1. Field of the Invention
The present invention relates to a voice activity detection apparatus and a voice activity detection method.
2. Related Background Art
Discontinuous transmission (DTX) is a technology commonly used in telephony services over the mobile and in telephony services over the Internet for the purpose of reducing transmission power or saving transmission bandwidth. In the DTX operation, inactive period in an input signal, such as silence and background noise, may be transmitted at lower bitrate compared with the bitrate for active period containing speech, music or special tones, or transmission may be stopped during such inactive period. Voice activity detection (VAD), which is one of the key components of DTX operation, decides whether the current period of the input signal to be encoded contains only inactive information or not.
For example, the VAD apparatus described in patent document 1 listed below uses an autocorrelation of an input signal by taking advantage of the periodicity in human voice. More specifically, this VAD apparatus computes a delay at which the maximum autocorrelation value of an input signal within an (pre-determined) interval is obtained, and classifies the input signal as active if the obtained delay falls in the range of the pitch period of human voice, and the input signal inactive if the obtained delay is out of that range.
Furthermore, the VAD apparatus described in non-patent document 1 listed below estimates a background noise from an input signal and decides whether the input signal is active or inactive based on the ratio of the input signal to the estimated noise (SNR). More specifically, this VAD apparatus computes a delay at which the maximum autocorrelation value of an input signal within a (pre-determined) interval is obtained, and a delay at which the maximum weighted autocorrelation value of the input signal is obtained, estimates a background noise level adapting the estimation method on the basis of the continuity of these delays (i.e., small variation of subsequent delays for a pre-determined period of time), thereupon decides that the input signal is active if the SNR is equal to or greater than a threshold adaptively computed based on the estimated background noise level, or that the input signal is inactive if the SNR is smaller than the threshold.
[Patent Document 1] Japanese Unexamined Patent Publication No. 2002-162982
[Non-patent Document 1] 3GPP TS 26.094 V3.0.0 (http://www.3gpp.org/ftp/Specs/html-info/26094.htm)
However, the conventional VAD described above have posed problems as described below. That is, the VAD apparatuses using the above technologies decide that the inactivity of an input signal based on the single autocorrelation value or the single delay at which the maximum autocorrelation value is obtained, and therefore can not accurately decide inactivity of an input signal containing many non-periodic components and/or containing a plurality of different periodic components.
The object of the present invention is to provide a VAD apparatus and a VAD method that solve the above problem and are capable of accurately performing the decision of inactivity for an input signal having many non-periodic components and/or a plurality of mixed different periodic components.
In order to solve the above problem, the VAD apparatus of the present invention comprises: an autocorrelation calculating means for calculating autocorrelation values of an input signal; a delay calculating means for finding a plurality of delays at each of which corresponding autocorrelation value calculated by said autocorrelation calculating means become maximum; a characteristic deciding means for deciding a characteristic of said input signal on the basis of said plurality of delays calculated by said delay calculating means; and an activity detection means for deciding the activity of the input signal on the basis of the result of decision by said characteristic deciding means.
Furthermore, in order to solve the above problem, the VAD method of the present invention comprises: an autocorrelation calculating step of calculating autocorrelation values of an input signal; a delay calculating step of finding a plurality of delays at each of which corresponding autocorrelation value calculated in said autocorrelation calculating step become maximum; a characteristic deciding step of deciding a characteristic of said input signal on the basis of said plurality of delays calculated in said delay calculating step; and an activity decision step of deciding the activity of the input signal on the basis of the result of decision in said characteristic deciding step.
A plurality of delays at each of which associated autocorrelation value of an input signal become maximum are calculated and the activity detection for the input signal is performed on the basis of the plurality of delays, whereby it makes possible for activity detection to take a plurality of periodicity in the input signal into account.
Furthermore, in the VAD apparatus of the present invention, the activity decision means preferably performs the activity decision for the input signal on the basis of the result of the decision by the characteristic deciding means and the input signal itself.
Likewise, in the VAD method of the present invention, the activity decision step preferably performs the activity decision for the input signal on the basis of the result of decision by the characteristic deciding step and the input signal itself.
Using the input signal in addition to the result of decision by the characteristic deciding means or the characteristic deciding step makes the result of activity detection more precisely. For example, it may be possible to decide the input signal as active based on the activity history of the past input signal, while the result of the characteristic deciding means or the characteristic deciding step indicates the input signal is inactive.
