The present invention relates to an apparatus for treating pulp, said apparatus comprising at least one rotating surface arranged around a shaft, on which surface a pulp web is formed, means for feeding pulp onto the rotating surface, means for discharging pulp from the apparatus and means for removing filtrates from the apparatus. The apparatus is especially well applicable for washing of pulp. The invention also relates to a method.
In the cellulose pulp industry, especially in the sulfate pulp industry, liquid is removed from the pulp and/or the pulp is washed in various apparatuses after digestion and between and after bleaching stages. Pulp is washed in brown stock washing after digestion and after oxygen delignification for recovering black liquor and cleaning the pulp free of dissolved impurities. In connection with bleaching, the purpose of the wash is to separate dissolved substances from the pulp after bleaching reactions and to prepare the pulp for further treatments. A feature common to these washing processes is that a filtrate or filtrates are obtained from the washing apparatuses, which substances are reused at a suitable location in the process, such as in an earlier washing stage in counter-current washing of the pulp.
Prior art knows many different kinds of washing apparatuses and methods. Clearly distinguishable from each other are diffusers, drum washers and Fourdrinier washers. Some examples of drum washers used at present are suction washers, washing presses and pressurized or overpressure washers.
A conventional suction washer comprises a wire-coated drum rotating in a basin. Collecting chambers are arranged in the drum shell under a perforated plate, said chambers being connected each via a dedicated pipe to a valve system located on a shaft at the end of the drum. From the valve, the filtrate is led through a suction leg or a centrifugal pump generating the required suction effect into e.g. a filtrate container. The valve construction allows for arranging the suction effect suitably at desired points along web formation.
Web formation in a suction washer takes place so that by means of the suction leg, or some other apparatus generating suction, a vacuum is arranged inside a drum rotating in a basin, which vacuum withdraws pulp suspension from the basin against the drum. As liquid penetrates the drum, the fibers of the pulp accumulate on the surface of the drum. The consistency of the fiber suspension in the basin is about 0.5-2%, and the consistency of the layer precipitated on the drum is about 10-12%. The web-formation area, i.e. the part of the drum's circumference, which is in the basin covered by fiber suspension, is about 140 degrees. The maximum rotational speed of the drum is 2-2.5 r/min., because the collecting chambers and pipes for the filtrate would not have enough time to empty, if the speed was higher.
The wash is effected by displacement so that washing liquid is sprayed onto the surface of the drum emerging from the pulp basin, which washing liquid is absorbed through the pulp layer under the effect of vacuum and displaces most of the liquid originally present in the pulp. Thus, the extent of the displacement zone is about 120 degrees. The washed pulp web is removed from the drum by disrupting the suction.
Press washing is a washing method that has been used for long. The operation of a washing press is based on either a simple dilution mixing and pressing or a combination of dilution, thickening, displacement and pressing.
Typically a washing press comprises at least one drum having a wire-coated or drilled perforated plate casing. Pulp is typically fed in at a consistency of 1-12%, e.g. at a consistency of 3-8%. The drum shell is typically provided with compartments, wherefrom the filtrate is led out via a chamber at the end periphery. The drum may also be open, whereby the filtrate is collected inside the drum and led out via an opening at the end of the drum. In one press solution, the pulp is fed in a section between the perforated drum and the basin partly surrounding the drum, which section narrows in the rotational direction of the drum. Thus, a pulp web is formed on the surface of the drum or drums, whereafter washing liquid is fed into the pulp. The purpose of the washing liquid is to partly displace the liquid in the pulp and partly to dilute the pulp. Pulp is led into a narrow slot i.e. nip between the drums or drum and a press roll by means of the rotating movement of the drums or drum and the press roll, and thus removal of water is effected via the openings in the drum. This filtrate is collected into a filtrate container, wherefrom it is led further. In one washing press solution, the pulp suspension is introduced into a nip between two drums in order to form a pulp web onto the surfaces of the drums. After the nip, the pulp is washed and the pulp web thickened by pressing it in a narrowing slot between the drum and a washing flap partly surrounding the drum. The washed pulp may have a consistency up to 25-40%. However, the displacement is typically carried out at a consistency of 10-15%. Washing presses have been presented e.g. in publications EP 1098032 and WO 02/059418.
