The present invention is a novel applanation tonometer used to accurately measure intraocular pressures for the purpose of diagnosing and monitoring treatment for glaucoma and ocular hypertension. Specifically, the applanation is done with both an ultrasonic transducer that measures corneal thickness at the point of applanation and an intraocular pressure (IOP) measuring transducer. Since applanation pressure is a function of corneal thickness, the simultaneous determination of both variables at the same location allows for more accurate determination of intraocular pressure. The configuration of the applanation IOP measuring transducer and the ultrasonic transducer allows a minimally trained operator to determine the precise endpoint of applanation.
Glaucoma refers to a specific pattern of optic nerve damage and visual field loss caused by a number of different eye diseases. Frequently, these diseases are characterized by elevated intraocular pressure; a leading risk factor for development of glaucoma. Millions of people worldwide suffer from glaucoma, at least half of which do not know they have the disease because glaucoma has no symptoms until there is generally irreversible vision loss. Devices that measure intraocular pressure are referred to as tonometers.
Applanation tonometery was popularized by Goldmann as an improved method of intraocular pressure determination in comparison to indentation tonometery or invasive intraocular pressure measurements. Goldmann applanation tonometery uses and indirect pressure measurement technique based on the Imbert-Fink principal which teaches that pressure inside a liquid filled sphere can be determined by measuring the force required to flatten a portion of the surface. There are several indirect measurement devices in addition to the Goldmann tonometer that have been conceived, e.g. the Mackey Marg, Perkins and Draeger to name a few. They measure either the degree of indentation of the cornea produced by an application probe or they measure the force required for the probe to flatten a defined area of the cornea. Details of such previous devices are widely available in numerous textbooks and will not be discussed herein.
It will be obvious to one knowledgeable in the art that variations in thickness of the cornea would affect the accuracy of its applanation in the indirect measuring techniques. Specifically, a thinner than normal cornea would applanation easier than a normal thickness cornea, thereby generating a falsely low measure of intraocular pressure. Conversely, a thicker than normal cornea would overestimate the true intraocular pressure. Since the diagnosis of glaucoma and the assessment of the adequacy of treatment are largely dependent upon intraocular pressure, the accuracy of intraocular pressure measurements is of paramount importance. Presently, in order to determine variations in corneal thickness, prior art has used pachymetry by optical or ultrasonic means to measure corneal thickness. It is time-consuming and expensive to use a second instrument, e.g. an ultrasonic pachymeter, sequentially with the tonometer. Moreover, it is impossible to know if the portion of the cornea applanated for tonometery was the portion whose thickness was measured. Further, the determination of both applanation tonometery and corneal pachymetry requires solving and equation in order to calculate the true intraocular pressure. As a result, the correction of applanation tonometery for corneal thickness variables is generally not widely done except in academic or research circumstances.
Recently, studies of ocular hypertensive patients sponsored by the National Eye Institute (NEI) of the National Institutes of Health (NIH) have demonstrated that corneal thickness is the single most important predictor of glaucoma. Corneal thickness is inversely proportional to the risk of developing glaucomatous damage. That is to say, among ocular hypertensives, the thinner the cornea the greater the risk of glaucoma.
During Goldmann applanation tonometery, the so-called “gold standard” for measurements of intraocular pressure, a fluorescent dye is applied to the corneal surface to aid in the pressure measurement. In an upright patient, the operator looks through ocular is of a slit lamp microscope in order to obtain a clear view of the cornea through the applanation device. Under direct vision of the operator, the applanation element is momentarily pressed on to the cornea by the operator. The cornea flattens as a result of the force applied by the applanation element. This in turn causes a change in the pattern of fluorescence. The operator observes these changes and when the pattern of fluorescence reaches a predetermined endpoint the intraocular pressure is determined. This method also helps to reduce inadvertent trauma to the delicate epithelial layer of the cornea. This technique as well as measurements with the classical tonometers requires training, skill and experience. Technique is critical with present tonometery because it is important not to under applanate or over applanate the cornea. A well-trained and skilled operator is required in order to obtain accurate and repeatable results.
In the U.S. Pat. No. 6,083,161 and as taught in CIP Ser. No. 10/234,294, filed on Sep. 3, 2002, O'Donnell disclosed new apparatus and method which provides more accurate intraocular pressure determination. The apparatus measures conventional tonometery as well as corneal thickness using a single integrated device. Both measurements are made on the exact region of the cornea. The apparatus uses a transparent corneal applanation element for use in the determination of the applanation pressure. An ultrasonic transducer is preferably coaxial with or part of the tonometer transducer and is used to measure corneal thickness. Such a design would normally partially skewer the view of the cornea and make the measurement difficult or impossible. However the improved apparatus uses an internal reflection technique in order to view around the obscuration. However, this improved method still suffers from the difficulty of measurement as described above including use of fluorescein dye viewed through an expensive and generally non-mobile slit-lamp microscope in patients seated in an upright position. Further, it requires a well-trained and skilled operator in order to obtain accurate and repeatable results.
Hyman teaches a method for determining intraocular pressure using a conventional slit lamp-based Goldmann style tonometer and a pachymeter correcting for corneal thickness. After the pachymeter signal is generated, this method requires the application probe to be moved in a direction toward the subjects' eye until a measurement endpoint is observed by the observer. This method is cumbersome and costly. In addition, the method requires the application probe to be in contact with the cornea for a long time; sufficient to change between the two sensors. Contact with the cornea for an extended period of time can alter the intraocular pressure and is uncomfortable for the patient.