Furthermore, the VAD apparatus of the present invention preferably further comprises a noise estimating means for estimating a background noise level from the input signal, wherein the activity decision means makes the activity decision based on the result of decision by the characteristic deciding means, the input signal, and a noise signal estimated by the noise estimating means.
Using the input signal and the estimated noise signal in addition to the result of decision by the characteristic deciding means makes possible to perform the activity decision based on the signal to estimated noise ratio.
Furthermore, in the activity decision apparatus of the present invention, the noise estimating means preferably adapts the method of estimating a noise on the basis of the result of decision by the activity decision means.
The adaptive noise estimating method based on the result of decision by the activity decision means requires more precise procedure for noise estimation. For example, the activity decision means reduces the level of a noise estimated by the noise estimating means when continuing to perform the decision on being the sound-present state, whereby the signal components are emphasized with respect to the noise.
For example, the level of input signal relative to the level of the estimated noise become large by reducing the level of the estimated noise by the noise estimating means when the consecutive.
Furthermore, in the activity decision apparatus to the present invention, the delay calculating means preferably calculates the plurality of delays in order of the magnitude of autocorrelation values.
The plural delays are calculated in order of the magnitude of autocorrelation values, thereby facilitating to calculate the plurality of delays.
Furthermore, in the activity decision apparatus of the present invention, the delay calculating means preferably divides a delay-observation interval into a plurality of intervals and calculates a delay, at which the autocorrelation value becomes the largest, in each of the plurality of intervals.
Likewise, in the activity decision method of the present invention, the delay calculating step preferably divides a delay-observation interval into a plurality of intervals and calculates a delay, at which the autocorrelation value becomes the largest, in each of the plurality of intervals.
A delay-observation interval is divided into a plurality of intervals, and a delay is calculated at which the autocorrelation value becomes the largest in each of the plurality of intervals, whereby delays depending on the various periodic components contained in an input signal may be calculated evenly without leaning to, for example, delays depending on the natural frequency of a vocal band and a wave having a frequency which is an integer multiple of the primary frequency.
Furthermore, in the activity decision apparatus of the present invention, the plurality of intervals are preferably represented by 2i-1·min_t to 2o·min_t (i: natural number) where min_t is the starting point (i.e., shortest delay) of the delay-observation interval.
Such interval division for a periodic signal enables delays, corresponding to twice the period of the periodic signal, to be detected efficiently, and thereby it becomes possible to more accurately perform the decision for the activity.
The activity decision apparatus or activity decision method of the present invention calculates a plurality of delays at which autocorrelation values of an input signal become maximums, and performs the decision for the activity on the basis of the plurality of delays, whereby it is made possible to perform the decision for the activity in consideration of a plurality of periodic components contained in the input signal. As a result, it becomes possible to accurately perform the decision for the sound interval/silence interval also in terms of an input signal containing signals having many aperiodic components and/or containing a plurality of different periodic components in a mixed state.
An activity decision apparatus according to the first embodiment of the present invention will be described with reference to the drawings.
First, the configuration of the activity decision apparatus according to this embodiment is explained.
The activity decision apparatus 1 is physically configured as a computer system being comprised of a central processing unit (CPU), a memory, input devices such as a mouse and a keyboard, a display, a storage device such as a hard disk, and a radio communication unit for performing wireless data communication with external equipment, etc. Furthermore, the activity decision apparatus 1 is functionally provided with, as shown in
The autocorrelation calculating unit 11 calculates autocorrelation values of an input signal. More specifically, the autocorrelation calculating unit 11 calculates autocorrelation values c(t) of an input signal x(n) according to the following equation (1).
Where, x(n) (n=0, 1, . . . , N) is the n-th value obtained by sampling a input signal every fixed time interval (e.g., {fraction (1/8000)} sec) over a fixed time (e.g., 20 msec), and t denotes delay. Furthermore, autocorrelation value c(t) is obtained as discrete values every fixed time interval (e.g., {fraction (1/8000)} sec) over a fixed time (e.g., 18 msec).
