1. Field
The field hereof is container covers. More particularly, the present disclosure relates to an improved method of making a flexible container cover with an elastic encircle opening.
2. Prior Art
There are number of different types of container or plate covering systems of which I am aware.
One type is a fixed-size container lid which is sized and manufactured to fit a specific container. For example plastic food storage containers such as those sold under the trademark Tupperware generally have matching plastic lids. This approach requires that a specific matching lid be available to cover the container. The lids cannot be used on a different size or shape container.
The second type of product offering and system for covering plates and bowls as well as containers is flexible plastic film and aluminum foil generally provided in a continuous sheet on a roll, such as rolls of plastic wrap sold under the trademark Saran or foil sold under the trademark Reynolds. In order to cover a plate or bowl, the user simply cuts a length of the film or foil and manually molds the cut film or foil over the container. Although this system is flexible enough to cover containers of various sizes and shapes, it is often difficult to cut the film to the correct length and apply it to a container without the film sticking to itself or its edges lifting from the container. Additionally it is difficult to re-cover a container with the same piece of film since plastic films lose their ability to stick to the container after prolonged use, and aluminum foils tear and become wrinkled. Also, foil is not transparent and thus does not allow users to see what is stored in the container. And because it is metallic it cannot be used in some microwave ovens.
The third type of bowl, plate, and container cover is a flexible film cover with an elastic band sewn or stitched around the opening. This type of product has been commercially available and for many years. The same or a similar product is also sold as a shower cap. SC Johnson Co. has sold this type of container cover under their trademark Quick Covers. This type of cover is made from a circular sheet of plastic film, also known as a blank, with a strip of elastic sewn around the perimeter. The elastic, being shorter than the circumference of the blank, gathers the edge of the blank to the center and creates a cover similar in appearance to a shower cap.
There are three drawbacks to this design. The first is that it is unsanitary and unsightly for use with food items due to the fact that the elastic band is stitched to the plastic so that the thread and the ends of the elastic are not contained within, and often hang from the cover. The elastic is also prone to separating at the stitches after a number of uses. The second drawback is that these covers cannot be mass produced on high speed machinery because the elastic must be sewn around the perimeter of the sheet. The third drawback is that these covers do not fit both elliptical and rectangular containers with similar size openings, nor do they fit elongated rectangular shaped container, and therefore have relatively low versatility.
U.S. Pat. Nos. 2,490,451 to Magid (1949) and 3,035,960 to Farkas et al. (1962) disclose covers with an elastic band heat sealed into a hem along the periphery of a circular sheet of plastic film. Although these covers eliminate the unsanitary and undesirable aesthetics of the above stitched type of cover, they do not fit both elliptical and square containers with similar size openings, nor do they fit elongated rectangular containers. Furthermore, the method of manufacturing the covers of both patents requires multiple forming head to form the sheet and the band. Also it is difficult to remove the finished covers from the sealing apparatus, and thus they cannot be made on high speed machinery. Finally, these covers completely enclose the elastic band in a sealed edge which is not functional in a microwave oven because the air trapped within the hermetically sealed hem will expand when heated in a microwave, which can cause the hem to burst, thereby destroying the cover.
In my above copending application Ser. No. 11/840,019 I disclose an improved more versatile cover and method of manufacture. This cover is made from a rectangular sheet of plastic film material, or blank, and an elastic band. The sheet has a predetermined amount of material cut from each corner. The sheet is placed onto a table between four posts that extend from the table. The sheet is positioned so that a post lines up with each corner of the sheet. A rubber band is stretched across the four posts into a similar shaped rectangle and rests just above the sheet. The stretched rubber band now has four sides which correspond to the four sides of the sheet. The side edges of the sheet are folded inward and over the stretched band and heat sealed directly to the sheet, sealing the band within four pockets that are formed along the sides of the sheet. Each corner of the stretched band is released from its post, allowing the band to relax and pull the four corners of the sheet toward the center to form the cover.
While this cover and its method of manufacture is a substantial improvement over prior covers, there are three areas that could be improved further. The first area in need of improvement is that the forming method requires a cut in each corner to allow room for the elastic band holding post, which leaves an opening in the hem at each corner of the cover exposing a portion of the band. While this eliminates the problem discussed above of a bursting hem when used in a microwave, and does not cause a functional problem because the location of the cut or hole is below the rim of the container being covered, the exposed band has the potential to look like a manufacturing defect to some customers. The second area in need of improvement is the process step of stretching and placing the rubber band around the holding posts. This step requires a high degree of precision to position the stretched rubber band directly above the sheet so that the sides of the sheet can be folded over the band in order to be heat sealed. This step slows the manufacturing process and limits the process capability for high speed automation. There is also a limitation in my above referenced applications in that the cover formed by the folding over an elastic band method requires that the starting blank have substantially straight sides. While a rectangular blank provides maximum flexibility in being able to cover round, rectangular, square, oval, or any other shaped container, there could be a situation where a customer would want a cover made from a round blank.
