulses. The invention is based on the principle of using a synthetic aperture imaging over a number of emissions and then group the focused data to make the correlation between the focused and displaced images high in order to optimize the velocity estimation process.
The use of synthetic transmit aperture ultrasound imaging (STAU) for tissue imaging has been considered for some time [1, 2, 3, 4, 5, 6]. It has not been in clinical use because of the relatively higher complexity of the hardware and because of its inability to estimate blood velocities. One of the requirements for estimating the flow is to have RF data acquired in the same direction at high pulse repetition frequencies. The synthetic aperture algorithms acquire the data for a single RF line over a number of emissions. The fastest approach to acquire data is the synthetic transmit aperture acquisition [7, 8, 9, 10]. Even so, at least two emissions are necessary to beam form the data, and the beam formation is then on data that are displaced relative to each other.
A beam forming method allowing for a new image to be created at every emission has previously been suggested [11]. This method overcomes the first limitation of the synthetic aperture imaging, as there is a scan line at every emission for every direction. This allows for a whole flow map to be created at every emission. The data, however, still suffers from motion artifacts.
Previous attempts have been confined to the estimation of gross tissue motion for motion compensation [12, 13]. The approach suggested by Nock and Trahey [12] uses cross-correlation between the received raw RF signals. The algorithm, however, relies on the fact the transmission is focused, and that the received signals come from the same direction. It is therefore not suitable for STAU. The method suggested by Bilge et al. [13] relies on the cross-correlation between low-resolution images, which are formed using the same transmit-receive pairs of transducer elements. The beam is, however, broad and the blood cells within its limits have a wide spread of velocities. This results in an increased bias and uncertainty of the estimates.
Both types of motion compensation schemes show higher performance when the images were obtained using the same transmit/receive element pairs, or in other words have the same spatial frequencies. The high-resolution images (HRI) have the highest overlap of spatial frequencies, and therefore they should give the best estimates. The correlation of the signals received from the blood cells decreases rapidly due to migration of scatterers, beam-width modulation, and flow gradients (change in the relative positions between the scatterers) [14]. The HRIs must be generated after every emission, which is possible using recursive ultrasound imaging. These images suffer from motion artifacts, which changes from frame to frame. In [15] it was shown that it is possible to both compensate for motion artifacts and estimate the velocity from the motion-compensated HRIs. The success of the velocity estimation relies on the success of the motion compensation, which makes the whole approach unstable. The purpose of the method suggested is to avoid motion compensation prior to velocity estimation.
It is the object of the invention to overcome the above-mentioned deficiencies and disadvantages of the known methods and apparatuses. With the invention this object is achieved by an apparatus that uses a combination of the obtained measurements, so that motion compensation is avoided. This is done by introducing a modified cross-correlation estimator making it possible to estimate the velocity from the non motion-compensated high-resolution images.
The invention will be described in detail hereinafter with reference to the accompanying drawings.
The generation of synthetic aperture images and recursive imaging will be reviewed here. Consider the imaging situation shown in
If the medium is stationary the order in which the elements transmit does not matter. In other words, whether the order of transmission was {{i=1}, {i=2}, {i=3}} or {{i=2}, {i=3}, {i=1}} the result of summing the low-resolution images would yield the same high-resolution one. Going back to
An index of the emissions n\in [1, ∝) is introduced, which counts the emissions from time zero. From
i=((n−1) mod N)+1 (1)
The same element i is used at emissions n, n−N and n+N:
The signal received by element j after transmitting with element i is denoted as rij(t). Thus, the low-resolution scan line L(n)(t) obtained after emitting with element i is expressed as:
where wij(t) is a dynamic apodization coefficient, and τij(t) is a delay dependent on the transmitting element i, on the receiving element j, and on the current focal point. For simplicity the time dependence of the delay and the apodization coefficient will be omitted for ease of notation.