The autocorrelation calculating unit 11 is not necessarily required to strictly calculate autocorrelation values according to the above equation (1). For example, the autocorrelation calculating unit 11 may be designed to calculate autocorrelation values on the basis of perceptually weighted input signal as widely used in speech encoders. In addition, the autocorrelation calculating unit 11 may be designed to weight autocorrelation values calculated on the basis of an input signal, and output weighted autocorrelation values.
The delay-calculating unit 12 calculates a plurality of delays at which autocorrelation values calculated by the autocorrelation calculating unit 11 become maximums. More specifically, the delay calculating unit 12 searches autocorrelation values within a predetermined interval and calculates M delays, at which autocorrelation values become maximums, in order of their magnitude. That is, as shown in
Returning to
In equation (2), d is a predetermined threshold of the delay difference. The noise deciding unit 13 may decide whether the input signal is a noise or not using a procedure other than the above procedure provided that it decides whether the input signal is a noise or not on the basis of the plurality of delays.
The activity decision unit 14 performs the decision for the activity in terms of the input signal on the basis of the result of decision by the noise-deciding unit 13 as well as the input signal. The activity decision unit 14 performs the decision for the activity of the input signal using, for example, the result of decision by the noise-deciding unit 13 and the result of analysis of the input signal (power, spectrum envelope, the number of zero-crossing, etc.). Various techniques widely known may be adopted to perform the decision for the activity in terms of the input signal using the result of decision by the noise deciding unit 13 and the result of analysis of the input signal. In this statement, “inactive” refers to a sound meaningless as information, such as silence and background noise. On the other hand, “active” refers to a sound meaningful as information, such as voice, music or tones.
Next, the operation of the activity decision apparatus according to this embodiment is described and at the same time the activity decision method according to the embodiment of the present invention is also described.
After an input signal is inputted to the activity decision apparatus 1, autocorrelation values of the input signal are calculated by the autocorrelation calculating unit 11 (S11) first. More specifically, autocorrelation values c(t) of the input signal x(n) are calculated according to equation (1) described above.
After autocorrelation values of the input signal are calculated by the autocorrelation calculating unit 11, a plurality of delays, at which autocorrelation values calculated by the autocorrelation calculating unit 11 become maximums, are calculated by the delay calculating unit 12 (S12). More specifically, autocorrelation values in a predetermined delay-observation interval are searched and M delays (delays of t_max1 to t_maxM) at which autocorrelation values become maximums are calculated in order of their magnitude.
After the plurality of delays are calculated by the delay calculating unit 12, it is decided by the noise deciding unit 13 whether the input signal is a noise or not (a characteristic of the input signal) on the basis of the plurality of delays calculated by the delay calculating unit 12 (S13). More specifically, if a state that meets the condition shown in the above equation (2) continues for a predetermined time, it is decided that the input signal is not a noise. Conversely, if a state that meets the condition shown in equation (2) does not continue for a fixed time, it is decided that the input signal is a noise.
After it is decided by the noise deciding unit 13 whether the input signal is a noise or not, there is performed the decision for the activity in terms of the input signal by the sound/silence decision unit 14 on the basis of the result of decision by the noise deciding unit 13 and the input signal (S14). More specifically, the decision for the activity in terms of the input signal utilizes the result of decision by the noise deciding unit 13 and the result of analysis of the input signal (power, spectrum envelope, the number of zero-crossings, etc.).
Next, the function and effect of the activity decision apparatus according to this embodiment is described. In the activity decision apparatus 1 according to this embodiment, the delay calculating unit 12 calculates a plurality of delays t_max1 to t_maxM at which autocorrelation values become maximums, and the noise deciding unit 12 decides whether the input signal is a noise or not the basis of the plurality of delays t_max1 to t_maxM, and the activity decision unit 14 performs the decision for the activity on the basis of the result of decision by the noise deciding unit 13. Thus, it makes possible to perform the decision for the activity in terms of the input signal in consideration of a plurality of periodic components contained in the input signal. As a result, the activity decision is capable of an input signal containing signals having many aperiodic components and/or containing a plurality of different periodic components.
