APPARATUS AND METHOD OF MANUFACTURING AN ELASTIC COMPOSITE STRUCTURE FOR AN ABSORBENT SANITARY PRODUCT

Abstract
An elastic composite structure includes a plurality of tensioned elastic threads positioned between first and second web layers. A pattern of laminating bonds fuse the first and second web layers together within a deactivated zone of the elastic composite structure. A cut end of a first portion of a tensioned elastic thread and a cut end of a second portion of the tensioned elastic thread are positioned on opposing ends of the deactivated zone. A pattern of anchoring bonds fuses the first and second web layers together within an anchored zone bounding opposing ends of the deactivated zone. The anchored zone includes a first plurality of bonds that anchor the first portion of the tensioned elastic thread to the first and second web layers and a second plurality of bonds arranged that anchor the second portion of the tensioned elastic thread to the first and second web layers.
Description
BACKGROUND OF THE INVENTION

Embodiments of the invention relate generally to absorbent sanitary products and, more particularly, to an improved apparatus and method for manufacturing an elastic composite structure for use in an absorbent sanitary product that includes elasticized regions and regions of relative inelasticity while minimizing or eliminating the use of consumable adhesives such as glue.


Absorbent sanitary products, such as disposable diapers, are typically equipped with elastic composite structures that include one or more elastic threads. These elastic composite structures are positioned at various locations throughout the product, including in the waistbands, leg cuff regions, and throughout all or portions of the front or back panels of the product. During the typical manufacturing process of an elastic composite structure, the elastic threads are held in a tensioned state and an adhesive is used to secure the elastic threads between the two facing layers of non-woven materials or webs. The tension in the elastic threads is subsequently released, causing the web material to pucker or fold in the areas that contain the adhered elastic threads. In some applications, it is desired to provide areas of relative inelasticity in the elastic composite structure. To create these distinct regions, adhesive is applied to some areas of the web material and omitted from others. The elastic threads are cut in the adhesive-free areas by a cutting unit such as a rotary knife unit, and the cut ends of the elastic thread snap back to the adjoining adhesive areas.


The use of adhesives to bond the elastic threads within an elastic composite structure presents a number of disadvantages in both the end product and manufacturing method, including costs associated with the consumable material and undesirable tactile properties of the end product (e.g., stiffness). While thermal or ultrasonic welding techniques have been proposed as alternatives for bonding and/or cutting elastic threads within an elastic composite structure, known ultrasonic techniques for severing elastic threads tend to create cuts or slits in the web material, which reduce web tension in the severed part of the web and create an undesirable hole in the end product. Another problem associated with cutting the elastic threads is that the cut ends of elastic have a tendency to retract beyond the desired boundary of the elasticized area and land at a position somewhere within the elasticized area. This results in an incomplete elastic pattern and poor aesthetic and functional characteristics in the end product.


Accordingly, there is a need for an improved apparatus and method for fabricating an elastic composite structure of an absorbent sanitary product that maintains tension in the elastic strands within the elasticized areas of the product and does not cut the web materials in areas of relative inelasticity. It would further be desirable for such an apparatus and method to eliminate or minimize the use of consumable adhesives to secure the elastic threads to the facing web layers.


BRIEF STATEMENT OF THE INVENTION

In accordance with one aspect of the invention, an elastic composite structure includes a plurality of tensioned elastic threads, a first web layer positioned on a first side of the plurality of tensioned elastic threads, and a second web layer positioned on a second side of the plurality tensioned elastic threads. The elastic composite structure also includes a pattern of laminating bonds that fuse the first web layer to the second web layer within a deactivated zone of the elastic composite structure. The deactivated zone includes a cut end of a first portion of a tensioned elastic thread of the plurality of tensioned elastic threads and a cut end of a second portion of the tensioned elastic thread of the plurality of tensioned elastic threads. Neither the cut end of the first portion of the tensioned elastic thread nor the cut end of the second portion of the tensioned elastic thread is bounded by a pair of adjacent laminating bonds of the pattern of laminating bonds spaced at a distance less than a distance between adjacent threads of the plurality of tensioned elastic threads. The elastic composite structure further includes a pattern of anchoring bonds that fuse the first web layer to the second web layer within an anchored zone bounding opposing ends of the deactivated zone. The anchored zone includes a first plurality of bonds of the pattern of anchoring bonds arranged to anchor the first portion of the tensioned elastic thread to the first and second web layers and a second plurality of bonds of the pattern of anchoring bonds arranged to define pairs of bonds that anchor the second portion of the tensioned elastic thread to the first and second web layers.


In accordance with another aspect of the invention, a method of manufacturing an elastic composite structure includes positioning a tensioned elastic thread between a first web layer and a second web layer, fusing the first web layer to the second web layer to form an anchored zone comprising a plurality of discrete anchoring bonds that fuse the first web layer to the second web layer and anchor the tensioned elastic thread therebetween, and cutting the tensioned elastic thread to form a deactivated zone of the elastic composite structure that is free of the tensioned elastic thread, the deactivated zone positioned between adjacent portions of the anchored zone. The method also includes fusing the first web layer to the second web layer within the deactivated zone with a pattern of laminating bond and defining the position of the pattern of laminating bonds relative to a cut end of the tensioned elastic thread such that the cut end of the tensioned elastic thread does not extend into the pattern of laminating bonds in a machine direction.


In accordance with another aspect of the invention, a bonding apparatus for manufacturing an elastic composite structure comprising at least one elastic thread secured between a pair of facing web layers, the bonding apparatus includes a rotary anvil having a face with weld pattern comprising at least one anchoring region and at least one deactivating region. The at least one anchoring region includes a plurality of anchoring welds constructed to form anchoring bonds that fuse the pair of facing web layers together and anchor the at least one elastic thread in position relative to the pair of facing web layers. The at least one deactivating region includes a plurality of laminating welds constructed to form laminating bonds that fuse the pair of facing web layers together without anchoring the at least one elastic thread in position relative to the pair of facing web layers. The plurality of laminating welds are arranged in a zig-zag pattern within the at least one deactivating region.


These and other advantages and features will be more readily understood from the following detailed description of preferred embodiments of the invention that is provided in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate embodiments presently contemplated for carrying out the invention.


In the drawings:



FIG. 1 is a schematic perspective view of a portion of a manufacturing line for fabricating an elastic composite structure.



FIG. 2 is a schematic perspective view of a rotary anvil usable with the manufacturing line of FIG. 1, according to one embodiment of the invention.



FIG. 3 is a schematic cross-sectional view of a bonding apparatus that includes the rotary anvil of FIG. 2 and is usable with the manufacturing line of FIG. 1, according to one embodiment of the invention.



FIG. 4 is a detailed view of a portion of the bonding apparatus of FIG. 3 illustrating the horn aligned with an anchoring weld on the rotary anvil, according to one embodiment of the invention.



FIG. 5 is a detailed view of a portion of the bonding apparatus of FIG. 3 illustrating the horn aligned with a break bar on the rotary anvil, according to one embodiment of the invention.



FIG. 6 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 2, according to one embodiment of the invention.



FIG. 7 is a schematic top view illustrating the spaced relationship between a non-tensioned elastic thread, a pair of anchoring bonds, a pair of pinching bonds, and laminating bonds, according to various embodiments of the invention.



FIG. 8 is a schematic perspective view of a rotary anvil usable with the manufacturing line of FIG. 1, according to another embodiment of the invention.



FIG. 9 is a top view of a plurality of non-segmented absorbent sanitary products that includes a continuous elastic composite structure manufactured using the manufacturing line of FIG. 1, according to one embodiment of the invention.



FIG. 10 is a flattened representation of an exemplary anvil pattern usable to manufacture the continuous elastic composite structure of FIG. 9, according to one embodiment of the invention.



FIG. 10A is a detailed view of a portion of the rotary anvil of FIG. 10.



FIG. 11 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 10, according to an embodiment of the invention.



FIG. 11A is a detailed view of a portion of the elastic composite structure of FIG. 11.



FIG. 12 is a flattened representation of an exemplary anvil pattern usable to manufacture one of the elastic composite structures of FIG. 9, according to another embodiment of the invention.



FIG. 13 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 12, according to an embodiment of the invention.



FIG. 14 is a flattened representation of an exemplary anvil pattern usable to manufacture the continuous elastic composite structure of FIG. 9, according to another embodiment of the invention.



FIG. 15 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 14, according to an embodiment of the invention.



FIG. 16 is a flattened representation of an exemplary anvil pattern usable to manufacture the continuous elastic composite structure of FIG. 9, according to yet another embodiment of the invention.



FIG. 17 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 16, according to an embodiment of the invention.



FIG. 18 depicts a technique for manufacturing an elastic composite structure, according to another embodiment of the invention.



FIG. 19 is a flattened representation of an exemplary anvil pattern usable to manufacture an elastic composite structure in accordance with the technique of FIG. 18, according to one embodiment of the invention.