The signal at emission n received by element j is rn;j(t). This is an alternative notation for rij(t), which exploits the relation between n, and j. In other words:
rij(t)≡rn;j(t)
i=((n−1) mod N)+1
The beam formation of a single low-resolution scan-line L(n) (t) is then:
L(n)(t)=Σwijrn;j(t−τij) (4)
Assuming stationary tissue, the signal received by element j after transmitting with element i will be the same, regardless of the emission number. The following equation is therefore valid:
rn;j(t)=rn+kN;j(t), where k=0, ±1, ±2, (5)
Lines in the low-resolution images obtained at emissions n and n+kN are therefore the same, provided that the imaged tissue is stationary:
The order in which the transducer elements emit does not matter. Two high-resolution images at two consecutive emissions can be beam formed as follows:
Subtracting Ln−1(t) from L(n)(t) gives:
H(n)(t)=H(n−1)(t)+L(n)(t)−L(n−N)(t) (12)
This gives a recursive formula for creating a high-resolution image from the previous high-resolution one.
Flow cannot be estimated by using the beam formed lines from successive images generated in this way. The reason is that the image gets distorted, and the distortion is different from frame to frame depending on the position of the transmitting element. The standard estimators cannot be directly applied motion compensation must be done as suggested in [15]. The makes the beam formation depend on the motion, which has to be estimated from the beam formed data leading to an unstable imaging situation.
Measurement Principle
Consider the simple experiment simulated in Field II and shown in
The reason for this is that the motion artifacts are caused by the change of position of both the scatterer and the transmitting element. This is confirmed by
Velocity estimators using conventional beam formation methods compares RF signals from the same range (depth) [16]. Because the sound travels through the same tissue layers, the data samples taken at the same depth and direction have undergone the same distortions (phase aberration, refraction, shift in mean frequency, attenuation, etc.). The estimation of blood is based on comparing the changes (phase shifts) in the signal at the particular point, from which the velocity is estimated. The same principle can be applied to estimating the velocity using synthetic aperture imaging.
Consider
The two-dimensional point spread function PSF(x, z; zf) is obtained by range-gating the beam formed RF lines from the high-resolution image around the time instance t corresponding to the image depth zf. The above explanation shows that for small distances (up to several wavelengths) there is a segment in the high-resolution line H(n)(t), which is a time-shifted version of a segment from the high-resolution line H(n−N)(t):
H(n)(t)=H(n−N)(t−ts) (13)
where ts is the time shift between the lines given by:
where vz is the blood velocity along the focused line, c is the speed of sound, and Tprf is the time between pulse emissions. The two scan lines are beam formed in the same direction and the motion is along the scan line itself as shown in
The shift in position of the high-resolution images can be found from the cross-correlation function:
The peak of the cross-correlation function is located at τ=ts. The velocity is then found from the time shift:
Thus, the measurement principle estimates the time shifts between two high-resolution scan lines. The images from which the time shifts can be estimated must be acquired using the same transmit sequence, so they experience the same motion artifacts.
Estimation of the Cross-Correlation Function
where Ns is the number of samples in the segment, and iseg is the number of the segment. To improve the estimate, some averaging must be done. Assuming that the velocity does not change significantly, the time shift ts estimated from {circumflex over (R)}1N should be the same as the time shift of the peak of the cross-correlation function R2,N+1 as shown in
where Nc is the number of lines over which the averaging is done. If the images were created after every N emissions, then the total number of emissions needed for the velocity estimate would be NcN. For N=8 and Nc=16, the total number of emissions would be NcN=128. The correlation between the high-resolution lines would decrease due to acceleration, velocity gradients and migration of scatterers. In the new approach only N+Nc=24 emissions are necessary, thus preserving the high-correlation between the images and giving the possibility of estimating the flow with low bias and variance.
The velocity is found from the position of the peak in the cross-correlation function, where the sample index is denoted by ηm. The span of {circumflex over (R)}12d determines the maximum detectable velocity. In order to detect the same velocity range as the “conventional” cross-correlation estimator, the length of the interval in which the peak is searched must be N times bigger. If the search length is within the interval [−Ns, Ns], then the largest detectable velocity becomes:
The minimum velocity is:
which is N times smaller than the minimum detectable velocity in the conventional cross-correlation estimators. The estimate's precision can be improved by fitting a second order curve to the estimate, and interpolating the time shift:
Stationary Echo Canceling
Usually the echo canceling is done by subtracting the adjacent lines [16, 17] or by using a high-pass filter with very short impulse responses. This way of processing is chosen because of the short data sequences available for the motion, typically Nc=8 or 10. Using a synthetic aperture imaging with recursive beam formation gives an uninterrupted data stream and filters with long impulse responses can be used. So that both traditional echo canceling methods can be used and long FIR or IIR low pass filters.