There are instances where accurate IOP determination is required and where skilled operators are not present, e.g. examining patients during hospital rounds, emergency rooms, private ophthalmic and optometrist's offices, intern's offices, etc. Further, the use of a portable or handheld tonometer is beneficial or required when the patient is not in an upper right position, e.g. the operating room during surgery, use with children and infants and during patient rounds on the hospital floors. While there are portable tonometers available they cannot measure or correct for corneal thickness.
Other prior art showing related technology can be seen in the following patents.
There exists a need, therefore, for a simple to use, portable device that does not require trained personnel to simultaneously perform tonometery and pachymetry, register more accurate intraocular pressure for general clinical use and be suitable for use in any position. The present invention applanates the cornea with an ultrasonic transducer while simultaneously recording applanation pressure and corneal thickness in the exact region of applanation. The present invention can be configured for use as either a fixed or mobile device and can be used in any position. A microprocessor converts the applanation pressure to an adjusted intraocular pressure which more accurately reflects the true intraocular pressure when compared to conventional applanation tonometery. This device and method allows for quick, convenient, easy to use, portable and precise determination of intraocular pressure.
It is an object of the present invention to provide a device which can easily and accurately determine intraocular pressure regardless of variations in corneal thickness.
It is a further objective of the present invention to provide pachymetry determination in the exact region of cornea applanation IOP measurements.
It is a further object of the present invention to use a microprocessor means to adjust the applanation pressure determination for differences in corneal thickness and to record for the clinician an adjusted intraocular pressure.
It is a further object of the present invention to use an applanation component designed to allow the operator to atraumatically measure intraocular pressure without the requirement to view the corneal surface with a microscope at the point of applanation, thereby facilitating easy use of the device by minimally skilled personnel.
It is a further object of the present invention to use an applanation component designed to eliminate the requirement for use of a fluorescent dye on the cornea during applanation.
It is a further object of the present invention to use a non-visual means of obtaining the clinical endpoint.
It is a further object of the present invention to accurately measure intraocular pressure with the patient in any position.
Other objects and purposes for this invention will occur to those skilled in the art upon review of the invention as described and analyzed herein in light of its drawings and teachings. The present invention is not to be restricted in form nor limited in scope except by the claims appended hereto.
Referring to the drawings,
It is a preferred embodiment of the present invention to obtain more accurate intraocular pressure measurements using a solid-state, ultrasonic cornea thickness measuring means working in the 10 to 20 MHz frequency domain in functional association with a pressure sensing means as an applanation surface of predetermined area for contact with the corneal surface.
In another preferred embodiment, the applanation surface is a replaceable membrane.
In another preferred embodiment, the pressure sensing means is located proximal to the applanation surface and in functional relation to the corneal surface.
In another preferred embodiment, the device displays a digital LED readout of the applanation pressure, the corneal thickness and the intraocular pressure adjusted for corneal thickness.
It is yet a further preferred embodiment in which the measurement system incorporates a sensing means responsive to proper positioning of the system.
A patient preparing for Laser Assisted In situ Keratomileusis (LASIK) photorefractive surgery for minus eight diopters (−8D) of myopia has a preoperative central corneal thickness of 452 microns. Six months following the LASIK procedure the intraocular pressure is measured as determined by Goldmann tonometery as 16 mmHg. The uncorrected intraocular pressure as determined by the present invention is also 16 mmHg. Pachymetry indicates the central corneal thickness to be 347 microns. The corrected intraocular pressure as determined by the present invention is 25 mmHg. In this example the present invention demonstrated that the intraocular pressure was higher than would be otherwise apparent; potentially masking glaucoma. The normal intraocular pressure ranges from 12 to 21 mmHg.
A patient presented for a routine of found that examination has an intraocular pressure of 19 mmHg as determined by Goldmann tonometery. The uncorrected intraocular as determined by the present invention is also 19 mmHg. Pachymetry indicates the central corneal thickness to be 485 microns. The corrected intraocular pressure as determined by the present invention is 23 mmHg. In this example the present invention demonstrated that the intraocular pressure was higher than would be otherwise apparent; masking glaucoma.
The apparatus of this invention described and shown herein is a novel device for simultaneous measurement, at the same locus of applanation, pressure and surface thickness of a fluid filled sphere for more accurate determination of intracavity pressure, wherein at least a portion of the applanation surface is an ultrasonic transducer. The method for utilizing this device includes the simultaneous measurement, at the same locus of applanation, intracavity pressure and surface thickness of a fluid filled sphere for more accurate determination of intracavity pressure. In addition this novel device provides for simultaneous measurement, at the same locus of applanation, tonometery and pachymetry for determination of more accurate intraocular pressure, wherein at least a portion of the applanation surface is an ultrasonic transducer. Further, the method and device of the invention herein can provide for a fixation light source to stabilize the patient eye during applanation. Further yet, this invention includes a method of simultaneous measurement, at the same locus of applanation tonometery and pachymetry for the purpose of more accurate intraocular pressure determination. The locus of applanation tonometery and pachymetry is preferably the cornea of the eye.
Referring now to the drawings,
As shown in
As shown in
Alternatively as shown in
Variations or modifications to the subject matter of this invention may occur to those skilled in the art upon review of the summary provided herein, in addition to the description of its preferred embodiment, in light of the drawings. Such variations, if within the spirit of this invention, are intended to be encompassed within the scope of the invention as described herein.
This non provisional patent application claims priority to the provisional patent application having Ser. No. 60/489,681, which was filed on Jul. 24, 2003.
Number | Date | Country | |
---|---|---|---|
60489681 | Jul 2003 | US |