The DRUM DISPLACER®—washer of Andritz Oy may be mentioned as an exemplary pressurized drum washer. A similar apparatus has been discussed in e.g. Finnish patent publications 71961 and 74752 (corresponding to U.S. Pat. Nos. 4,919,158 and 5,116,423). The apparatus mainly comprises a rotary drum and a stationary shell surrounding the drum. The treatment is pressurized and it is effected by arranging outside the drum an outer shell via which washing liquid is fed into the pulp on the drum. The drum comprises a perforated cylinder, the outer surface of which is provided with ribs arranged at certain intervals in the longitudinal direction of the drum. Said ribs together with the perforated cylinder surface form the so-called pulp compartments. Filtrate compartments are arranged inside the cylinder, under the pulp compartments, which filtrate compartments receive the filtrate displaced by the washing liquid. A valve arrangement is provided at the end of the cylinder drum essentially on the diameter of the circumference of the drum, via which arrangement the filtrate is removed and led further. The washer is provided with multiple, usually 3-4, stages. This means that the washing liquid is used several times for washing the pulp. In other words, filtrates collected in the filtrate compartments are led countercurrently from one washing stage of the washer to another. Feed chambers for the washing liquid, wherefrom the washing liquid is pressed through the perforated plate into the pulp in the pulp compartments for displacing the liquid in the pulp, are located outside the washer drum, integrated in the washer shell.
Web formation and pulp washing are effected so that the pulp to be washed is fed via a specific feed box into the pulp compartments. The consistency of the pulp being fed to the washer drum may vary between 4-12%. The feeding pressure is 0.2-0.6 bar. The feed box thickens the pulp and axial “planks” having a length equal to the length of the drum are formed in the pulp compartments. The pressure difference, which forms and thickens the pulp web, is equal to the feeding pressure. Immediately after the feeding point follows the first washing stage of the drum. Each stage receives a washing liquid flow, which when being pressed into the pulp layer in the compartments of the washer drum, displaces the liquid therein. The washing consistency is typically between 10-14%. The rotational speed of the drum varies between 0.5-4.0 rpm.
It was already mentioned before that the filtrates are led countercurrently from one stage to another. To put it differently (see FI patent 74752, FIG. 1) the last washing stage receives clean washing liquid and the filtrate displaced by that liquid is led as washing liquid to the last but one washing stage. The last washing stage is followed by a suction stage, wherein the consistency of the pulp rises into 13-16%. The liquid separated from the pulp in the suction stage is taken as washing liquid into a washing stage preceding the suction stage in the washer. The pulp is removed from the drum, e.g. by means of pressurized air blow, and transferred further by a screw transporter. EP-patent publication 856075 discloses an intensified arrangement for washing pulp, which may be applied e.g. in drum washers.
Although pulp washing apparatuses as such are often efficient and clean the pulp to a sufficient extent in the process stage where they are located, their often large size and corresponding great space requirement create problems. As the pulp often has to be washed after almost each treatment stage, such as bleaching stage, several washers are needed at a cellulose pulp mill: brown stock washer(s), oxygen stage washer, bleaching plant washers. Several washers with their large shells also cause remarkable material expenses. In addition to that, in conventional practice, filtrates from washing and thickening apparatuses have been allowed to flow under gravity into normally cylindrical standing filtrate containers, wherefrom the filtrates have then been pumped by means of a pump to be reused, in general to some other washing or thickening apparatus. A typical bleaching plant comprises e.g. four filters and below each of them a filtrate container typically having a volume of 50-150 m3. Filtrates are pumped from each container usually by means of at least two pumps to be used in different locations. Typically the filtrate containers are located 10-15 meters below the washing apparatuses. This kind of filtrate collection and reuse system is efficient as such, but expensive. Multiple tanks and extensive pipings and instrumentation systems related to them are expensive. Further, the pumpings require a remarkable amount of energy.
