This application is the U.S. National Stage of International Application No. PCT/GB03/00200, filed Jan. 22, 2003, published in English, and claims priority under 35 U.S.C. § 119 or 365 to Great Britain Application No. 0202538.5, filed Feb. 4, 2002.
The present invention relates to an apparatus and method for dispensing small quantities of particles, and to a deagglomeration device for such an apparatus.
The flow characteristics of powders have a tendency to prevent flow of the powder through small holes, for example in a sieve located at the bottom of a hopper containing the powder, under the action of gravity because the powder particles tend to agglomerate into larger particles. However it is well known that shaking the hopper causes the powder to flow. It has been shown that applying discrete movements of a well-defined nature to the hopper can cause a reproducible amount of powder to flow through the holes.
For example, WO-A-01/33176 discloses an apparatus and method for dispensing small quantities of particles, in particular small amounts of medicament especially in a powder form. The apparatus uses dispense head comprising a funnel shaped hopper with a plurality of holes in a membrane at the base of the hopper, forming a sieve-like element, through which powder present in the hopper may fall. A preferred method is to tap the hopper horizontally to cause such a movement, thereby controllably dispensing powder through the membrane. The tapping is achieved by an electromechanical actuator which delivers impact energy to the hopper, which in turn causes a small number of particles to fall through the sieve-like element and onto a weighing measuring balance. The actuator is a horizontally oriented solenoid which taps the side of the hopper via a rod which supports the hopper at one end and has the solenoid mounted at the other end. A tapping action can also be done with a vertical component to the action of the actuator or the resultant movement of the hopper.
Referring to
In order to use the apparatus for precision dispensing, a receptacle 8 for the powder 7 is placed under the plate 4 and the hopper 1 is tapped on the sidewall 9 thereof at a location 6. The tap may be in a form that results from the impact of a mass travelling at a controlled velocity. The resulting motion of the hopper 1 and powder 7 causes the powder 7 to flow through the holes 5 in the plate 4 for a small period of time following the impact, after which the powder flow stops. Thus a discrete amount of powder 7 is controllably dispensed into the receptacle 8 as a result of each tap.
In order to accurately dispense a desired total amount of the powder 7, a plurality of taps are used to fill each receptacle 8 and the total weight of powder 7 dispensed into the receptacle 8 is measured in real time so that as soon as the required amount has been dispensed, the tapping can be stopped. The rate of tapping is controlled by a control computer. If desired, a mechanical action on the dispense head other than tapping may be employed controllably to dispense the powder.
The known dispense head described hereinabove relies for its effectiveness on its ability to dispense roughly consistent amounts of powder with each successive mechanical action or tap. This occurs because a roughly similar amount of drug powder is released through the holes on each occasion, as the bridge of powder over any given hole is broken. In a typical application the powder may consist of particles which are 20 to 100 microns diameter, and the holes may be 300 or 400 microns diameter.
This known system works very well with the majority of materials. However it has some shortcomings when loaded with materials which have a tendency to agglomerate. Sometimes drug materials can be ground or milled down to very small particle size, to help with drug dissolution and absorption within the patient, or for other purposes. When the small particles are of the order of a few microns in diameter, the powder is typically described in the art as being ‘micronised’. These materials frequently have a tendency to form large loose agglomerates when handled. These agglomerates take the form of larger assemblies of particles formed from loosely grouped individual particles, rather like snowballs made from powdered snow. These larger particles may be many different sizes—commonly ranging from tens of microns in diameter up to 2 or 3 millimeters in diameter, or even larger.
It will be appreciated that with a powder which has a tendency to agglomerate, the holes may become occluded by agglomerated assemblies of particles whose diameters are greater than the hole diameters. Although some smaller particles may be released, the amount can be very small, and thus the process of dispensing may take considerably longer as a consequence and in some circumstances render the process of dispensing by the dispense head unachievable.
Attempts to remedy this by employing a dispense head which has larger holes are only of limited success, because the agglomerates are not of consistent size. The result of this is that the amount of drug released from the dispense head for any given tap or mechanical action becomes very variable. If the agglomerates become larger, then the flow is restricted again. If the agglomerates are locally smaller, then too large amounts of powder can be released, leading to potential over dispensing above the target value, and the process is more difficult to control.