FIG. 20 is a flattened representation of an exemplary anvil pattern usable to manufacture an elastic composite structure in accordance with the technique of FIG. 18, according to one embodiment of the invention.



FIG. 21 is a top view of a portion of an elastic composite structure manufactured using the rotary anvils of FIGS. 19 and 20, according to an embodiment of the invention.



FIG. 22 depicts a technique for manufacturing an elastic composite structure, according to yet another embodiment of the invention.



FIG. 23 depicts a technique for manufacturing an elastic composite structure, according to yet another embodiment of the invention.



FIG. 24 is a cross-sectional view of a portion of a cutting unit usable to manufacture an elastic composite structure in accordance with the technique of FIG. 23, according to one embodiment of the invention.



FIG. 25 depicts a technique for manufacturing an elastic composite structure, according to yet another embodiment of the invention.



FIG. 26 is a flattened representation of an exemplary anvil pattern on a first rotary anvil that may be used to manufacture an elastic composite structure in accordance with the technique of FIG. 25, according to one embodiment of the invention.



FIG. 27 is a flattened representation of the circumferential face of a cutting unit usable to manufacture an elastic composite structure in accordance with the technique of FIG. 25, according to one embodiment of the invention.



FIG. 28 is a flattened representation of an exemplary anvil pattern on a second rotary anvil that may be used to manufacture an elastic composite structure in accordance with the technique of FIG. 25, according to one embodiment of the invention.



FIG. 29 is a top view of a portion of an elastic composite structure manufactured using the rotary anvils of FIGS. 26 and 28 and the cutting unit of FIG. 27, according to an embodiment of the invention.



FIG. 30 is a schematic cross-sectional view of a bonding apparatus usable with the manufacturing line of FIG. 1, according to embodiments of the invention.



FIG. 31 is a top view of a continuous elastic composite structure manufactured using the bonding apparatus of FIG. 30, according to one embodiment of the invention.



FIG. 32 is an orthogonal, flattened representation of an exemplary anvil pattern usable on a rotary anvil that may be used to manufacture an elastic composite structures herein according to one embodiment of the invention.



FIG. 33 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 32 according to an embodiment of the invention.



FIG. 34 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 32 according to an embodiment of the invention.



FIG. 35 is an orthogonal, flattened representation of an exemplary anvil pattern usable on a rotary anvil that may be used to manufacture an elastic composite structures herein according to one embodiment of the invention.



FIG. 36 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 35 according to an embodiment of the invention.



FIG. 37 is an orthogonal, flattened representation of an exemplary anvil pattern usable on a rotary anvil that may be used to manufacture an elastic composite structures herein according to one embodiment of the invention.



FIG. 38 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 37 according to an embodiment of the invention.



FIG. 39 is an orthogonal, flattened representation of an exemplary anvil pattern usable on a rotary anvil that may be used to manufacture an elastic composite structures herein according to one embodiment of the invention.



FIG. 40 is a top view of a portion of a continuous elastic composite structure manufactured using the rotary anvil of FIG. 39 according to an embodiment of the invention.



FIG. 41 is an orthogonal, flattened representation of an exemplary anvil pattern usable on a rotary anvil that may be used to manufacture an elastic composite structures herein according to one embodiment of the invention.



FIGS. 42-48 illustrate respective top views of a portion of respective continuous elastic composite structures manufactured using corresponding modified projection patterns of the rotary anvil of FIG. 41 according to embodiments of the invention.





DETAILED DESCRIPTION

Embodiments of the present invention provide for a method and apparatus for manufacturing an elastic composite structure that includes one or more activated or elasticized zones, where one or more tensioned elastic threads are anchored or secured in place relative to facing web layers, and one or more deactivated zone that are inelastic relative to the elasticized zone(s). The resulting elastic composite structure may be used in an absorbent sanitary product such as, for example, a diaper, disposable adult pant, or feminine care product. As one non-limiting example, the elastic composite structure described herein may be a waistband for a diaper that includes a deactivated zone in an area where the absorbent core is coupled to the waistband.


Referring now to FIG. 1, a portion of an exemplary manufacturing line 10 is illustrated according to one embodiment of the invention. As shown, a first web layer 12 is fed in the machine direction 14. A second web layer 16 is similarly fed in the machine direction 14. First web layer 12 and second web layer 16 are materials capable of fusing to one another upon application of an applied energy that causes one or both of the webs 12, 16 to soften or melt and join together without the use of an intermediate layer of adhesive material such as glue. The facing pair of web layers 12, 16 may be the same type of material or different materials according to alternative embodiments. As non-limiting examples, first and second web layers 12, 16 may include nonwoven materials, woven materials, films, foams, and/or composites or laminates of any of these material types.


One or more elastic threads 18 are positioned between the first and second web layers 12, 16. While the below description refers to elastic threads in the plural form, it is to be understood that the methods described herein may be used to manufacture an elastic composite structure that includes a single elastic thread or any number of multiple elastic threads. The elastic threads 18 travel in the machine direction 14 under tension from a creel assembly (not shown) or similar device. The elastic threads 18 may be composed of any suitable elastic material including, for example, sheets, strands or ribbons of thermoplastic elastomers, natural or synthetic rubber, or LYCRA, as non-limiting examples. Each elastic thread 18 may be provided in the form of an individual elastomeric strand or be a manufactured multifilament product that includes many individual elastomeric filaments joined together, such as by a dry-spinning manufacturing process, to form a single, coalesced elastic thread 18.


Elastic threads 18 may have any suitable cross-sectional shape that facilitates formation of an elastic composite structure having desired elasticity, visual aesthetic, and manufacturability. As non-limiting examples, elastic threads 18 may have a cross-sectional shape that is round, rectangular, square, or irregular as may be the case where each elastic thread 18 is a multifilament product.


While first web layer 12 and second web layer 16 are depicted in FIG. 1 and described herein as physically separate components, it is contemplated that alternative embodiments may utilize a unitary web structure that is folded to capture the elastic threads 18 between upper and lower layers of the unitary web structure. In such an embodiment, the portion of the unitary structure positioned below the elastic threads 18 would be referred to as the first web layer 12 and the portion of the unitary structure positioned above the elastic threads 18 would be referred to as the second web layer 16.


Manufacturing line 10 includes one or more feeding assemblies 20 such as guide rollers that are employed to accurately position and (optionally) tension the elastic threads 18 as they travel in the machine direction 14 toward a bonding apparatus 22. Immediately upstream of the bonding apparatus 22 are one or more assemblies that feed and guide the first and second web layers 12, 16 and the elastic threads 18 into the bonding apparatus 22. In the illustrated embodiment, these feeding assemblies include an upper roller 24, a lower roller 26, and a strand guide roller 28 that guide a combined assembly 30 that includes the first web layer 12, the second web layer 16, and the elastic threads 18 into the bonding apparatus 22. It is contemplated that rollers 24, 26, 28 may be replaced with other known types of feeding assemblies and/or replaced by a single roller unit or other known type of feeding assembly in an alternative embodiment.


Bonding apparatus 22 may be any known ultrasonic welding system in alternative embodiments, including, as non-limiting examples, a rotary ultrasonic welding system or a blade ultrasonic welding system. In the illustrated embodiment, bonding apparatus 22 includes a rotary anvil 32 and an ultrasonic fixed blade horn 34, also known as a sonotrode, which cooperate with each other to bond (i.e., fuse) the first web layer 12 to the second web layer 16. Alternative embodiments may include multiple fixed blade horns or one or more rotary horns. During the bonding process the elastic threads 18 are secured or anchored in position relative to the first and second web layers 12, 16 as described in detail below.


Bonding apparatus 22 also includes one or more frames 36 that support and/or house a motor (not shown) that drives the ultrasonic horn 34, a vibration control unit (not shown) that ultrasonically energizes the horn 34 and causes the horn 34 to vibrate, and a second motor (not shown) that drives the anvil 32. The horn 34 and anvil 32 are positioned in a spaced relationship relative to one another to facilitate ultrasonically bonding the first and second web layers 12, 16 to one another while the elastic threads 18 are held in tension in the space between the horn 34 and anvil 32. During the bonding process, the first and second web layers 12, 16 are exposed to an ultrasonic emission from the horn 34 that increases the vibration of the particles in the first and second web layers 12, 16. The ultrasonic emission or energy is concentrated at specific bond points where frictional heat fuses the first and second web layers 12, 16 together without the need for consumable adhesives. While bonding apparatus 22 is described herein as an ultrasonic bonding assembly that ultrasonically fuses first web layer 12 to second web layer 16, it is contemplated that the techniques described herein may be extended to any other known welding or bonding techniques that fuse together two or more material layers without the use of adhesive, including sonic, thermal, or pressure bonding techniques and various other forms of welding known in the industry.