U.S. Pat. No. 5,275,024 discloses a wire-type washer capable of washing two pulps. The pulps, which may come from different treatment stages, are led to different sides of the wire. In a first wash, the pulp is led onto the upper surface of the wire. After the wire has been emptied, it is recirculated, whereby a pulp from a different treatment stage is led onto the other side of the wire. A disadvantage of this apparatus is that the wire gets into contact with various pulps, which is demanding in view of the durability of the wire material. The wire material must be selected in view of e.g. the pH according to the pulp coming from the most severe conditions.
The object of the present invention is to provide a system for treating pulp, which eliminates disadvantages described in the above. Thus, the construction of the novel arrangement is simpler and less space consuming, resulting in decreased material costs and reduced energy requirements due to decreased need for pumpings. An object is also the possibility to choose the material for a certain treatment surface, such as washing surface, in view of the exact pulp that is treated, e.g. washed, on that specific treatment surface.
In order to reach the above objects, the present invention is characterized in being provided with at least one inside construction for forming at least two treatment sections in the apparatus so that each section is connected to at least means for feeding one pulp in such a way that the pulps being treated in said sections originate from essentially different treatment stages, to pulp discharge means so that the treated pulps are discharged from the apparatus separately.
The invention is based on the concept that an apparatus having a rotating filtrate surface is capable of treating simultaneously two pulps differing from each other in view of some properties, which pulps preferably enter the apparatus from different treatment stages, e.g. brown stock and oxygen-delignified pulp. Typically the pulps treated in different sections differ from each other in view of at least one property, such as pH, degree of delignification, brightness etc. The apparatus according to the invention differs from prior art apparatuses for thickening and washing pulp in that it has at least two separate treatment sections, preferably washing sections, formed by means of an inside construction, such as an intermediate wall or walls. One section may be meant primarily for thickening the pulp and it does not specifically receive washing liquid, but most typically the apparatus according to the invention functions as an apparatus, in the washing sections of which pulp is washed with liquid.
Inside construction refers to a construction or equipment, by means of which the interior of an apparatus for treating pulp, e.g. a washing apparatus, is divided into suitable sections so that the pulp may be treated, e.g. washed, in said sections in such a way that the processes in each of the sections may be carried out as desired without disturbances.
The inside construction is to be fitted so that the pulps being treated, e.g. washed, in different sections, and the filtrates generated in the treatment thereof, are kept essentially apart without letting them mix with each other. A typical inside construction is a plate formed by an intermediate wall, which plate is provided with a hole or an opening for leading in a washer shaft and a rotating surface. The intermediate wall is essentially perpendicular to the shaft of the rotating surface. Essentially perpendicular in connection with this invention means that the intermediate wall may be arranged slanting in relation to the plane, which is perpendicular to the shaft of the rotating surface, the angle of tilt being less than 30°. The inside construction may as well comprise something else than a plate-form intermediate wall. The inside construction has to be such that the processes in the treatment sections of the apparatus do not disturb each other e.g. via substance leakages.
Each section of the apparatus has dedicated conduits for feeding pulp to be treated into said section and discharging therefrom, as well as for discharging the formed filtrate therefrom. Preferably the sections have been connected to filtrate discharge apparatuses so that the filtrates are discharged from the apparatus separately. The sections are preferably provided with conduits for feeding washing liquid into said washing section.
The solution according to the present invention may preferably be applied in washing apparatuses, wherein the washing surface is formed of a drum or a number of rotating discs rotating around a shaft. The rotating surface may be surrounded by a housing.
