The invention generally relates to finger trap loops, and more particularly, double finger trap loops in parachutes and other weight-critical aircraft applications.
It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not to be viewed as being restrictive of the invention, as claimed. Further advantages of this invention will be apparent after a review of the following detailed description of the disclosed embodiments, which are illustrated schematically in the accompanying drawings and in the appended claims.
The invention generally relates to finger trap loops, and more particularly, double finger trap loops in parachutes and other weight-critical aircraft applications.
Cords are used in a variety of applications in both civilian and military matters. Many high strength, low elongation textile cords used in parachute design and other weight-critical applications lose more than half their strength when knotted due to their molecular composition. These cords must be connected through a technique called finger trapping.
The finger trap technique is used to connect high strength, low elongation braided cords to other cords or to itself to form a loop. To make a fingertrap, one end of the cord is inserted into the center of another cord (or itself to make a loop), and the end of the other cord is inserted into the center of the first cord. When a load is applied to the cord(s), the braid of the outer cord geometrically elongates, which causes it to collapse radially, applying sufficient friction to trap the inner cord. Typically, the ends of the cord are tapered inside to minimize stress risers where a single layer meets a double layer of cord. The stress risers occur at radius changes and reduce overall tensile strength. This point on the outer cord is where structural failure occurs, which is typically 80 to 90 percent of the cord strength. Additionally, the inner cord adds to the weight of the assembly but does not add to the strength resulting in a heavier than necessary joint. Because of this, it is desirous to find an improved strength double finger trap loop.
Referring to the accompanying drawings in which like reference numbers indicate like elements,
As depicted in
In an embodiment shown in
The first end 14 and second end 16 are associated with each other. The association is capable of adhering the first end 14 to the second end 16, but the adherence is not required. Adherence may be an internal stitch 22 (also shown in
Another embodiment of the invention includes a method of making a loop of rope 10. One skilled in the art will recognize that the method of making the loop of rope can be performed by an individual or automated such as, for example, with a machine. At least one braid 12 is provided. The braid 12 has a first end 14 and a second end 16 and is defined by an inner portion 18 and an outer portion 20. The inner portion 18 is a hollow conduit in the braid 12, which allows the braid to readily accept the first end 14 and the second end 16 into the hollow conduit.
The first end 14 and second end 16 may be associated by an internal stitch 22. The internal stitch 22 may be a continuous stitch or other suitable associating device that is readily adaptable for securing the first end 14 to the second end 16. A user tapers the first end 14 and second end 16 at suitable angles to facilitate connecting the first end to the second end. The taper angles are dependent on operational requirements.
Tapering the first 14 and second ends 16 of the braid 12 allows them to be stacked on top of each other so that they can be attached together, or laid one on top of the other, while retaining a uniform inner cord radius. Changes in the radius would result in a stress riser that would ultimately break first when enough load is applied.
The braid 12 is separated in at least two places to expose the hollow conduit 18 in at least two locations. One skilled in the art will recognize that ropes are a conglomeration of braided yarns. The two separated places are gaps created by spreading braided yarns on the braid 12 and may be located anywhere along the braid that meets operational needs. Both the first 14 and second 16 ends are inserted into the hollow conduit 18 using a Bodkin tool in the at least two places. One skilled in the art will recognize that a Bodkin tool is used to create finger trap loops. The first end 14 and second end 16 are pulled through the hollow conduit 18 and out another of one of the at least two locations with the Bodkin tool.
The user may connect the first end 14 to the second end 16 by actuating and securing the associated first end and second end by sewing the internal stitch 22 into the tapered ends to secure the ends together. This allows the first 14 and second 16 ends to stay in place as load is applied. Stitch 22 spacing is dependent on operational circumstances. The loop 10 is completed by feeding the first 14 and second 16 ends back into the hollow conduit 18 in such manner that both the first and second ends reside inside the hollow conduit. After the first 14 and second 16 ends are tucked back inside the hollow conduit 18, the gaps are closed.
This process eliminates the stress riser inherent in standard finger traps, dramatically increasing the original strength of the cord and thus reducing the overall weight since a lighter weight material can be used to generate the required strength. These aspects are crucial when lightweight materials are needed, seconds count, and lives are at stake. As such, the apparatus 10 may be used in applications such as, for example, flight, space, aircraft, and attachment tethering systems.
While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.
The invention described herein may be manufactured and used by or for the government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
Number | Name | Date | Kind |
---|---|---|---|
330087 | Binns | Nov 1885 | A |
592686 | Binns | Oct 1897 | A |
758286 | Warner | Apr 1904 | A |
1224203 | Patten | May 1917 | A |
1655752 | Coe | Jan 1928 | A |
1967102 | Schlegel | Jul 1934 | A |
2943434 | Joy et al. | Jul 1960 | A |
3026762 | Jordan | Mar 1962 | A |
4099750 | McGrew | Jul 1978 | A |
RE33389 | Beck | Oct 1990 | E |
5583319 | Lieurance | Dec 1996 | A |
5699657 | Paulson | Dec 1997 | A |
7240475 | Smeets et al. | Jul 2007 | B2 |