GB-A-2185242 discloses a feeder of loose materials for industrial use in transporting and storing various fine grain, powder pulverulent and fibrous loose materials. The feeder includes a hopper having at its base a chamber provided with a control means having the form of a latticed portion with magnetic bodies, such as spheres, placed thereon, and a source of alternating magnetic field which acts to cover the chamber by magnetic lines of force generated thereby. The latticed portion comprises a plurality of parallel vertical plates, horizontal lugs of which are received in recesses. The plates are capable of oscillating and possibly moving up and down in the recesses when the recesses are slots. When the source of magnetic field is switched off, the magnetic bodies are clustered to cover the lattice portion to prevent inadvertent escape of the loose material from the hopper of the feeder. When the source of magnetic field is switched on, the cluster is broken up to permit the material to escape, and the magnetic bodies move randomly to impact the plates, causing them to oscillate, thereby promoting passage of material through the latticed portion. The disclosed feeder is not concerned with the dispensing of small quantities of particles, or with the problem of deagglomeration of powder particles.
The present invention at least partially aims to overcome these problems of the known apparatus and method for dispensing small quantities of particles using a dispense head.
Accordingly, the present invention provides an apparatus for dispensing small quantities of particles, the apparatus comprising a hopper provided with a sieve at a bottom portion thereof, the hopper defining a powder-containing zone above the sieve which in use contains powder to be dispensed therefrom through the sieve, a support for the hopper, the support holding a portion of the hopper so that the hopper can in use be held above a container into which the dispensed powder is to be received, at least one actuator for delivering impact energy to the hopper for causing powder to be dispensed through the sieve when the hopper receives the impact energy, and a deagglomeration device disposed in the powder-containing zone.
In some preferred embodiments, the deagglomeration device comprises at least one stirring device which Is adapted to be movable when impact energy from the at least one actuator is delivered to the hopper.
In another preferred embodiment, the deagglomeration device comprises at least one movable sealing element, the or each of which covers a respective hole in the sieve and Is movable by the impact energy from the actuator so as periodically to move temporarily away from the hole to unseal the hole and be urged against the powder thereby to cause deagglomeration thereof.
In another preferred embodiment, the deagglomeration device comprises a powder feed tube extending downwardly into the powder-containing zone for feeding powder disposed, in use, therein to a location just above the sieve.
The present invention also provides a method of dispensing small quantities of particles, the method comprising the steps of: disposing in a hopper provided with a sieve at a bottom portion thereof a powder to be dispensed therefrom through the sieve; deagglomerating the powder in the hopper by mechanically engaging the powder with a deagglomeration device disposed in a powder-containing zone located above the sieve; supporting the hopper by holding a portion of the hopper with a support so that the hopper is held above a container into which the dispensed powder is to be received; and delivering impact energy to the hopper by at least one actuator thereby to cause powder to be dispensed through the sieve when the hopper receives the impact energy.
In some preferred embodiments, the deagglomeration device comprises at least one stirring device which is adapted to be movable when impact energy from the at least one actuator is delivered to the hopper, and in the delivering step the impact energy also causes movement of the at least one stirring device in the powder.
In another preferred embodiment, the deagglomeration device comprises at least one movable sealing element the or each of which covers a respective hole in the sieve and is movable by the impact energy from the actuator so as periodically to move temporarily away from the hole to unseal the hole and be urged against the powder thereby to cause deagglomeration thereof, nd in the delivering step the Impact energy also causes movement of the at least one sealing element.
In another preferred embodiment, the deagglomeration device comprises a powder feed tube extending downwardly into the powder-containing zone for feeding powder disposed therein to a location just above the sieve.
The present invention yet further provides a powder deagglomeration device for an apparatus for dispensing small quantities of particles, the deagglomeration device comprising an elongate bridge member having opposed ends and a central part therebetween, and a plurality of elongate stirring elements fixed to and extending orthogonally away from the centre part.
This invention accordingly provides the advantage that the powder in the hopper is subjected to a deagglomeration action which tends to form a more homogeneous distribution of particle sizes, as a result of the deagglomeration action tending to reduce particle agglomeration in the hopper by physical breaking up of any agglomerates and/or by preventing any further agglomerates from being formed. This in turn tends to permit more accurate dispensing of the target weights of the powder, with in particular less incidence of over dispensing above the target dispensed weight, and also tends to provide more even dispensing times for successive doses of the same target weight.