Accordingly, some advantages of one or more aspects are to provide an improved method of manufacturing a flexible cover and article thereof that: a) can be round or rectangular in shape and thereby cover both round and rectangular shaped containers, b) eliminates a cut or hole in the hem at each corner which exposes a portion of the elastic band, c) allows air to escape from the hem to prevent the hem from bursting when used in a microwave oven, d) utilizes a forming head which simultaneously forms the sheet and applies the elastic band, e) can be automatically striped from the sealing apparatus, f) can be made on high speed automated machinery, and g) can be integrated into an automated assembly line process. Other advantages of various aspects will be apparent from a consideration of the following description and the accompanying drawings.
In accordance with one aspect, an apparatus and method for making a flexible container cover comprises a forming machine with a lower section having: a) a square shaped forming mandrel having a top, four substantially vertical sides, and a heating element extending longitudinally along each side, b) four elongated sealing bar mechanisms each having a top side with a sheet guide and a front side with an elongated strip of rubber attached thereto, and c) a cover ejector plate with plural upwardly extending ejector pins. Each sealing bar mechanism is positioned opposite a respective side of the forming mandrel separated by predetermined distance to create a forming groove, recess or moat around the forming mandrel. Each adjacent sealing bar is separated by a small gap. The cover ejector mechanism is positioned below the forming mandrel so that the ejector pins align with clearance holes cut through the forming mandrel. An upper section having a forming head assembly comprises a) a forming die with sides that define a cavity sized to telescope over the forming mandrel, and b) a band ejector plate with plural downwardly extending ejector pins located along the perimeter. The forming die hangs below the band ejector plate by the use of shafts which extend from the forming die through clearance hole in the ejector plate and are held in place by shaft collars at the top of each shaft. The ejector pins extend downwardly from the ejector plate and are centered within gaps cut into the sides of the forming die.
With the forming head assembly in an up position a square sheet of plastic film is positioned on top of the forming mandrel. Each side of the sheet extends past the sides of the mandrel and rest on top of each sealing bar within the sheet guides. An elastic band is stretched and placed around the sides of the forming die. The forming head assembly is actuated downward so that the forming die telescopes over the forming mandrel forcing a marginal portion of the sheet downward into the moat in a V-shaped cross sectional configuration. Next the forming die hits a mechanical stop while the band ejector mechanism continues to move downward causing the ejector pins to push the elastic band off of the forming die and snap securely around the sides of the forming mandrel, thereby holding the sheet in place. Next the forming head assembly is returned to the up position and the sealing bars are actuated inward to push the sides of the sheet against the mandrel to form a hem enclosing the elastic band. As the sealing bars are actuated the heating element is switched on which melts and seals the plastic to form a seam which encloses the elastic band within a continuous hem along the periphery of the sheet. An unsealed pleat is formed within the hem at the location of the gap between adjacent sealing bars. Next the side sealing bars are returned to the outward position and the cover ejector mechanism is raised such that the ejector pins move through the clearance holes in the forming mandrel and push the underside of the plastic sheet upward which automatically strips the formed cover from the forming mandrel. Finally, the ejector plate is retracted back down through the mandrel which strips the cover from the ejector pins. Once released from the ejector pins, the elastic band relaxes to its natural free length, which is less than the length of the perimeter or circumference of the blank. Thus the elastic band draws or gathers the sides and corners inward towards the center, forming the sheet into a hollow cover with an expandable opening. The elastic band is sealed within a continuous hem around the periphery of the sheet having an unsealed pleat which prevents air from being trapped within the hem area when the cover is heated in a microwave.
In another aspect a blast of compressed air or mechanical means is used to fill the gaps between adjacent sealing bars to eliminate an unsealed pleat and provide a continuous and hermetically sealed hem containing an elastic band.
In another aspect the forming mandrel, forming die and associated parts are configured in an elongated rectangular shape in order to form a cover from an elongated rectangular blank designed to cover round, square or elongated rectangular containers. In yet another aspect the forming mandrel, forming die and related parts are configured in an elliptical shape to form a cover from a round blank.
In another aspect a flexible container cover comprises a rectangular sheet of film having an elastic band sealed within a hem around the periphery of the sheet in which pleats are sealed at each corner, but there is an absence of sealed pleats along each side.