Prospective of Velocity Estimation with Synthetic Aperture Imaging
In conventional ultrasound scanners the pulse is sent several times in the same direction in order to estimate the velocity. This leads to a decrease in the frame rate. Because of its nature, synthetic transmit aperture ultrasound imaging, or more precisely its variation recursive ultrasound imaging generates high-resolution RF lines at every emission. This gives an uninterrupted flow of data. The estimates can be based on larger data segments, thus, improving the precision of the estimates, although the estimates also can be made with only a few emissions as they are normally done in conventional systems. This opens up for the possibility to have real-time velocity estimates in real-time 3D systems, thus, making these systems full-featured ultrasound scanners.
It has been shown that in order to work with synthetic aperture imaging, the velocity estimation algorithms must be altered. The actual velocity estimation can be made with any conventional estimation algorithm that is properly altered to use the recursive synthetic aperture data. A very attractive group of estimators is the ones using time-shift measurement as described. Other algorithms can also be directly used as the autocorrelation approach by Kasai et al. [18] or maximum likelihood techniques [19].
Velocity Estimation Using Cross-Correlation along the Blood Vessel
The estimation of the velocity using cross-correlation of signals perpendicular to the ultrasound beam was first suggested by Bonnefous [20]. It was further developed to obtain signal along the velocity vector in the blood vessel by Jensen and Lacasa [21, 22].
The beams are perfectly focused in transmit and receive modes. A lateral translation of the scatterer causes a lateral translation of the low-resolution image. If one considers a laminar flow, then all the scatterers located at a radial distance r from the center of the vessel move with a constant velocity v. The distance, which they travel for the time Tprf between every two emissions, is
Δl=|{right arrow over (v)}|Tprf (22)
A line s(n) (l) at emission n is a shifted version of the line s(n−N) (l):
s(n)(l)=s(n)(l−Δl) (23)
Cross-correlation of the two lines gives:
R1N(τ)=R11(τ−Δl) (24)
where R11 is the auto-correlation function of the signal, and τ is a lag in space. The velocity is then:
The minimum detectable velocity is dependent on the spacing between the samples comprising the scan line s(t).
Another approach for finding the transverse velocity is to introduce a spatially oscillating beam transverse to the ultrasound beam as suggested in [24, 25]. The transverse spatial oscillation of the field can be generated by a single array transducer by special beam forming during transmit and/or receive. A sinusoidal pulse is emitted axially and properly apodized and phased during transmit and receive. Using, e.g., a non-focused emit beam and two sinc(sin(x)/x) functions for apodization in which different array elements have different vibration amplitudes along with plane wave focusing in receive beam forming give a field oscillating spatially in the transverse direction. Using the synthetic aperture technique makes it possible to obtain a spatially oscillating field for all depths, as it is the receive beam forming that essentially generates the spatial oscillation. The data is the employed in a modified auto-correlation estimator to find the velocity vector [26].
Velocity Estimation Using Speckle Tracking
Estimating the blood velocities by tracking the speckle pattern produced by moving blood has been suggested by Trahey and colleagues in 1987 [27, 28]. The idea is that the current random distribution of blood cells creates certain speckle patterns (two dimensional image). For the distance that the blood cells travel for the time of a few (usually 5 to 10) emissions these patterns remain intact and the change in their position can be traced by using a two dimensional convolution. The two-dimensional cross-correlation procedure has been simplified in subsequent papers [29], and made more robust by tracking the speckle pattern within smaller regions and using parallel beam forming [30, 31, 32].
The velocity estimation using speckle tracking (in the recent papers called “ensemble tracking” [32]) is illustrated in
where ε is the SAD coefficient, n is the acquisition number, Bn(i,j) is the brightness of the pixel at location (i,j) in the nth image, l is the lateral dimension of the kernel in pixels, k is the axial dimension of the kernel in pixels, and η and ξ are lateral and axial pixel offsets of a prospective matching region within the search region. The best match is found at the smallest value of the difference. The result of the process is interpolated in a fashion similar to (21), and the interpolated offsets ({circumflex over (η)}m, {circumflex over (ξ)}m) at which the maximum occurs are found. The magnitude of the velocity is given by:
where γ is the angle between the beam axis and the velocity vector, Δx and Δz are the lateral and axial spatial sampling intervals respectively, and Tprf is the pulse repetition interval. The matching can also be done with a full correlation search.