Furthermore, in the activity decision apparatus 1 according to this embodiment, the activity decision unit 14 performs the decision for the activity in terms of the pertinent input signal using not only the result of decision by the noise-deciding unit 13 but also the input signal. Thus, a finer decision procedure may be incorporated as compared with the case of performing the decision for the activity in terms of the input signal using only the result of decision by the noise deciding unit 13. That is, for example, it becomes possible to include such a decision procedure that although it is decided by the noise deciding unit 13 that the input signal is a noise, it is decided that the input signal is active when the history of the input signal meets a fixed condition. In this connection, the activity decision unit 14 may be configured in such a manner as to perform the decision for the activity in terms of the input signal without using the result of analysis of the input signal but using only the result of decision by the noise deciding unit 13. In this case, a finer decision procedure as described above cannot be included, and the decision procedure will be simple.
Furthermore, in the activity decision apparatus 1 according to this embodiment, the delay calculating unit 12 calculates a plurality of delays in order of the magnitude in terms of autocorrelation value when calculating the plurality of delays. Thus, a plurality of delays can be calculated easily as compared with the case of adopting other calculating method.
Next, an activity decision apparatus according to the second embodiment of the present invention is described with reference to the drawings. First, the configuration of the activity decision apparatus according to this embodiment is explained.
The activity decision apparatus 2 is functionally configured, as shown in
The noise estimating unit 21 estimates a noise from an input signal. More specifically, the noise estimating unit 21 estimates a noise according to, for example, the following equation (3).
noisem+1(n)=(1−α)·noisem(n)+α·inputm−1(m) (1)
Where, “noise” is an estimated noise, “input” is an input signal, “n” is an index representing a frequency band, “m” is an index representing a time (frame), and “α” is a coefficient. That is, noisem(n) represents an estimated noise at a time (frame) m in the n-th frequency band. The noise estimating unit 21 changes the coefficient α in the above equation (3) in accordance with the result of decision by the noise deciding unit 13. That is, when it is decided by the noise deciding unit 13 that the input signal is not a noise, the noise estimating unit 21 sets the coefficient α in the above equation (3) to 0 or a value α1 near 0 in such a manner as to cause no increase in the power of the estimated noise. On the other hand, when it is decided by the noise deciding unit 13 that the input signal is a noise, the noise estimating unit 21 sets the coefficient α in the above equation (3) to 1 or a value α2 (α2>α1) near 1 so as to cause the estimated noise to be close to the input signal. The noise estimating unit 21 may be designed to estimate a noise from the input signal using a procedure other than the above procedure.
The activity decision unit 22 performs the decision for the activity on the basis of the result of decision by the noise deciding unit 13, the input signal, and the noise estimated by the noise estimating unit 21. More specifically, activity decision unit 22 calculates, for example, an S/N ratio (more accurately, the integrated value or mean value of S/N ratios in frequency bands) from the noise estimated by the noise estimating unit 21 and the input signal. Furthermore, the activity decision unit 22 compares the calculated S/N ratio and a predetermined threshold value and decides that the input signal is in a sound-present state when the S/N ratio is larger than the threshold value or that the input signal is in a silent state (in a sound-absent state) when the S/N ratio is equal to or less than the threshold value. The threshold value has been set in such a manner as to vary with the result of decision by the noise deciding unit 13. That is, the threshold value in the case where the noise deciding unit 13 decides that the input signal is “not a noise”, has been set so as to be less than that in the case where the noise deciding unit 13 decides that the input signal is a noise. For this reason, in the case where the noise deciding unit 13 decides that the input signal is not a noise, the possibility of extracting signals having small S/N ratios (i.e., signals buried in the noise) as speech sound signals increases. The sound/silence decision unit 22 may be designed to decide whether the input signal is in a sound-present state or in a silent state using a procedure other than the above procedure. That is, for example, it may be designed that the above threshold values are made to be the same value irrespective of the result of decision by the noise deciding unit 13, and the activity decision unit 21 may perform the decision for the activity in terms of the input signal on the basis of the input signal and the noise estimated by the noise estimating unit 21.
Next, the operation of the activity decision apparatus according to this embodiment is described.
After the steps S11 to S13, a noise is estimated from the input signal by the noise estimating unit 21 (S21). More specifically, a noise is estimated according to the above equation (3). The coefficient α in the above equation (3) varies with the result of decision by the noise deciding unit 13. That is, when it is decided by the noise deciding unit 13 that the input signal is not a noise, the coefficient α in the above equation (3) is set to 0 or a value α1 close to 0 not so as to increase the power of the estimated noise. On the other hand, when it is decided by the noise deciding unit 13 that the input signal is a noise, the coefficient α in the above equation (3) is set to 1 or a value α2 (α2>α1) close to 1 so as to make the estimated noise to be close to the input signal. The step of estimating a noise (S21) is not limited to being implemented after the steps S11 to S13, but may be implemented in parallel with the steps S11 to S13.