Referring now to FIG. 2, anvil is illustrated according to one embodiment of the invention. As shown, the anvil 32 of includes an arrangement of discrete projections or welds 38 that extend outward from the anvil face 40. These welds 38 are constructed to (A) fuse first and second web layers 12, 16 together and (B) restrain or anchor the elastic threads 18 in position relative to the first and second web layers 12, 16 in the manufactured elastic composite structure. As described in more detail below, anchoring welds 38 are designed so that an elastic thread 18 that passes between two adjacent anchoring welds 38 on the face 40 of anvil 32 is anchored in position relative to the first and second web layers 12, 16 by frictional resistance that prevents the elastic thread 18 from sliding through the pair of resulting bonds. The location of anchoring welds 38 define anchoring regions 42 of the anvil 32.


Anvil 32 also includes one or more additional projections that are referred to herein as laminating welds 44. Similar to the restraining or anchoring welds 38, laminating welds 44 fuse first and second web layers 12, 16 to one another. Laminating welds 44 differ from anchoring welds 38 because they do not anchor the elastic threads 18 in position relative to the first and second web layers 12, 16.


Anvil 32 also includes one or more edges or break bars 46 that extends outward from the anvil face 40. Each break bar 46 is configured to break the elastic threads 18 when the tensioned elastic threads 18 pass between the horn 34 and anvil 32 without cutting or perforating the first web layer 12 or the second web layer 16. The pressure or pinching force exerted on a given elastic thread 18 as it passes between the horn 34 and the break bar 46 imparts a stress on the elastic thread 18 that breaks the elastic thread 18. In a preferred embodiment, break bar(s) 46 are constructed so that they do not bond the first and second web layers 12, 16 to one another. In an alternative embodiment, break bar(s) 46 form a bond between the first and second web layers 12, 16 that has a geometry that mirrors that of the working surface of the respective break bar 46. Together the anchoring welds 38, laminating weld(s) 44, and break bar(s) 46 define a pattern of projections 48 or weld pattern that extends outward from the face 40 of the anvil 32.


In the illustrated embodiment, break bar 46 has a length equal or substantially equal to the overall length 50 of the pattern of projections 48. In alternative embodiments, each break bar 46 may be sized to span only a subportion of the overall anvil length 50, as described in further detail below. Optionally, break bar(s) 46 may include one or more grooves 56 (shown in phantom) that are recessed within the working surface 58 of the break bar(s) 46. In yet other embodiments, the break bar 46 is constructed of a series of discrete but closely spaced projections or pinching welds, so called because the close spacing of two adjacent pinching welds functions as a pinch point that severs an elastic thread 18 that passes through the adjacent pinching welds during the bonding process. Break bar(s) 46 may be linear and oriented parallel to the rotational axis 60 of the anvil 32, as shown, oriented at an angle relative to the rotational axis 60, or have any alternative geometrical configuration determined based on design specifications to achieve the desired result of cutting an elastic thread 18.


The location of break bar 46 defines a deactivating region 62 of the anvil 32, which corresponds to a region of deactivated or broken elastic threads in the manufactured elastic composite structure and is referred to hereafter as a deactivated zone. One or more laminating weld(s) 44 are also located within the deactivating region 62 of the anvil 32. In the illustrated embodiment, deactivating region 62 includes one break bar 46 with laminating welds 44 positioned on both sides of the break bar 46. Alternative embodiments may include multiple break bars 46 within a given deactivating region 62 with laminating welds 44 positioned on one or both sides of each break bar 46. Laminating welds 44 may be omitted entirely from the deactivating region 62 in yet other embodiments.


The particular size, shape, and general arrangement of anchoring welds 38, laminating welds 44, and break bar 46, as well as the total number of welds 38, 44 and break bar(s) 46 illustrated in FIG. 2, are intended to depict a representative and non-limiting example of an overall pattern of projections 48 on anvil 32. Alternative embodiments may include any number of welds 38, 44 and break bar(s) 46 arranged in any number of alternative configurations to achieve a desired pattern of bonds on the end product. The respective working surfaces of anchoring welds 38 and laminating welds 44 may be configured to form bonds of similar size and shape, or bonds of different size and/or shape in alternative embodiments. As non-limiting examples, respective land surfaces of anchoring welds 38 and laminating welds 44 may be circular, rectangular, crescent shaped, or have irregular shapes that may be selected to form a desired overall pattern on the end product. As explained above, the resulting pattern of bonds will include one or more anchored zones, which fix one or more elastic threads 18 under tension in position relative to the first and second web layers 12, 16, and one or more deactivated regions or zones, which are free of tensioned elastic threads 18. Being free of tensioned elastic threads 18, these deactivated zones define areas of relative inelasticity in the resulting elastic composite structure.


In a preferred embodiment the anchoring welds 38, laminating welds 44, and break bar(s) 46 are formed on anvil 32 using a machining process that removes bulk material from the anvil 32 to create the desired raised pattern of projections 48 relative to the face 40 of the anvil 32. Alternatively, anchoring welds 38, laminating welds 44, and/or break bar(s) 46 may be provided on one or more inserts that are mechanically coupled to the face 40 of the anvil 32.


Referring now to FIG. 3, the working surface 64 of the horn 34 has a smooth or substantially smooth surface contour in one non-limiting embodiment. Alternatively, working surface 64 may include an arrangement of projections that mate or align with the pattern of projections 48 on the anvil 32 to further facilitate fusing the first web layer 12 to the second web layer 16 and securing the elastic threads 18 in position relative to the first and second web layers 12, 16.


During the manufacturing process, the first and second web layers 12, 16 are positioned between the face 40 of the anvil 32 and the working surface 64 of the horn 34 as shown in FIG. 3. Elastic threads 18 are positioned between the first and second web layers 12, 16 in a tensioned state. As generally shown in FIG. 3 and in further detail in FIG. 4, the position of horn 34 is controlled to maintain a nip gap 66 between the working surface 64 of horn 34 and the land surfaces 68, 70 of the anchoring welds 38 and laminating welds 44, respectively. The size of the nip gap 66 is determined based on parameters of the manufacturing process to facilitate bonding between the first and second web layers 12, 16. Bonding apparatus 22 may include any known positioning means 67 that exerts a force on at least one of the horn 34 and anvil 32 to maintain a desired nip gap 66 between the horn 34 and anvil 32. Positioning means 67 may be an air pressure assembly (not shown) or a mechanical camshaft (not shown) as non-limiting examples.


Anchoring welds 38 may have a planar working surface, planar side surfaces, or some mixture of curved and straight working and side surfaces in alternative embodiments. In the embodiment illustrated in FIG. 4, the land surface 68 of anchoring weld 38 has an arced or curved surface profile. This curved profile permits the first and second weld layers 12, 16 to slip relative to the face 40 of the anvil 32 during the bonding process and thus allows the velocity at which the combined assembly 30 including tensioned elastic strands 18 and first and second web layers 12, 16 is advanced toward the bonding apparatus 22 to be increased or decreased relative to the rotational velocity of the anvil 32. When the combined web/thread assembly 30 is advanced at a velocity greater than the velocity of the anvil 32, the resulting bonds are spaced apart by a distance greater than the radial spacing between of adjacent welds 38, 44 on the anvil face 40. Similarly, slowing the feed rate of the combined web/thread assembly 30 relative to the velocity of the anvil 32 will result in bonds that are spaced apart by a distance less than the radial spacing between of adjacent welds 38, 44 on the anvil face 40. The velocity mismatch or differential between web speed and anvil velocity can be controlled to accommodate size changes in the end product. As a result, the bonding of an elastic composite for one size diaper may be carried out with little or no slip, while the bonding of an elastic composite for a larger or smaller diaper may be carried out with a larger amount of slip. A manufacturing line 10 outfitted with anvil 32 thus provides for dynamic size changing without having to change the tooling set-up of the manufacturing line 10, as the same anvil 32 can be used to manufacture multiple sizes of elastic composite structures for use in different sized products.



FIG. 5 is a detailed view of the relationship between the horn 34 and a break bar 46 on the anvil 32. In the embodiment shown, break bar 46 has straight side surfaces 72 and a curved working surface 58, to permit slip to occur between the anvil 32 and first and second web layers 12, 16 in a manner similar to that described above with respect to anchoring weld 38. Alternatively, the entire working surface 58 of break bar 46 may have a continuous arced profile similar to that of anchoring weld 38 of FIG. 4. In yet other embodiments, working surface 58 may be flat or planar, side surfaces 72 may be curved, or break bar 46 may be configured with any other geometric profile that accomplishes the intended function of cutting the elastic threads 18 and, optionally, fusing the first and second web layers 12, 16.


As shown in FIG. 5, the working surface 64 of horn 34 is spaced apart from the working surface 58 of break bar(s) 46 by a nip gap 76. In one embodiment, nip gap 76 is equal or substantially equal to the nip gap 66 between working surface 64 of horn 34 and the land surfaces 68, 70 of the anchoring and laminating welds 38, 44. In alternative embodiments where it is desired that break bar(s) 46 form a bond between the first and second web layers 12, 16 by virtue of the geometry of the break bar(s) 46, size of the nip gap 76, or a combination thereof.



