1. Field of the Invention
This invention relates generally to the field of motion capture. More particularly, the invention relates to an apparatus and method for improving marker identification within a motion capture system.
2. Description of the Related Art
“Motion capture” refers generally to the tracking and recording of human and animal motion. Motion capture systems are used for a variety of applications including, for example, video games and computer-generated movies. In a typical motion capture session, the motion of a “performer” is captured and translated to a computer-generated character.
As illustrated in
A motion tracking unit 150 coupled to the cameras is programmed with the relative position of each of the markers 101, 102 and/or the known limitations of the performer's body. Using this information and the visual data provided from the cameras 120-122, the motion tracking unit 150 generates artificial motion data representing the movement of the performer during the motion capture session.
A graphics processing unit 152 renders an animated representation of the performer on a computer display 160 (or similar display device) using the motion data. For example, the graphics processing unit 152 may apply the captured motion of the performer to different animated characters and/or to include the animated characters in different computer-generated scenes. In one implementation, the motion tracking unit 150 and the graphics processing unit 152 are programmable cards coupled to the bus of a computer (e.g., such as the PCI and AGP buses found in many personal computers). One well known company which produces motion capture systems is Motion Analysis Corporation (see, e.g., www.motionanalysis.com).
b illustrates an exemplary motion capture camera 110. The camera 110 includes an illuminating ring 111 for directing light at the retro-reflective markers and a lens 112 for capturing light reflected off of the retro-reflective markers. As shown in the front view of the camera, the illuminating ring 111 generates light using a plurality of light emitting diodes (“LEDs”) 113 distributed along the front surface of the ring (i.e., the surface facing the markers). LEDs are particularly useful for this application because they are capable of generating light that is projected in a particular direction. The lens 112 passes through the center of the illuminating ring 111, as illustrated. Cameras such as this are available from a variety of companies including Vicon (www.vicon.com) and Motion Analysis (www.motionanalysis.com).
As illustrated generally in
One problem which results from this configuration is illustrated in
This becomes a problem for obvious reasons, i.e., the motion capture logic associated with camera 210 may misinterpret light ray 354 as a retro-reflective element, and the motion capture logic associated with camera 250 may misinterpret light ray 314 as a retro-reflective element. As a result, following a performance, a significant amount of “clean up” is typically required during which computer programmers or animators manually identify and remove each of the misinterpreted elements, resulting in significant additional production costs.
Current motion capture studios attempt to address this problem by positioning the cameras carefully so that no one camera is directed into the field of view of any other camera. For example, cameras 240, 250, and 260 may be removed from the field of view of camera 210 if they are positioned at a significantly different elevation than camera 210 or camera 210 is aimed at an angle which does not have any other cameras in its field of view. However, even with careful positioning, in a production which utilizes a significant number of cameras (e.g., 64) some cameras will almost certainly have other cameras within their field of view. As such, improved techniques for limiting the number of misinterpreted markers within a motion capture system are needed.
A system, apparatus and method are described for improving marker identification within a motion capture system. For example, a system according to one embodiment of the invention comprises: a plurality of cameras configurable for a motion capture session, each of the cameras having an illuminating device for generating light and a lens for capturing light reflected off of one or more retro-reflective markers used for the motion capture session; and a plurality of pieces of polarized material coupled over the illuminating device and the lens of each of the cameras, wherein for each individual camera, either a first orientation or a second orientation for the polarized material is selected based on which other cameras are within the individual camera's field of view and the orientation of the polarized material used for the other cameras, the first orientation being perpendicular to the second orientation.
A better understanding of the present invention can be obtained from the following detailed description in conjunction with the drawings, in which:
a illustrates a prior art motion capture system for tracking the motion of a performer using retro-reflective elements and cameras.
b illustrates a prior art motion tracking camera which includes an illuminating ring.
Described below is an improved apparatus and method for limiting the number of misidentified reflective markers within a motion capture system. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some of these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid obscuring the underlying principles of the invention.
As is known in the art, the electromagnetic (“EM”) field of unpolarized light has vectors in many different orientations. A polarized material filters EM fields in all orientations except for one. For example, a vertically-polarized material will filter all EM fields except for the EM fields with a vertical orientation. Conversely, horizontally-polarized material will filter all EM fields except for the EM fields with a horizontal orientation. Consequently, if vertically-polarized light is directed at a horizontally-polarized filter, no light (theoretically) should pass through the filter. Polarizing light to one orientation, then blocking it with a polarizing filter in a different orientation is known as “cross-polarization.” In practice cross-polarization doesn't completely block cross-polarized light, but it significantly attenuates it. Typical attenuation of brightness is 200:1.