The present invention is predicated on the discovery by the inventors that rather than modifying the dimensions of the sieve to accommodate any agglomeration of the micronised particles, which can lead to problems of over dispensing and may not in any event adequately overcome the agglomeration problem, the agglomeration problem can be reduced or substantially eliminated by mechanically treating the powder immediately prior to dispensing while the powder is in the hopper.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
When a first current pulse is passed through the first coil 28, the armature 31 is accelerated towards the second end face 38 of the cavity 27 and the end wall 36 impacts it. The impact momentum is transferred by the cantilever arm 25 to the hopper 20 and the bulk powder 24 therein and causes a discrete amount of the powder 24 to fall into a receptacle 39 located, in use, beneath the sieve 21 of the hopper 20. Thereafter, when a second current pulse is passed through the second coil 28, the armature 31 is accelerated towards the first end face 37 of the cavity 27 and the end wall 35 impacts it. The impact momentum is again transferred by the cantilever arm 25 to the hopper 20 and the bulk powder 24 therein and causes a discrete amount of the powder 24 to fall into the receptacle 39. Accordingly, alternate energising of the two coils 28,29 causes the armature 31 to move in opposite directions in an alternating manner.
With this arrangement it is possible to tap the hopper 20 in either direction along the cantilever arm 25. The arrow indicates the direction of tapping. Accordingly, powder dispensing may occur either by alternating the direction of tapping in successive tapping steps corresponding to successive powder dispense actions or alternatively by always using a pair of taps closely separated in time in a single tapping step to achieve a single powder dispense action.
The use of a solenoid 30 to generate the impact on the hopper 20 and the bulk powder 24 therein allows the magnitude of the impact to be altered by controlling the voltage driving the first and second coils 28,29 of the solenoid 30. Thus even if the mechanical arrangement causes some difference between the magnitude or effect of the forward and reverse taps associated with the energization of the two coils 28,29, the overall cumulative effect can be balanced by using different forward and reverse drive voltages. The same effect can be achieved by changing the pulse width, i.e. the period of time during which each coil 28,29 is switched on.
The problem of agglomeration of the bulk powder 24 in the hopper 20 above the sieve 21 is overcome in accordance with the invention by the provision of at least one stirring device in the hopper 20 which is designed either to prevent the formation of agglomerates and/or to break up any agglomerates which have formed. A number of different embodiments of the stirring device are described below.
Referring to
At a centre part 56 of the bridge piece 44 a plurality of downwardly depending stirring elements 58 is provided. In this embodiment, the stirring elements 58 comprise wires which are fixed at their upper ends 60 to the centre part 56 of the bridge piece 44, with the wires 58 being straight and extending vertically downwardly so that their lower ends 62 are located just above the sieve 21 in the powder-containing zone 42. In the illustrated embodiment, three wires 58 are provided, but this number may be varied. Furthermore, in the illustrated embodiment each wire 58 is straight and has a cylindrical cross-section with a smooth outer surface, but the surface may alternatively be profiled and the wires 58 may alternatively be shaped by bending along their length. The wires 58 are typically composed of stainless steel and are fixed to the bridge piece 44, for example by welding.
The wires 58 are selected to have a length and cross-section, and the material of the wires 58 is selected to have a modulus of elasticity, so that when the hopper 20 is tapped laterally, in the direction shown in
When the bridge piece 44 is removably located on the rim 46 of the hopper 20, there is preferably provided a small lateral clearance between the bridge piece 44 and the rim 46, by the provision of an appropriately wider width for each of the slots 52,54 as compared to the thickness of the rim 46, for example a difference of up to about 1 mm, to enable the bridge piece 44 to move laterally relative to the rim 46. When impact energy is delivered to the hopper 20, this causes the bridge piece 44 to move in a sliding action laterally relative to the hopper 20, which in turn permits the lower ends 62 of the wires 58 to move laterally relative to the sieve 21. This assists the effectiveness of the wires 58 breaking up any agglomerated assemblies of particles in the powder-containing zone 42 above the sieve 21. This in turn assists the delivery of regular amounts of powder through the sieve 21 for each tap.
Moreover, the weight of the combined assembly of the bridge piece 44 and the wires 58 is, in the illustrated embodiment, selected so that when the impact energy from the actuator impacts the hopper 20, the energy transmitted to the bridge piece 44 from the rim 46 can cause the bridge piece 44 to move vertically, for example up to a distance of 1 mm, in a jumping action, which in turn causes vertical movement of the lower ends 62 of the wires 58 in the bulk powder 24. This again assists in breaking up any agglomerated particles.