FIG. 6 illustrates a portion of an elastic composite structure 78 formed using the anvil 32 with pattern of projections 48 shown in FIG. 2. The elastic composite structure 78 is illustrated in an elongated state with elastic threads 18 stretched to a point where the first web layer 12 and second web layer 16 are flat or substantially flat. Elastic threads 18 are located between the first and second web layers 12, 16 are oriented along a longitudinal axis 80 of the elastic composite structure 78. While the illustrated embodiment includes three (3) elastic threads 18 it is contemplated that alternative embodiments may include a single elastic thread 18 or any number of multiple elastic threads 18 based on design specifications of the end product.


The first and second web layers 12, 16 are fused together by anchoring bonds 82 at locations where the anchoring welds 38 on anvil 32 (FIG. 2) communicate with web layers 12, 16 and by laminating bonds 84 at locations where the laminating welds 44 on anvil 32 (FIG. 2) communicate with web layers 12, 16. The break bar(s) 46 of anvil 32 break the elastic threads 18, causing them to snap back toward the nearest anchoring bonds 82. When the elastic composite structure 78 is permitted to relax, the elastic threads 18 will attempt to swell or expand to return to their non-tensioned or relaxed state. As the elastic threads 18 expand, frictional forces restrain or anchor the threads 18 between adjacent anchoring bonds 82 and the first and second web layers 12, 16. The result is an elastic composite structure 78 that includes one or more elasticized or anchored regions or zones 86 corresponding to the anchoring region 86 of anvil 32 and one or more non-elasticized or deactivated zone 88 corresponding to the deactivating region 62 of anvil 32. The length 90 of the anchored zone(s) 86 and the length 92 of the deactivated zone(s) 88 is defined by control of the rotational speed of the anvil 32 relative to the feed rate of the combined web/thread assembly 30 during the bonding process and anvil geometry.


Referring now to FIG. 7 together with FIG. 2 as appropriate, in one embodiment the proximal edges of adjacent anchoring welds 38 are spaced apart from one another by a distance 94 that is less than the strand diameter 96 of a given elastic thread 18 in its non-tensioned state. As used herein the phrase “strand diameter” refers to the smallest measurable cross-sectional width of the elastic thread 18 in its non-tensioned state. In embodiments where a given elastic thread 18 is a monofilament structure, the strand diameter is the minor diameter or smallest measurable width of the monofilament structure in its non-tensioned state. In embodiments where a given elastic thread 18 is a multi-filament structure, the phrase “strand diameter” refers to the smallest distance between opposite edges of an outline that generally defines the irregular cross-sectional area. The adjacent anchoring welds 38 on anvil 32 form a pair of adjacent anchoring bonds 82 that will act to secure or anchor the elastic thread 18 because the distance 98 between the proximal edges of the adjacent anchoring bonds 82 is smaller than the strand diameter 96 of the non-tensioned elastic thread 18, as shown in FIG. 7.


In embodiments where break bar 46 is configured with discrete pinching welds, adjacent pinching welds will form a pair of adjacent pinching bonds 100 having proximal edges spaced apart by a distance 102 that is smaller than the strand diameter 96 and the distance 98 between adjacent anchoring bonds 82.


In embodiments where the anvil 32 of FIG. 2 includes multiple adjacent laminating welds 44, the adjacent welds 44 are spaced apart at a distance 104 that forms a pair of adjacent laminating bonds 84 having proximal edges spaced apart either by (A) a distance 106 that is greater than the strand diameter 96 of a single non-tensioned elastic thread 18, as illustrated by laminating bonds 84A in FIG. 7, or (B) a distance 108 that is greater than the summed total of the strand diameters 96 of two or more non-tensioned elastic threads 18, as illustrated by laminating bonds 84B.



FIG. 8 illustrates anvil 32 according to an alternative embodiment of the invention. Anvil 32 includes a pattern of projections 110 that differs from the pattern of projections 48 described with respect to FIG. 2 in that it includes a narrower break bar 46 and does not include laminating welds 44. In such an embodiment, the resulting elastic composite structure would include anchored zones similar to the anchored zone 86 shown in FIG. 6 and a deactivated zone that includes a bond line formed by break bar 46 but does not include any laminating bonds. In one embodiment an adhesive may be used to couple the first and second web layers 12, 16 together within the deactivated zone. Alternatively, laminating bonds similar to the laminating bonds 84 of FIG. 6 may be formed within the deactivated zone using a second anvil unit positioned downstream from anvil 32, as described in more detail below.


In the embodiment described with respect to FIGS. 2-8, the anchored zones 86 and deactivated zones 88 span similar widths of the resulting elastic composite structure 78 in the cross-machine direction 54 as a result of the particular configuration of the break bar(s) 46, laminating weld(s) 44 (when used), and anchoring welds 38 on the anvil 32. FIGS. 10, 12, 14, and 16 depict alternative anvil projection patterns that may be used with the bonding apparatus 22 of FIG. 1 to form deactivated zones 88 that span only a portion of the overall width of the resulting elastic composite structure. These alternative projection patterns may be used to manufacture continuous elastic composite structures such as the front waist panel 112 and rear waist panel 114 illustrated in FIG. 9. As shown, front and rear waist panels 112, 114 include anchored zones 86 that contain multiple anchoring bonds that anchor elastic threads 18 and deactivated zones 88 that define attachment locations for respective absorbent cores 116 of a disposable diaper or pant and may include laminating bonds in some embodiments. Lines 118 represent product cut lines. Each of FIGS. 10, 12, 14, and 16 is to be understood as illustrating one exemplary and non-limiting pattern of projections for manufacturing waist panels 112, 114. The concepts described herein may be extended to manufacture an end product with one or more anchored zones and one or more deactivated zones using an anvil with an alternative pattern of projections than those described relative to FIGS. 10, 12, 14, and 16. Thus, it is contemplated that the pattern of projections on anvil may be modified from those shown herein to create an elastic composite structure that includes one or more anchored zone(s) and one or more deactivated zone(s) that vary in size and/or position relative to the embodiments specifically depicted herein.



FIG. 10 is a flattened representation of the circumferential face 40 of anvil 32 according to an embodiment where anvil 32 includes a pattern of projections 120 that form the deactivated zones 88 and anchored zones 86 of FIG. 9. The pattern of projections 120 includes multiple anchoring weld lines 122 that are spaced apart from one another along the circumferential axis 124 of the anvil face 40. The anchoring weld lines 122 define an anchoring region 126 of the projection pattern 120. The pattern of projections 120 also includes a break bar 128 and plurality of laminating weld lines 130 that collectively define a deactivating region 132.


As shown in the detailed view provided in FIG. 10A, each of the anchoring weld lines 122 contains a plurality of discrete anchoring welds 38. Likewise, each of the laminating weld lines 130 includes a plurality of discrete laminating welds 44, which are spaced apart from one another at a distance greater than that of the anchoring welds 38. In alternative embodiments, each laminating weld line 130 may consist of a single laminating weld 44 or the laminating weld lines 130 may be omitted altogether. Break bar 128 may be formed having a continuous working surface as shown, or include one or more grooves similar to grooves 56 of FIG. 2.


In the embodiment shown, break bar 128, laminating weld lines 130, and anchoring weld lines 122 have a similar sinusoidal geometry that results in an overall sinusoidal pattern across the anvil face 40. In this embodiment, break bar 128 is constructed to fuse the first and second web layers 12, 16 and sever the elastic thread(s) 18 that pass between the break bar 128 and horn 34 (FIG. 1) during the bonding process. In an alternative embodiment, one or more of the laminating weld lines 130 immediately adjacent the leading and trailing edges of the deactivating region 62 may be omitted. Break bar 128, laminating weld lines 130, and anchoring weld lines 122 may be straight lines, curved lines, or otherwise arranged to create a continuous and repeating overall pattern on the end product in alternative embodiments.


As shown in FIG. 11, the bonding process creates an overall pattern of anchoring bond lines 134 and laminating bond lines 136 on the resulting elastic composite structure 138 that mirrors the geometry of anchoring weld lines 122 and laminating weld lines 130 within the pattern of projections 120 of FIG. 10. Thus, in an embodiment where the weld lines 122, 130 are sinusoidal, the resulting bond lines 134, 136 have a similar sinusoidal pattern. Alternative bond patterns on elastic composite structure 138 may be achieved by varying the geometry of the corresponding weld lines 122, 130 on the anvil 32. In the illustrated embodiment a continuous bond line 140 is formed by break bar 128, which severs the elastic threads 18. The severed or cut ends 142 of the elastic threads 18 snap back toward the nearest anchoring bond lines 134, which secures the two segmented portions 18A, 18B of a given cut elastic thread 18 under tension and in position relative to the first and second web layers 12, 16. In an alternative embodiment, break bar 128 may be configured to sever the elastic threads 18 without fusing first and second web layers 12, 16. The anchoring bond lines 134 also bond the first and second web layers 12, 16 together and define the anchored zones 86. The first and second web layers 12, 16 are bonded together within the deactivated zones 88 by the continuous bond line 140 formed by break bar 128 and by laminating bond lines 136 formed by the laminating weld lines 130 on anvil 32. Similar to the embodiments described above, the anchoring bond lines 134 collectively define anchored zone 86 on the elastic composite structure 138. A deactivated zone 88 is defined the laminating bond lines 136 and continuous bond line 140 (when formed).