The construction of drum washers changes in accordance with the invention in such a way that the drum and the space surrounding it are divided by means of an inside construction or piece, preferably an intermediate wall, into at least two parts. Thus, different pulps are washed at various ends of the drum. The inside construction, such as an intermediate wall, and the lead-ins therein must be such that detrimental substance leakages, such as pulp leakages, from one section to another are essentially prevented. Thus, pulps and washing filtrates being treated in separate washing sections cannot mix with each other. The invention may be applied both in pressure drum filtrate washers and suction drum filtrate washers. Accordingly, the invention may be applied in single or two drum washing presses as well, wherein the filtering surface of the press drum/drums and the surrounding section are divided by means of an inside construction, such as an intermediate wall, into at least two washing sections. The invention may also be applied in thickeners.
The filtering member may also be formed of a number of discs having a filtering surface and rotating around a horizontal shaft. In the construction according to the invention, each washing section separated by an inside construction has the number of discs required in that specific section.
Typically, pulps coming from successive stages in the production line are treated in various sections of one and the same apparatus. Thus, the same apparatus may be used for washing brown stock and oxygen delignified pulp or acid treated and alkali extracted pulp or pulps treated in different chlorine dioxide stages, such as D1- and D2-stages. Which pulps are treated in each washing apparatus is naturally determined based on the treatment stages, such as the bleaching sequence, of the pulping line in question.
The invention may also be applied to existing apparatuses by providing them with an appropriate inside construction for forming treatment sections and with conduits for liquid and pulp flows required in said sections.
The invention also relates to a method for treating pulp, in which method the pulp is fed onto a liquid-permeable surface rotating around a shaft of the treating apparatus, onto which surface a pulp layer is formed, liquid is removed from said pulp layer, and the treated pulp is discharged from the apparatus. A characterizing feature is that on the rotating surface a first layer is formed of pulp coming from a first treatment stage, and a second layer is formed of a pulp coming from a second treatment stage in a distance from the first layer in the longitudinal direction of the shaft, and the pulp layers are treated essentially separately from each other. Preferably means, such as an intermediate wall, is arranged between the pulp layers, for forming separate sections so that said means prevents detrimental substance leakages from one treatment section to another. Typically, the treatment of pulp is washing. In one and the same apparatus, the first pulp may be brown stock and the second pulp an oxygen delignified pulp, or the first pulp comes from a first bleaching stage and the second pulp from a second bleaching stage, or the first pulp comes from an acid stage, especially from hexenuronic acid discharge stage known per se, and the other pulp from an alkali extraction stage. The washing liquid of one section may be washing filtrate from another section. According to one embodiment, the washing section is divided into washing stages so that washing filtrate from a certain stage is led in the flow direction of the pulp into at least one preceding stage to be used as washing liquid. Different filtrates may be obtained from one treatment section. According to one embodiment, different washing liquids are led to various points of the pulp layer in the washing section.
Advantages of the present invention include e.g. a remarkable space saving and reduced number of apparatuses, which both decrease expenses. Further, each washing section and the washing surface therein is used for treating a pulp entering from one treating stage only, whereby the conditions, such as the material of the washing surface, may be chosen based on the properties of that specific pulp. Accordingly, the size of the washing section is essentially dependent on the amount of pulp treated and its properties, such as filtration properties.
In the following, the apparatus according to the invention is explained in greater detail with reference to the appended Figures, in which
a shows a typical prior art apparatus arrangement, wherein brown stock from a digester (CK) and a blow tank (BT) is led into a brown stock washer (PreO2), which is e.g. a DRUM DISPLACER®-washer (Andritz Oy). The washed brown stock is sorted and oxygen-delignified in a two-step oxygen stage comprising reactors (O2I, O2II). The oxygen-delignified pulp is washed in a dedicated washer (PostO2).
As shown in
In
Similar to
In
Similar to
In the above, only a few embodiments of the invention in connection with bleaching are presented. The bleaching may comprise a desired number of stages and it is not limited to certain above-mentioned bleaching chemicals.
Number | Date | Country | Kind |
---|---|---|---|
20041161 | Sep 2004 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2005/000382 | 9/7/2005 | WO | 00 | 1/2/2008 |