After a noise is estimated by the noise estimating unit 21, the decision for the activity in terms of the input signal is made by the activity decision unit 22 on the basis of the result of decision by the noise deciding unit 13, the input signal, and the noise estimated by the noise estimating unit 21 (S22). More specifically, for example, an S/N ratio is calculated from the noise estimated by the noise estimating unit 21 and the input signal, and the calculated S/N ratio is compared with a predetermined threshold value. It is then decided that the input signal is in active when the S/N ratio is larger than the threshold value or that the input signal is inactive when the S/N ratio is equal to or less than the threshold value.
Next the effect of the activity decision apparatus according to this embodiment is described. The activity decision apparatus 2 according to this embodiment has an advantage as shown below in addition to the effect of the activity decision apparatus 1 according to the above embodiment. That is, in the activity decision apparatus 2, the noise estimating unit 21 estimates a noise from an input signal, and the activity decision unit 22 decides whether the input signal is in active or inactive on the basis of the result of decision by the noise deciding unit 13, the input signal, and the noise estimated by the noise estimating unit 21. Thus, it makes possible to accurately decide whether an input signal is in a sound-present state or in a silent state on the basis of the S/N ratio. Furthermore, the noise estimating unit 21 changes the coefficient α of the noise estimating equation (equation (3) described above) in accordance with the result of decision by the noise deciding unit 13, and thereby it becomes possible to more accurately decide whether an input signal is in a sound-present state or in a silent state.
Next, an activity decision apparatus according to the third embodiment of the present invention is described with reference to the drawings.
The activity decision apparatus 3 is functionally configured, as shown in
The noise estimating unit 31 estimates a noise from an input signal like the noise estimating unit 21 in the activity decision apparatus 2. However, the noise estimating unit 31 changes the method of estimating a noise particularly on the basis of the result of decision by the activity decision unit 22. More specifically, the noise estimating unit 31 estimates a noise according to the above equation (3) first. After that, the noise estimating unit 31 outputs a value, obtained by multiplying the noise calculated according to equation (3) by a coefficient β decided according to the history of the result of decision by the activity decision unit 22, as an ultimate noise. For example, the noise estimating unit 31 makes the signal distinctive by setting the coefficient β to a value less than 1 when the activity decision unit 22 continues to output, for more than a fixed time, the result of decision that the signal is a speech sound signal, and sets the coefficient β to 1 in other cases. The noise estimating unit 31 may change the method of estimating a noise using a procedure other than the above procedure.
The activity decision apparatus 3 according to this embodiment has an advantage as shown below in addition to the advantage of the activity decision apparatus 2 according to the above embodiment. That is, in the activity decision apparatus 3, the noise estimating unit 31 changes the method of estimating a noise on the basis of the result of decision by the activity decision unit 22. Thus, a more detailed decision procedure may be included. That is, for example, the activity decision unit 22 attempts to actively decrease the level of a noise estimated by the noise estimating unit 31 when continuing to decide that an input signal is a speech sound signal, and thereby the signal components are emphasized in contrast to the noise.
The delay calculating unit 12 of the activity decision apparatus 1, 2 or 3 may be designed to calculate a plurality of delays using a procedure as shown below. That is, the delay calculating unit divides a delay-observation interval into a plurality of intervals and calculates a delay, at which the autocorrelation value becomes the largest, in each of the plurality of intervals. In this case, the plurality of intervals are decided to be 2i-1·min_t to 2i·min_t (i: natural number) where min_t is the shortest delay within the interval.
More specifically, as shown in
Such interval division for a periodic signal allows delays, corresponding to twice the period of the periodic signal, to be detected efficiently, and thereby it is possible to more accurately decide whether the signal is a speech sound signal or a silence signal.
The present invention is applicable, for example, in mobile telephone communication or Internet telephony, to an activity decision apparatus for deciding whether an interval is a sound interval where an input signal contains a sound or a silence interval where it is not necessary to transmit any information.
From the invention thus described, it will be obvious that the embodiments of the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
P2003-430973 | Dec 2003 | JP | national |