FIG. 12 illustrates a pattern of projections 144 formed on anvil 32 according to an alternative embodiment of the invention. Pattern of projections 144 includes anchoring weld lines 122, which that are arranged in a similar manner as those included in the pattern of projections 120 of FIG. 10 and include discrete anchoring welds similar to anchoring welds 38 in FIG. 10A. Pattern of projections 144 also includes a pair of break bars 128, one positioned at the leading edge of the deactivating region 132 and the other positioned at the trailing edge of the deactivating region 132. A series of laminating weld lines 130 are positioned between break bars 128, each of which include discrete laminating welds similar to laminating welds 44 of FIG. 10A.


The pattern of projections 144 creates an elastic composite structure 138 that includes the pattern of bonds depicted in FIG. 13. Since each break bar 128 severs the elastic threads 18 as the elastic threads 18 pass over it, the use of two break bars 128 produces two cut points in a given elastic thread 18 that passes through the deactivating region 132 of the anvil 32, resulting in a severed elastic thread portion 146 for each of those elastic threads 18. These severed elastic portions 146 are retained within the deactivated zone 88 of the resulting elastic composite structure 138 as shown in FIG. 13.



FIG. 14 depicts an alternative pattern of projections 148 on anvil 32 according to another embodiment of the invention. The anchoring region 126 includes anchoring weld lines 122 similar to those of FIGS. 10 and 10. Deactivating region 132 includes an alternating pattern of anchoring weld lines 122 and break bars 128. In one embodiment, the break bars 128 are constructed so that they do not fuse first and second web layers 12, 16. During the bonding process each elastic thread 18 that passes through the deactivating region 132 of the anvil 32 is cut by each of the break bars 128. The result is the elastic composite structure 138 shown in FIG. 15, which includes a series of severed elastic thread portions 146 corresponding to each elastic thread 18 that passes through the deactivating region 132. These severed elastic thread portions 146 are anchored in place by anchoring bond lines 134 within the anchored zone 86.


Yet another alternative pattern of projections 150 is shown in FIG. 16. In this embodiment, the deactivating region 132 of the pattern 150 includes a continuous weld pattern 152 that simultaneously cuts the elastic threads 18 and forms a corresponding unbroken bond pattern 154 or geometric design on the resulting elastic composite structure 138, as shown in FIG. 17. Each elastic thread 18 that passes between the weld pattern 152 and horn 34 (FIG. 1) during the bonding process may be cut one or multiple times based on geometry of the weld pattern 152. In the embodiment shown, the weld pattern 152 cuts each of the affected elastic threads 18 two or more times, resulting in numerous severed elastic thread portions 146 that are contained within the bond pattern 154 in the elastic composite structure 138. The continuous weld pattern 152 shown in FIG. 16 is to be understood as only one example of a weld pattern geometry that may be implemented within the pattern of projections 150. In alternative embodiments, pattern of projections 150 may include a continuous weld pattern 152 that forms any desired pattern, shape, design, logo, or the like on the resulting elastic composite structure 138.


The bond patterns depicted on the elastic composite structures 138 in FIGS. 11, 13, 15, and 17 are described above as being formed using a single anvil 32 with a pattern of projections that defines the location and boundaries of the anchored and deactivated zones on the end product. Alternatively, a similar end product may be manufactured using two or more anvils that each include a portion of the overall pattern of projections. In such an embodiment, the multiple anvils would be positioned adjacent one another in the cross-machine direction 54 (i.e., the direction perpendicular to the machine direction 14) and configured to rotate simultaneously about a common axis of rotation.


In an alternative embodiment, the first and second web layers 12, 16 are fused together using multiple bonding apparatuses positioned in series in the machine direction 14. With reference to FIG. 1, a first bonding apparatus 22 is outfitted with a first anvil 32 that includes a pattern of projections that forms a first portion of the overall bond pattern and one or more horns 34. A second bonding apparatus 156 is positioned downstream from the first bonding apparatus 22 in the machine direction 14. Second bonding apparatus 156 includes a second horn 158 and a second anvil 160, which includes a second pattern of projections that completes the overall bond pattern. Second bonding apparatus 156 may include multiple horns and/or multiple anvils in alternative embodiments.



FIG. 18 depicts an exemplary manufacturing method 162 that utilizes this two-stage anvil arrangement. Method 162 begins at step 164 by operating the first anvil 32 in combination with the horn 34 to bond the first and second web layers 12, 16 together. Anvil 32 includes one or more break bar(s) 46 that cut or sever the elastic threads 18. The resulting intermediate product 166 is shown in FIG. 18 with the position of the horn 34 and break bar(s) 46 overlaid atop the intermediate product 166 for reference. The intermediate product 166 includes an anchored zone 86 and a deactivated zone 88, which at this point in the manufacturing process do not include any laminating bonds 84. The anchored zone 86 include anchoring bond lines 134, similar to those described relative to FIGS. 11, 13, 15, and 17, which are formed by anchoring weld lines 122 and corresponding anchoring welds 38 similar to any of those described with respect to FIGS. 2, 10, 12, 14, and 16.


Method 162 continues at step 168 by fusing the first and second web layers 12, 16 within the resulting deactivated zone(s) 88 via a pattern of laminating welds or laminating weld lines similar to any of those described with respect to FIGS. 2, 10, 12, 14, and 16. The result is an elastic composite structure 138 that includes one or more anchored zones 86 and one or more deactivated zones 88.



FIGS. 19 and 20 show flattened representations of the respective circumferential faces of the first anvil 32 and the second anvil 160, according to one embodiment of the invention. First anvil 32 includes a first pattern of projections 170 with anchoring weld lines 122 and break bars 128. Second anvil 160 includes a second pattern of projections 172 that includes a series of laminating weld lines 130. When anvils 32, 160 are operated in the manner described with respect to method 162 of FIG. 18, the first and second projection patterns 170, 172 form the elastic composite structure 138 shown in FIG. 21. In the illustrated embodiment, the break bars 128 shown in FIG. 19 are not configured to form bonds between first and second web layers 12, 16 of the elastic composite structure 138 (FIG. 21). In an alternative embodiment, the geometry of break bars 128 may be designed to form bond lines within the deactivated zone 88.


An alternative two-stage bonding method 174 is illustrated in FIG. 22. Similar to method 162 of FIG. 18, technique 174 utilizes a pair of anvils 32, 160 arranged in series in the machine direction 14 to form the overall bond pattern. Methods 162, 174 differ from one another through the use of different patterns of projections on anvils 32, 160. During a first step 176 of method 174, a first portion of the overall bond pattern is formed using a first anvil 32 that includes a pattern of projections that forms intermediate product 178. As shown in FIG. 22, the intermediate product 178 includes discrete anchored zones 86 that span the width of the product 178. First anvil 32 also includes one or more break bar(s) 46 that sever the elastic and create one or more deactivated zones 88.


During the second step 180 of method 174, the overall bond pattern is completed using second anvil 160, which includes anchoring weld lines 122 in addition to one or more laminating weld lines 130. Second anvil 160 forms one or more laminating bonds 84 within the deactivated zones 88 and one or more additional anchored zones 86, resulting in the elastic composite structure 138.


Yet another alternative method 182 for forming elastic composite structure 138 is illustrated in FIG. 23. Method 182 utilizes a manufacturing line 10 that includes first anvil 32, a cutting unit 184 positioned downstream from the anvil 32 as shown in FIG. 1, and a second anvil 160 positioned downstream from cutting unit 184. A detailed view of a portion of cutting unit 184 is provided in FIG. 24, according to one embodiment of the invention. Cutting unit 184 includes a rotary knife roll 186 aligned with a rotary anvil 188. A knife 190 is positioned within an insert 192 on the rotary knife roll 186. An anvil insert 194 is inset within the rotary anvil 188. Cutting unit 184 may include a single knife 190 and corresponding anvil insert 194 or multiple knife 190/anvil insert 194 pairs spaced apart from one another around the respective faces of the knife unit 186 and rotary anvil 188. Each rotary knife roll 186 and its corresponding rotary anvil 188 are spaced apart at a distance that defines a nip gap 196 between the knife 190 and the working surface 198 of the anvil insert 194. In a preferred embodiment, the nip gap 196 is defined such that the force of the knife 190 on the anvil insert 194 is large enough to sever the elastic threads 18 without severing or creating slits in the first and second web layers 12, 16.