In another aspect a flexible container cover comprises a sheet of film having an elastic band sealed within a hem around the periphery of the sheet with the hem having an un-pleated, unsealed area to prevent air from being trapped within the hem in order to prevent the hem from bursting when used in a microwave.
In yet another aspect a rectangular sheet of film having a straight chamfer cut at each corner is formed into a flexible container cover having curved corners.
In another aspect a fully automated process is provided comprising die cutting, elastic band feeding, cover forming and ejecting, and finish product accumulation. In timed sequence a die cutter station is provided which cuts the sheet or blank from a roll of film material. Next the blank is automatically placed onto the forming mandrel of the forming machine. Next an elastic band feeding apparatus stretches and applies an elastic band around the forming die of the forming machine. Next the forming machine forms and ejects a finished cover. Lastly, an accumulator picks up the ejected cover and stacks the cover in an accumulation bin for final packaging.
These and other aspects and features of the disclosure will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The heating element is made from a strip of nichrome wire which is commonly used as a heating element in toasters and hair dryers. Other suitable heating element material well known in the art can also be used. The nichrome wire is insulated from mandrel 120 by use of a strip of heat-resistant insulating tape located between the wire and the mandrel (not shown). The top of the wire is also covered by a strip of heat-resistant insulating tape (not shown). A single strip of wire is wrapped around the entire mandrel ending at its starting point with a small gap 182 between the two ends. The free ends of the wire are connected to a low voltage power source (not shown) which can be turned on and off. When a predetermined amount of electrical current is passed through the wire, electrical resistance causes the wire to get very hot, very quickly. There are a number of different sealing technology well known in the art which could be used as an alternative for impulse heat sealing, such as ultrasonic vibration energy (ultrasonic sealing), high-frequency die electric sealing (induction heating), or a the use of a heated sealing clamp or heated bar.
Mandrel 120 is supported on frame 100 in a horizontal configuration as shown in
The upper section of the apparatus (
In accordance with this first embodiment, a flexible container cover 190 (
Next an elastic band 160 (
As shown in
Next, as shown in
As shown in
Turning now to
Other means of leaving an unsealed area in the hem to allow air to escape can be used. For example gap 182 (
A first station 510 comprises a die-cutting apparatus 520. The die cutting apparatus comprises an unwind stand, web guides, and a punching unit all well known in the art.
A second station 512 comprises a forming head apparatus 300A and band feeding apparatus 522. Forming head 300A (similar to forming head 300) comprises a forming die and band ejector plate. Band feeding apparatus 522 comprises a conveyor of matching sets of hooks or pins which automatically stretch and release rubber bands around the forming die. The rubber bands can initially be put on the hooks manually, or by an automated descrambling apparatus that would descramble individual rubber bands from a jumbled mass and place them on the hooks. Alternatively elastic bands can be formed directly around the forming die from two separate ribbons of elastic as disclosed in U.S. Pat. No. 5,749,989 to Linmann et al., which is incorporated by reference. Alternatively the band feeding can be performed by a worker positioned at this station with a supply of rubber bands; the worker manually stretches and applies the rubber band around the forming die.
At a third station 514 no fabrication action is taken. This station therefore provides a dwell or pause to allow the seam to be sealed.
A fourth station 516 comprises an eject plate 110A, (similar to eject plate 110), and an accumulating apparatus 524 which is designed to pick up and stack the finished covers after they have been stripped from the forming mandrel. The accumulating apparatus can comprise a reciprocating overhead arm equipped with a vacuum cup for picking up an ejected cover and moving it to an accumulation bin 526.
Starting at first station 510 a roll of film material 521 is loaded on the unwind stand and fed through web guides (not shown) to die cutter 520. Next the die cutter punches a blank (similar to blank 170) and places the blank on top of forming mandrel 120A. The blank is placed with a mechanical positioner or, alternatively with a blast of compressed air. A series of vacuum holes in the top of the mandrel hold the blank in place when the turntable moves the mandrel to the next station.
Next the turntable rotates 90° counter-clockwise (CCW) as shown by the arrows to second station 512 and places the first mandrel with the blank on top under forming head 300A. Band feeding apparatus 522 (or a worker) next applies a rubber band to the forming die. The forming die is lowered to form the sheet and apply the rubber band as described earlier. The forming head moves up and sealing bars 130A are actuated along with a heating element (not shown) to form and seal a hem containing the elastic band.
Next the turntable indexes another 90° CCW to third station 514 station where sealing bars 130A continue to be pressed against the sides of the mandrel for a predetermined interval to seal the hem.