This approach can be modified for use with synthetic aperture imaging in the same way as the cross-correlation velocity estimators. The speckle patterns from emissions 0 and N, 1 and N+1, . . . , N−1 and 2N−1 can be tracked and then the estimates can be averaged for higher accuracy.
In
In
The pulser 1 generates a pulsed voltage signal with sinusoidal oscillations at a frequency of 3 MHz in each pulse, that is fed to the emit beam former 2. The emit beam former 2 splits up the signal from the pulser into a plurality of signals which are being fed to one or more of the respective elements of the emitting transducer array 3. The emit beam former 2 is capable of individually attenuating and delaying the signals to each or some of the elements of the transducer array 3. The ultrasound is then reflected by the object 4 and received by the elements of the transducer array 5. All of theses signals are then combined to focus all of the beams in the image in both transmit and receive in the beam processor 6 and the simultaneously focused signals are used for updating the image in the processor 7. The updated signals are used in the velocity estimation processor 8 to correlate the individual measurements to obtain the displacement between high-resolution images and thereby determine the velocity.
In the preferred embodiment the same linear array transducer is used for both emitting and receiving the pulsed ultrasound field. It consists of 64 elements with an element width of 0.26 mm and a spacing between neighboring elements of 0.03 mm. The height of the elements is 10 mm.
In the preferred embodiment individual elements are pulsed consecutively and the received signals are measured on all the elements of the transducer. The ultrasound beams are then focused in both transmit and receive in all directions of the image. After each emission the old information from the previous emission with the element is subtracted and the new information added. The image is thereby continuously updated.
The elements are always used in transmit in the same order. For instance in
In order to increase the penetration depth and the signal-to-noise ratio, more than one element can be used during transmission. The idea is to send a spherical wave with eleven elements. A Hanning window can be applied on the amplitudes of the sending elements.
After every emission a high-resolution image is formed by summing the last N low-resolution images:
where t is the time from the start of the emission. If the tissue is motionless, then L(i)(t)≡L(i−N)(t) and H(n)(t)≡H(n−N)(t). In the presence of motion, however, L(n)(t)≡L(n−N)(t−2(NΔz)/c), where c is the speed of sound. If the velocity is constant, then:
where Tprf=1/fprf is the pulse repetition period, and vz is the component of the velocity towards the transducer. This shift can be estimated using cross-correlation of the high-resolution lines H(n) (t) and H(n−N) (t), which are formed in the same direction of the image as shown in
The cross-correlation becomes:
where
is the time shift due to motion. The peak of the cross-correlation function is located at τ=ts. The velocity can be found from the time shift:
The lines at emissions n−i and n−N−i are subject to the same time shift:
Rn−N−i,n−i=RN−n−i,N−n−i(τ−ts) (32)
and the peak of their cross-correlation function is also located at a lag τ=ts, as shown in
The velocity of blood changes as a function of space and time in the human body. To estimate the velocity at the different spatial positions, each of the RF lines is divided into a number of segments as shown in
where Ns is the number of samples in a segment and iseg is the number of the segment. If the velocity does not change significantly for several sequential acquisitions Nc, then the estimate can be improved by averaging the estimated cross-correlation functions:
The lag at which the maximum occurs is η6 m. The estimated velocity is then:
The precision of the estimate can be improved by fitting a second order curve to the correlation function, and thereby interpolate the time shift:
Stationary echo canceling is done prior to correlation on the images that were obtained at every Nth emission, i.e. between images n and n−kN, where k εZ.
Number | Date | Country | Kind |
---|---|---|---|
01610104 | Oct 2001 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK02/00648 | 10/1/2002 | WO | 00 | 10/4/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/029840 | 4/10/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5465722 | Fort et al. | Nov 1995 | A |
5531117 | Fortes | Jul 1996 | A |
5769079 | Hossack | Jun 1998 | A |
6689063 | Jensen et al. | Feb 2004 | B1 |
Number | Date | Country |
---|---|---|
WO 0068931 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050043622 A1 | Feb 2005 | US |