In the illustrated embodiment, the working surface 198 of the anvil insert 194 is sloped between its leading edge 200 and trailing edge 202. The sloped configuration of working surface 198 permits the size of the nip gap 196 to be adjusted by adjusting the phase or relative rotational position between the knife 190 and anvil insert 194. In alternative embodiments, working surface 198 may be flat, curved, or any other geometry to facilitate the desired cutting functionality. Anvil insert 194 may be omitted entirely in another embodiment. Cutting unit 184 is described herein as a crush cut unit. In other embodiments, cutting unit 184 may be replaced with alternative types of cutting units known in the art, including units having rotary or non-rotary configurations and laser systems.


Referring again to FIG. 23 in combination with FIGS. 1-3 as appropriate, method 182 begins at step 204 using first anvil 32 to form discrete anchored bond zones 86 on intermediate product 206. In one embodiment, anvil 32 includes a uniform pattern of anchoring welds 38 that extend around the circumferential face 40 of the anvil 32. Horn 34 oscillates up and down in the direction of arrows 208, 210 (FIG. 3) between a raised position and a lowered position during the bonding process. This oscillation may be carried out using a mechanical camshaft assembly coupled to the horn 34 or other known position control mechanism 67. When horn 34 is in its lowered position, anchoring bonds 82 are formed within the desired anchored bond zones 86. When horn 34 is in its raised position, horn 34 is moved out of communication with anvil 32 and a region 212 free of bonds is formed within the intermediate product 206. At step 214 the partially bonded intermediate product 206 passes through cutting unit 184, which severs one or more of the elastic threads 18 and forms one or more deactivated zones 88 in the resulting intermediate product 216. Intermediate product 216 passes through second anvil 160 at step 218, which includes a pattern of projections that includes anchoring weld lines and laminating weld lines that completes the bond pattern on the elastic composite structure 138.



FIG. 25 depicts an alternative method 220 for forming elastic composite structure 138 using the optional cutting unit 184 and dual bonding apparatus 22, 156 arrangement of FIG. 1. For this method 220, bonding apparatus 22 is outfitted with at least two horns 34A, 34B and an anvil 32 with a uniform pattern of anchoring welds 38 that spans the circumferential face 40 of the anvil 32. During the first step 222 of the method 220, an intermediate product 224 is formed by oscillating horn 34B between raised and lowered positions in a similar manner as described with respect to step 204 of method 182 (FIG. 22) to produce a region 226 free of bonds. At step 228, the knife 190 (or knives) severs one or more of the elastic threads 18 and forms one or more deactivated zones 88 in the resulting intermediate product 230. At step 232, the second anvil 160 forms one or more laminating bonds within the deactivated zone 88 to complete the elastic composite structure 138.


Beneficially, method 220 can be carried out to produce different sized end products without tooling changes by controlling time intervals in which the oscillating horn 34B is held in the raised and lowered positions during step 222 and controlling the web speed relative to the rotational speed of the second anvil 160 in step 232. More specifically, oscillating horn 34B would be retained in the raised position for a longer time interval for a larger sized product vs. a smaller sized product to produce a longer region 226 free of bonds. During step 232, the relative web-to-anvil speed would be controlled to form a pattern of laminating bonds that spans the resulting bond free region 226 by a desired amount.



FIGS. 26, 27, and 28 are exemplary flattened representations of the respective faces of first anvil 32, knife unit 186 (of cutting unit 184FIG. 1), and second anvil 160 according to another alternative embodiment where the first anvil 32, knife unit 186, and second anvil 160 are positioned in the series arrangement shown in FIG. 1 and operated according to a method that produces the elastic composite structure 138 shown in FIG. 29. First anvil 32 includes a first pattern of projections 234 that includes anchoring weld lines 122 that create the anchoring bond lines 134 in FIG. 29. In the illustrated embodiment, knife unit 186 includes two knives 190 that are oriented at an angle relative to the rotational axis of the knife unit 186. In such case, the corresponding anvil inserts 194 (FIG. 24) may be arranged at a similar angle relative to the rotational axis of the rotary anvil 188 (FIG. 24). Knives 190 of knife unit 186 cut the elastic threads 18 and form the deactivated zone 88 of elastic composite structure 138. The second anvil 160 (FIG. 28) includes a second pattern of projections 236 with a series of laminating weld lines 130 that forms a series of laminating bond lines 136 (FIG. 29) within the deactivated zone 88.



FIG. 30 depicts a bonding apparatus 238 that can be used in manufacturing line 10 in place of bonding apparatus 22 to create an elastic composite structure 240 such as that shown in FIG. 31. In one embodiment, bonding apparatus 238 includes horn 34, as described above, and an anvil 32 that includes at least one break bar 242 that spans the length of the pattern of anchoring welds 38 on the anvil 32, similar to break bar 46 (FIG. 2), or only a portion of the overall length, similar to break bar 128 (FIG. 10). The first and second web layers 12, 16 and one or more tensioned elastic threads 18 are directed onto the face 40 of anvil 32 and into the gap 66 between anvil 32 and horn 34 either by a common guiding roller 244 or multiple rollers similar to those shown in FIG. 3. As one or more elastic threads 18 pass between a break bar 242 and horn 34, the thread(s) 18 are cut. Immediately following the cut, a tensioning device 246 increases the tension of the cut thread(s) 18 so that they are pulled backward (upstream) across the face 40 of the anvil 32 toward the common guiding roller 244. Frictional forces between the cut elastic thread(s) 18 and the first and second web layers 12, 16 prevent the cut elastic thread(s) 18 from retracting to a position upstream of the guiding roller(s) 244. As the cut thread(s) 18 are retracted to a distance equal to the desired length 248 of the deactivated zone 88 via tensioning device 246, anvil 32 continues to rotate in direction 250 and anchoring bonds 82 are formed that fuse the first and second web layers 12, 16 as the horn 34 engages anchoring welds 38 on the face 40 of anvil 32. The deactivated zone 88 shown in FIG. 31 is formed during the time period in which tensioning device 246 maintains the cut thread(s) 18 in a retracted position.


After a predetermined period of time has elapsed during which the cut thread(s) 18 retract to the trailing edge of the deactivated zone 88, the tensioning device 246 adjusts the tension in the cut elastic thread(s) 18 to the original tensioned state, causing the cut elastic thread(s) 18 to resume downstream travel toward the horn 34. After the severed end(s) of the cut elastic thread(s) 18 reach the horn 34, they effectively rethread and are anchored in place relative to the first and second web layers 12, 16 by subsequently formed anchoring bonds.


In an alternative embodiment, horn 34 is replaced by a cutting knife (for example cutting unit 184 of FIG. 24) and a horn 252 is positioned downstream of the cutting knife. One or more elastic threads 18 is severed using the cutting knife and subsequently slipped backward toward guiding roller(s) 244 by tensioning device 246 in a similar manner as described above. Once the cut elastic thread(s) 18 slips a distance equal to the length of the desired deactivated zone, tensioning device 246 adjusts the tension in the cut elastic thread(s) 18 so that the cut elastic thread(s) 18 resume travel between the first and second web layers 12, 16 across the anvil face 40. Interaction between the horn 252 and anchoring welds 38 creates anchoring bonds 82 on the resulting elastic composite structure 240.


In yet another alternative embodiment, tensioning device 246 is omitted and guiding roller 244 is replaced with an eccentric roller tensioner (not shown) that rotates to increase and decrease tension in the combined web/thread assembly 30 according to a timing pattern that is synchronized with when the elastic thread(s) 18 break. More specifically, eccentric roller tensioner is controlled to a decrease tension in the combined web/thread assembly 30 at or shortly after the time that the elastic thread(s) 18 are cut. Decreasing the tension in the combined web/thread assembly 30 reduces friction between the cut elastic thread(s) 18 and the first and second web layers 12, 16, which allows the cut elastic thread(s) 18 to snap back toward the eccentric roller tensioner. Once the cut elastic thread(s) 18 slips a distance equal to the length of the desired deactivated zone, the eccentric roller tensioner is controlled to rotate to increase tension in the combined web/thread assembly 30, thereby increasing friction between the cut elastic thread(s) 18 and the first and second web layers 12, 16. The increased friction causes the cut elastic thread(s) 18 to resume travel along with the first and second web layers 12, 16 across the anvil face 40. A deactivated zone 88 (FIG. 31) that is free of elastic thread(s) 18 but includes bonds spaced at a similar spacing as anchoring bonds 82 is formed on the resulting elastic composite structure 240 in time interval during between when the cut elastic thread(s) 18 are cut and subsequently rethread.