Finally the turntable moves to the fourth station 516 where sealing bars 130A are deactivated. Eject plate 110A is the activated to strip the cover from the mandrel as described for the first embodiment. Accumulator apparatus 524 next moves into position above the loose cover, and with the use of a vacuum picks up the cover and transfers it to accumulation bin 526. The process is repeated sequentially as each mandrel intermittently indexes to each respective station. If the dwell at each station is 0.75 second and it takes 0.25 second to move a mandrel between stations, the total time to complete one cover is 4 seconds, so the throughput would be one cover per second or 60 finished covers per minute.
The reader will see that according to the disclosure, I have provided a flexible container cover and fabrication method that can fit containers, plates, and bowls in a variety of shapes and sizes, made from a sheet of film and having a continuous hem covering an elastic band about the periphery of the sheet. The hem can have an unsealed section or unsealed pleat which prevents air from being trapped within the hem so that it does not burst when used in a microwave oven. Alternatively the hem can be hermetically sealed. The process and apparatus can form the flexible container covers from round, elliptical, rectangular, or square blanks. It utilizes a forming head which simultaneously forms the sheet and applies the elastic band and automatically strips the formed cover from the sealing apparatus. The process and apparatus can be integrated into an automated assembly line for the high speed production of flexible container covers.
While certain representative embodiments and details have been shown for purposes of illustrating the disclosure, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed may be made without departing from the scope of the disclosure. For example the starting sheet can have square corners, radius corners, or chamfered corners. Rectangular sheets similar to the sheets shown in my pending application Ser. No. 11/840,019, filed Aug. 16, 2007 and incorporated by reference can be used. These sheets have a section of material removed from each corner. Such sheets or blanks can be formed with the method and apparatus detailed in the current disclosure, producing a cover with an interrupted hem and exposed band at each corner.
In lieu of rubber bands, any other elastic band may be used, such as rubber covered by a sleeve, rubber covered by wound thread, elastic plastic, a coiled metal spring (in a sleeve or without a sleeve), etc.
The primary graphical alignment indicator means disclosed in my pending application Ser. No. 12/363,528, filed Jan. 30, 2009 and incorporated by reference can be incorporated into the present blanks to allow the user to quickly and easily identify which direction to pull, place, or orient the cover in order to keep the sides parallel with the sides of a rectangular container.
The size and shape of the apparatus tooling parts, such as the forming mandrel, forming die, band ejector mechanism, cover ejector mechanism, and sealing bars can all be modified. For example instead of using eight band-ejector pins, any other number of pins can be provided to push the band off of the forming die. In lieu of pins, other pushing or ejecting means can be used. Similarly, instead of using four cover ejector pins, any other number of pins can be provided to push the formed cover off of the forming mandrel. In lieu of pins, other pushing, pulling, or ejecting means can be used, such as compressed air or vacuum.
A separate strip of wire or heating element can be secured to each side of the forming mandrel instead of using one long continuous wire. The hem can be sealed by other means of melting and fusing the overlapping plastic. A different color elastic band 160 can be used for different size covers to help differentiate the sizes. For example, a cover sized to fit containers 10.2 cm (4 inches) to 22.9 cm (9 inches) can use a yellow rubber band, while a cover sized to fit containers 22.9 cm (9 inches) to 35.6 cm (14 inches) can use a green rubber band and so forth. Instead of four mandrel positions on the rotating turntable, there could be 8 mandrel positions (45 degrees apart) for the four stations which would reduce the travel time and increase the throughput of the machine.
The stations of the automated assembly line process can be configured in a linear layout instead of a circular layout. Instead of a reciprocating arm the accumulator apparatus can be a rotating station with plural picking heads for removing the finished covers from the forming mandrel in timed sequence.
In lieu of covering food containers, the cover can be used to cover any other type of container, such as laboratory specimens, mechanical or electronic parts, biological materials, office materials, etc.
Thus the scope should be determined by the appended claims and their legal equivalents, and not by the examples given.
This application claims priority of my copending provisional patent application, Ser. No. 61/153,182, filed Feb. 17, 2009, and is related to my copending applications, Ser. No. 11/840,019, filed Aug. 16, 2007 on a more versatile cover and method of manufacture, Ser. No. 12/363,528, filed Jan. 30, 2009 on a method of orienting a cover, and Ser. No. 12/369,629, filed Feb. 11, 2009 on a method and dispenser for flexible covers.
Number | Date | Country | |
---|---|---|---|
61153182 | Feb 2009 | US |