One embodiment of the invention relies on the foregoing principles to limit the number of misidentified reflective markers within a motion capture system. Specifically, referring to
This is illustrated generally in
Light rays 911 and 914 emanate from the illuminating ring of camera 910 and pass through the horizontally-polarized material 915 of camera 910, thereby becoming horizontally polarized. Light rays 951 and 954 emanate from the illuminating ring of camera 950 and pass through the vertically-polarized material 955 of camera 950, thereby becoming vertically polarized. Light ray 911 hits retro-reflective marker 206 and reflects directly back (or almost directly back) towards camera 910 as light ray 912. Because light maintains its polarization after reflection, light ray 912 is horizontally-polarized. As a result, the horizontally-polarized material 915 allows light ray 912 to pass through to camera 910 with minimal attenuation. The position of the retro-reflective element 906 may then be identified and processed as described above. Similarly, light ray 951 hits retro-reflective marker 207 and reflects directly back towards camera 950 as light ray 952. Because light ray 952 is vertically polarized, the vertically-polarized material 955 allows it to pass through to camera 950.
Light ray 914 passes through the horizontally-polarized material 915 of camera 910, thereby becoming horizontally polarized, and is directed straight into camera 950. However, as illustrated in
Although the foregoing discussion focuses on cameras 910 and 950 for the purpose of illustration, the same general principles apply to each of the cameras illustrated in
In addition, in one embodiment, one or more spirit levels 1213, 1217 and 1214, 1218 are affixed to the outer surface of the first piece of polarized material 1216 and the second piece of polarized material 1216, respectively. The spirit levels are particularly useful because they indicate whether the polarized materials 1215, 1216 are in a horizontal and/or vertical position relative to the ground (as opposed to the cameras). Since cameras are often positioned at odd angles, the spirit levels establish an absolute reference for horizontal or vertical orientation.
Also, in one embodiment a single ring holding polarized material covers both the lens and the illuminating ring. And in yet another embodiment this single ring has a spirit levels attached to it to achieve an absolute orientation of horizontal or vertical relative to the ground.
It should be obvious to a practitioner skilled in the art that in the previous embodiments other leveling techniques, both passive and electronic, can be used in place of spirit levels. It should also be obvious that many known mechanical techniques can be used to attach the polarizing filters to the lens and/or illuminating ring in addition to the threaded rings described above.
As indicated in
Embodiments of the invention may include various steps as set forth above. The steps may be embodied in machine-executable instructions which cause a general-purpose or special-purpose processor to perform certain steps. Various elements which are not relevant to the underlying principles of the invention such as computer memory, hard drive, input devices, have been left out of the figures to avoid obscuring the pertinent aspects of the invention.
Alternatively, in one embodiment, the various functional modules illustrated herein and the associated steps may be performed by specific hardware components that contain hardwired logic for performing the steps, such as an application-specific integrated circuit (“ASIC”) or by any combination of programmed computer components and custom hardware components.
Elements of the present invention may also be provided as a machine-readable medium for storing the machine-executable instructions. The machine-readable medium may include, but is not limited to, flash memory, optical disks, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media or other type of machine-readable media suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program which may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).
Throughout the foregoing description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present system and method. It will be apparent, however, to one skilled in the art that the system and method may be practiced without some of these specific details. For example, while certain specific techniques are described above to attach polarized material to motion capture cameras, the underlying principles of the invention are not limited to any particular attachment mechanism.
Accordingly, the scope and spirit of the present invention should be judged in terms of the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
3699856 | Chabot, et al. | Oct 1972 | A |
4389670 | Davidson et al. | Jun 1983 | A |
5227985 | DeMenthon | Jul 1993 | A |
5235416 | Stanhope | Aug 1993 | A |
5304809 | Wickersheim | Apr 1994 | A |
5569317 | Sarada et al. | Oct 1996 | A |
6020892 | Dillon | Feb 2000 | A |
6148280 | Kramer | Nov 2000 | A |
6151118 | Norita et al. | Nov 2000 | A |
6243198 | Sedlmayr | Jun 2001 | B1 |
6473717 | Claussen et al. | Oct 2002 | B1 |
6487516 | Amorai-Moriya | Nov 2002 | B1 |
6513921 | Houle | Feb 2003 | B1 |
6554706 | Kim et al. | Apr 2003 | B2 |
6592465 | Lutz et al. | Jul 2003 | B2 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6850872 | Marschner et al. | Feb 2005 | B1 |
6943949 | Sedlmayr | Sep 2005 | B2 |
7068277 | Menache | Jun 2006 | B2 |
7081997 | Sedlmayr | Jul 2006 | B2 |
7154671 | Sedlmayr | Dec 2006 | B2 |
7184047 | Crampton | Feb 2007 | B1 |
7218320 | Gordon et al. | May 2007 | B2 |
7333113 | Gordon | Feb 2008 | B2 |
7358972 | Gordon et al. | Apr 2008 | B2 |
7369681 | Foth et al. | May 2008 | B2 |
20030095186 | Aman et al. | May 2003 | A1 |
20050105772 | Voronka et al. | May 2005 | A1 |
20060061680 | Madhavan et al. | Mar 2006 | A1 |
20060192785 | Marschner et al. | Aug 2006 | A1 |
20070024946 | Panasyuk et al. | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
WO 9955220 | Nov 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060192854 A1 | Aug 2006 | US |