FIG. 32 is a flattened representation of a portion of the circumferential face 40 of anvil 32 according to an embodiment where anvil 32 includes a pattern of projections 120 that form deactivated zones and anchored zones. The pattern of projections 120 includes multiple anchoring weld lines 122 that are spaced apart from one another along the circumferential axis 124 of the anvil face 40 that include anchoring welds 38. The anchoring weld lines 122 define an anchoring region 126 of the projection pattern 120. The pattern of projections 120 also includes a plurality of laminating weld lines 130 including laminating welds 44 that collectively define a deactivating region 132.


As shown in FIGS. 33 and 34, the bonding process creates an overall pattern of anchoring bonds 82 and laminating bonds 84 that mirrors the geometry of anchoring weld lines 122 and laminating weld lines 130 within the pattern of projections 120 of FIG. 32. In the embodiment shown in FIG. 33, when broken to create a non-elasticized or deactivation region, the portion of the elastic thread 18 not anchored by any anchoring bonds 82 relaxes or contracts such that the end of the relaxed portion retracts from all spaces separating pairs of laminating bonds 84. In this manner, the end of the relaxed portion of the elastic thread is unbounded by any laminating bond 84. In the embodiment shown in FIG. 34, when broken to create a non-elasticized or deactivation region, the length of the elastic thread 84 provides that the portion of the elastic thread 18 not anchored by any anchoring bonds 82 relaxes or contracts such that the end of the relaxed portion retracts from all but one space of the spaces separating pairs of laminating bonds 84. In this manner, the end of the relaxed portion of the elastic thread is positioned between only a single laminating bond 84 pair.



FIG. 35 is a flattened representation of a portion of the circumferential face 40 of anvil 32 according to an embodiment similar to that of FIG. 32 except for the removal of on laminating weld line 130 within the deactivating region 132. The missing laminating weld line 130 illustrated in FIG. 35 corresponds with the second laminating weld line 130 adjacent to the anchoring region 126. Thus, a larger gap between the first two laminating weld lines 130 is larger than the gaps between the remaining laminating weld lines 130. In this manner, as illustrated in FIG. 36, when broken to create a non-elasticized or deactivation region, the length of the elastic thread 84 provides that the portion of the elastic thread 18 not anchored by any anchoring bonds 82 relaxes or contracts such that the end of the relaxed portion retracts from all but one space of the spaces separating pairs of laminating bonds 84. In this manner, the end of the relaxed portion of the elastic thread is positioned between only a single laminating bond 84 pair even though the length of the relaxed portion illustrated in FIG. 36 is longer than that illustrated in FIG. 34. Embodiments of the invention also contemplate the removal of additional neighboring laminating weld lines 130 such that the gap between the first two laminating weld lines 130 may be yet wider than that illustrated in FIG. 36.



FIG. 37 is a flattened representation of a portion of the circumferential face 40 of anvil 32 according to another embodiment of the invention. Similar to the anvil 32 illustrated in FIG. 32, the anchoring weld lines 122 include pairs of anchoring welds 38 in each weld line 122. Laminating weld lines 130, however, have a single laminating weld 44 in each weld line 130. As illustrated in FIG. 38, neighboring pairs of laminating bonds 84 alternate accordingly on one side of the elastic thread 18 or the other. In this manner, no matter the length of the portion of the end of the relaxed portion of the elastic thread, the relaxed portion of the elastic thread is bounded at most by a single laminating bond 84, and no facing pair of laminating bonds 84 limits movement of the elastic thread 18.



FIG. 39 is a flattened representation of a portion of the circumferential face 40 of anvil 32 according to an embodiment similar to that of FIG. 37 except for a different pattern or layout of the single laminating welds 44 of the laminating weld lines 130. As illustrated in FIGS. 39 and 40, the single laminating welds 44 create a linear arrangement of the laminating bonds 84. The laminating bonds 84 of FIG. 40 bound the elastic thread 18 only on one side of the elastic thread 18. In this manner, similar to the laminating bonds 84 of FIG. 38, and no facing pair of laminating bonds 84 limits movement of the elastic thread 18.



FIG. 41 is a flattened representation of a portion of the circumferential face 40 of anvil 32 according to an embodiment where anvil 32 includes a pattern of projections 120 that form deactivated zones and anchored zones. The pattern of projections 120 includes multiple anchoring weld lines 122 that are spaced apart from one another along the circumferential axis 124 of the anvil face 40 that include anchoring welds 38. The anchoring weld lines 122 define an anchoring region 126 of the projection pattern 120. The pattern of projections 120 also includes a plurality of laminating weld lines 130 including laminating welds 44 that collectively define deactivating regions 132. The embodiment illustrated in FIG. 41 extends the embodiment illustrated in FIG. 32 to more than two anchoring welds 38 in anchoring weld lines 122 and more than two laminating welds 44 in laminating weld lines 130. While FIG. 41 illustrates one possible projection pattern 120 defined by linear weld lines 130, embodiments of the invention contemplate that other projection patterns 120 are within the scope of the present disclosure. These alternative patterns 120 may define linear or non-linear bond patterns on the elastic composite structure, including patterns that define a repeating sinusoidal or chevron pattern of bonds. As illustrated in FIGS. 42-48, respective top views are shown of a portion of respective continuous elastic composite structures manufactured using corresponding modified projection patterns of the rotary anvil of FIG. 41.


As shown in FIG. 42, the bonding process creates an overall pattern of anchoring bonds 82 and laminating bonds 84 duplicating the pattern illustrated in FIG. 33 across the cross-direction according to an embodiment of the invention. Accordingly, when broken to create a non-elasticized or deactivation region, the portion of the elastic thread 18 not anchored by any anchoring bonds 82 relaxes or contracts such that the end of the relaxed portion retracts from all spaces separating pairs of laminating bonds 84. In this manner, the end of the relaxed portion of the elastic thread is unbounded by any laminating bond 84.


As shown in FIG. 43, the bonding process creates an overall pattern of anchoring bonds 82 and laminating bonds 84 duplicating the pattern illustrated in FIG. 34 across the cross-direction according to an embodiment of the invention. Accordingly, when broken to create a non-elasticized or deactivation region, the length of the elastic thread 84 provides that the portion of the elastic thread 18 not anchored by any anchoring bonds 82 relaxes or contracts such that the end of the relaxed portion retracts from all but one space of the spaces separating pairs of laminating bonds 84. In this manner, the end of the relaxed portion of the elastic thread is positioned between only a single laminating bond 84 pair.


As shown in FIG. 44, the bonding process creates an overall pattern of anchoring bonds 82 and laminating bonds 84 duplicating the pattern illustrated in FIG. 36 across the cross-direction according to an embodiment of the invention. Accordingly, when broken to create a non-elasticized or deactivation region, the length of the elastic thread 84 provides that the portion of the elastic thread 18 not anchored by any anchoring bonds 82 relaxes or contracts such that the end of the relaxed portion retracts from all but one space of the spaces separating pairs of laminating bonds 84. In this manner, the end of the relaxed portion of the elastic thread is positioned between only a single laminating bond 84 pair even though the length of the relaxed portion illustrated in FIG. 44 is longer than that illustrated in FIG. 43.


As shown in FIG. 45, the bonding process creates an overall pattern of anchoring bonds 82 and laminating bonds 84 similar to the pattern illustrated in FIG. 38 across the cross-direction according to an embodiment of the invention. In this embodiment, no matter the length of the portion of the end of the relaxed portion of the elastic thread, the relaxed portion of the elastic thread is bounded at most by a single laminating bond 84, and no facing pair of laminating bonds 84 limits movement of the elastic thread 18.


As shown in FIG. 46, the bonding process creates an overall pattern of anchoring bonds 82 across the cross-direction and separated by deactivating regions 132, which are defined between opposing single rows of laminating bonds 84. In this manner, none of the elastic threads 18 is limited in its movement by both bonds 84 of any facing pair of laminating bonds 84.


As shown in FIG. 47, the bonding process creates an overall pattern of anchoring bonds 82 across the cross-direction and separated by deactivating regions 132, which include alternating rows of alternating laminating bonds 84. In this manner, the end of any one of the relaxed portions of the elastic threads 18 is positioned at most between only a single laminating bond 84 pair.


As shown in FIG. 48, the bonding process creates an overall pattern of anchoring bonds 82 and laminating bonds 84 similar to the pattern illustrated in FIG. 42 where every other row of laminating bonds 84 in each deactivating region 132 is removed as compared with that illustrated in FIG. 42. In this manner, the end of any one of the relaxed portions of the elastic threads 18 is positioned at most between only a single laminating bond 84 pair.


It is to be understood that the concepts described above with respect to the bond patterns of FIGS. 32-48 may be extended to manufacture an end product with one or more anchored zones and one or more deactivated zones using an anvil with an alternative pattern of projections than those described above. Thus, it is contemplated that the pattern of projections on anvil may be modified from those shown herein to create an elastic composite structure that includes one or more anchored zone(s) and one or more deactivated zone(s) that vary in size and/or position relative to the embodiments specifically depicted herein to create alternative bond patterns within the anchored and/or deactivated zones.