In the embodiment of
If the hole diameter is ‘D’ then the largest spherical agglomerate which could pass through it would have a diameter very close to ‘D’ and its weight ‘W’ can be calculated from the bulk density ‘d’ by the following well known equation:
W=(4/3)×Pi×(D/2)3 (where Pi=3.14157)
Thus an agglomerate of diameter 1 mm and density 0.4 grams per cubic centimeter would have a weight of 0.21 mg. It follows, in this example, that the hole size needs to be 1 mm diameter or smaller in order to prevent overdispensing as a result of too heavy agglomerates being able to pass through the holes.
It follows therefore that the sieve and stirring device design illustrated in
Referring to
When the hopper 20 is subjected to the tapping action as shown by the arrow in
Referring to
The small triangle has three side of lengths R, (R−r) and (R+r). They are related together by Pythagoras' theorem:
(R+r)2=(R−r)2+R2
This equation can be rearranged to give
4Rr=R2
and hence r=R/4
Taking a specific example therefore, if the intention is to avoid agglomerates greater than 1 mm in width (since the sieve hole width or diameter is the same size, i.e. 1 mm), the ball size should be no greater than 4 mm. This calculation is of course approximate (only being a two dimensional view). However it gives a useful indication of realistic geometry requirements for, in combination, the ball size and the sieve hole size (namely the ball size should be about four times the hole size).
Referring to
Prior to dispensing, the balls 90 act to prevent any powder leaving the hopper 80, because of the sealing action of the holes 84 by the balls 90. The sealing of the holes 84 does not rely upon any powder bridging the holes 84, as in the earlier embodiments, but relies rather on the holes. 84 being sealed by the respective balls 90. When the hopper 80 is tapped in the direction of the arrow shown in
The weight and dimensions of the balls 90, and the dimensions of the associated depressions 88 and holes 84, are selected in conjunction with the impact energy from the actuator, so that no ball 90 is inadvertently caused to be moved out of its respective depression 88, or is moved by such a large displacement so that overdispensing of powder through the holes 84 could occur.
Referring to
This provision of a powder storage device 100, mechanically unconnected to the hopper 104, tends to reduce the amount of agglomeration which may occur as a result of the tapping action, because a proportion of the powder 106 is not exposed to the tapping action, which would otherwise tend to assist agglomerates being formed, and instead the powder 106 is only subjected to the tapping action immediately prior to being sieved through the sieve 108.
Furthermore, the lower end 116 of the powder storage device 100, since it extends into the powder-containing zone 102, moves within the powder 106 present in the powder-containing zone 102, thereby effecting a stirring action which also assists in breaking up any agglomerates which may be present, and/or prevents the agglomeration of particles in that zone 102.
Number | Date | Country | Kind |
---|---|---|---|
0202538.5 | Feb 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/00200 | 1/22/2003 | WO | 00 | 10/25/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/066436 | 8/14/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1712235 | Small | May 1929 | A |
2246497 | Beck | Jun 1941 | A |
2573315 | Dericks | Oct 1951 | A |
2676733 | Lober | Apr 1954 | A |
2742184 | Yerkes et al. | Apr 1956 | A |
3179302 | Murray | Apr 1965 | A |
3353572 | Anderson et al. | Nov 1967 | A |
3791558 | Katusha | Feb 1974 | A |
4083475 | Venner et al. | Apr 1978 | A |
4188907 | Lipani | Feb 1980 | A |
4378078 | Daniels | Mar 1983 | A |
4684041 | Jones et al. | Aug 1987 | A |
5215228 | Andrews et al. | Jun 1993 | A |
5685348 | Wegman et al. | Nov 1997 | A |
6471096 | Dave | Oct 2002 | B1 |
20040045979 | MacMichael | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
5330609 | Dec 1983 | AU |
O 225 836 | Jun 1987 | EP |
1 281 992 | Jan 1962 | FR |
986 559 | Mar 1965 | GB |
2 185 242 | Jul 1987 | GB |
2306950 | May 1997 | GB |
WO 0133176 | May 2001 | WO |
WO 03026965 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050040185 A1 | Feb 2005 | US |