The apparatus and methods described herein can be used to make elastic composite structures for waist regions, below-waist regions, and/or leg cuff regions of a single-piece or three-piece diaper, as non-limiting examples, without the use of glue. By eliminating the use of glue, the resulting elastic composite is softer to the touch and has a more uniform ruffling pattern in the cross-machine direction. The apparatus and methods described herein also provide various means for forming distinct elasticized (i.e., anchored) zones and non-elasticized (i.e., deactivated) zones in the resulting elastic composite without creating cuts or slits in the web layers. Accordingly, embodiments of the invention disclosed herein enable a manufacturing process that creates an end product that is structurally more robust and visually and tactilely more pleasing to the end customer than prior art approaches.


Therefore, according to one embodiment of the invention, an elastic composite structure includes a plurality of tensioned elastic threads, a first web layer positioned on a first side of the plurality of tensioned elastic threads, and a second web layer positioned on a second side of the plurality tensioned elastic threads. The elastic composite structure also includes a pattern of laminating bonds that fuse the first web layer to the second web layer within a deactivated zone of the elastic composite structure. The deactivated zone includes a cut end of a first portion of a tensioned elastic thread of the plurality of tensioned elastic threads and a cut end of a second portion of the tensioned elastic thread of the plurality of tensioned elastic threads. Neither the cut end of the first portion of the tensioned elastic thread nor the cut end of the second portion of the tensioned elastic thread is bounded by a pair of adjacent laminating bonds of the pattern of laminating bonds spaced at a distance less than a distance between adjacent threads of the plurality of tensioned elastic threads. The elastic composite structure further includes a pattern of anchoring bonds that fuse the first web layer to the second web layer within an anchored zone bounding opposing ends of the deactivated zone. The anchored zone includes a first plurality of bonds of the pattern of anchoring bonds arranged to anchor the first portion of the tensioned elastic thread to the first and second web layers and a second plurality of bonds of the pattern of anchoring bonds arranged to define pairs of bonds that anchor the second portion of the tensioned elastic thread to the first and second web layers.


According to another embodiment of the invention, a method of manufacturing an elastic composite structure includes positioning a tensioned elastic thread between a first web layer and a second web layer, fusing the first web layer to the second web layer to form an anchored zone comprising a plurality of discrete anchoring bonds that fuse the first web layer to the second web layer and anchor the tensioned elastic thread therebetween, and cutting the tensioned elastic thread to form a deactivated zone of the elastic composite structure that is free of the tensioned elastic thread, the deactivated zone positioned between adjacent portions of the anchored zone. The method also includes fusing the first web layer to the second web layer within the deactivated zone with a pattern of laminating bond and defining the position of the pattern of laminating bonds relative to a cut end of the tensioned elastic thread such that the cut end of the tensioned elastic thread does not extend into the pattern of laminating bonds in a machine direction.


According to yet another embodiment of the invention, a bonding apparatus for manufacturing an elastic composite structure comprising at least one elastic thread secured between a pair of facing web layers, the bonding apparatus includes a rotary anvil having a face with weld pattern comprising at least one anchoring region and at least one deactivating region. The at least one anchoring region includes a plurality of anchoring welds constructed to form anchoring bonds that fuse the pair of facing web layers together and anchor the at least one elastic thread in position relative to the pair of facing web layers. The at least one deactivating region includes a plurality of laminating welds constructed to form laminating bonds that fuse the pair of facing web layers together without anchoring the at least one elastic thread in position relative to the pair of facing web layers. The plurality of laminating welds are arranged in a zig-zag pattern within the at least one deactivating region.


While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.

Claims
  • 1. An elastic composite structure comprising: a plurality of tensioned elastic threads;a first web layer positioned on a first side of the plurality of tensioned elastic threads;a second web layer positioned on a second side of the plurality tensioned elastic threads; anda pattern of laminating bonds that fuse the first web layer to the second web layer within a deactivated zone of the elastic composite structure, the deactivated zone comprising: a cut end of a first portion of a tensioned elastic thread of the plurality of tensioned elastic threads; anda cut end of a second portion of the tensioned elastic thread of the plurality of tensioned elastic threads;wherein neither the cut end of the first portion of the tensioned elastic thread nor the cut end of the second portion of the tensioned elastic thread is bounded by a pair of adjacent laminating bonds of the pattern of laminating bonds spaced at a distance less than a distance between adjacent threads of the plurality of tensioned elastic threads; anda pattern of anchoring bonds that fuse the first web layer to the second web layer within an anchored zone bounding opposing ends of the deactivated zone, the anchored zone comprising: a first plurality of bonds of the pattern of anchoring bonds arranged to anchor the first portion of the tensioned elastic thread to the first and second web layers; anda second plurality of bonds of the pattern of anchoring bonds arranged to define pairs of bonds that anchor the second portion of the tensioned elastic thread to the first and second web layers.
  • 2. The elastic composite structure of claim 1 wherein the cut ends of the first and second portions of the tensioned elastic thread are positioned between the pattern of anchoring bonds and the pattern of laminating bonds.
  • 3. The elastic composite structure of claim 1 wherein the wherein the cut ends of the first and second portions of the tensioned elastic thread do not overlap any portion of the pattern of laminating bonds in a machine direction.
  • 4. The elastic composite structure of claim 1 wherein the elastic composite structure is free of adhesive within the anchored zone.
  • 5. The elastic composite structure of claim 1 wherein the pattern of anchoring bonds and the pattern of laminating bonds comprise ultrasonic bonds.
  • 6. The elastic composite structure of claim 1 wherein the pattern of anchoring bonds and the pattern of laminating bonds comprise thermal bonds.
  • 7. The elastic composite structure of claim 1 wherein the pattern of anchoring bonds comprises a plurality of rows of bonds positioned in a machine direction; wherein the plurality of rows of bonds are spaced apart from one another by a uniform spacing in a cross-machine direction; andwherein the uniform spacing defines a gap between a bond of one row of bonds and a bond of an adjacent row of bonds that is smaller than a diameter of the tensioned elastic thread in its non-tensioned state.
  • 8. The elastic composite structure of claim 1 wherein the pattern of laminating bonds comprises a zig-zag pattern.
  • 9. A method of manufacturing an elastic composite structure comprising: positioning a tensioned elastic thread between a first web layer and a second web layer;fusing the first web layer to the second web layer to form an anchored zone comprising a plurality of discrete anchoring bonds that fuse the first web layer to the second web layer and anchor the tensioned elastic thread therebetween;cutting the tensioned elastic thread to form a deactivated zone of the elastic composite structure that is free of the tensioned elastic thread, the deactivated zone positioned between adjacent portions of the anchored zone;fusing the first web layer to the second web layer within the deactivated zone with a pattern of laminating bond; anddefining a position of the pattern of laminating bonds relative to a cut end of the tensioned elastic thread such that the cut end of the tensioned elastic thread does not extend into the pattern of laminating bonds in a machine direction.
  • 10. The method of claim 9 comprising positioning the plurality of discrete laminating bonds such that the cut end of the tensioned elastic thread is outside of the deactivated zone in the machine direction.
  • 11. The method of claim 9 comprising ultrasonically bonding the first web layer to the second web layer to form the anchored zone and the deactivated zone.
  • 12. The method of claim 9 comprising forming the pattern of laminating bonds in a zig-zag pattern.
  • 13. A bonding apparatus for manufacturing an elastic composite structure comprising at least one elastic thread secured between a pair of facing web layers, the bonding apparatus comprising: a rotary anvil having a face with weld pattern comprising at least one anchoring region and at least one deactivating region;wherein the at least one anchoring region comprises a plurality of anchoring welds constructed to form anchoring bonds that fuse the pair of facing web layers together and anchor the at least one elastic thread in position relative to the pair of facing web layers; andwherein the at least one deactivating region comprises a plurality of laminating welds constructed to form laminating bonds that fuse the pair of facing web layers together without anchoring the at least one elastic thread in position relative to the pair of facing web layers; andwherein the plurality of laminating welds are arranged in a zig-zag pattern within the at least one deactivating region.
  • 14. The bonding apparatus of claim 13 further comprising an ultrasonic horn configured to cooperate with the rotary anvil.
  • 15. The bonding apparatus of claim 13 wherein the at least one deactivating region further comprises at least one break bar configured to sever the at least one elastic thread.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of, and claims priority to, U.S. non-provisional application Ser. No. 16/260,259, filed Jan. 29, 2019, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/623,381, filed Jan. 29, 2018, and to U.S. Provisional Patent Application Ser. No. 62/666,508, filed May 3, 2018, the disclosures of which are incorporated herein by reference in their entirety.

Provisional Applications (2)
Number Date Country
62623381 Jan 2018 US
62666508 May 2018 US
Continuation in Parts (1)
Number Date Country
Parent 16260259 Jan 2019 US
Child 16946055 US