The present invention involves detection of contaminants such as bacteria, viruses, and body fluids. More particularly, it detects such contaminants in nano- to micro- scale, most typically in sanitation apparatus or sanitation monitoring apparatus such as but not limited to independent units, units combined with hand dryers or clean room detectors.
In a time when we now understand more clearly the causes and effects of disease, we have at our disposal the means with which to avoid many sources of infection: the use of sanitary methods, especially hand washing. Unfortunately, most people simply don't perform the task as well or as often as needed. The main problem is that germs are too small to see. People can't simply wash off visible dirt and expect their hands to be “clean”. Additionally, people, for whatever reason, do not spend the adequate amount of time necessary to properly clean their hands.
Experts agree that effective hand washing requires both soap and water. (Merely rinsing one's hands with water alone will not suffice.) The hands must be wet thoroughly and lathered with soap. Then the individual must rub the soapy water all over the hands and fingers for at least twenty (20) to thirty (30) seconds, including underneath the fingernails, and then rinse thoroughly to ensure proper sanitation has occurred. Unfortunately, people simply don't do this. “Want to Help Fight Disease? Just Wash Your Hands.” www.yourskinandsun.com/article1039.html (Aug. 18, 2003).
While businesses such as restaurants and hospitals frequently install signs in restrooms to remind their employees that they “must” wash their hands before returning to work, there has never been an effective way for an employer or other supervisor to monitor if this hand washing did, in fact, occur (unless sinks are installed in the work area and heavily monitored). Further, even if an employee has washed their hands, there has never been a way to ensure that the hands are satisfactorily clean, or if substandard sanitary practices have occurred. The problem is not limited to businesses or institutions alone. Every day parents, guardians, and care givers everywhere lament children's hand washing practices. Further, these selfsame care givers have never had a way to ensure that their own hands, much less the children's hands, were properly washed as well. Given the virulence of bacteria and viruses emerging in the world scene now, it is becoming ever more important to ensure proper hand washing has occurred.
The Centers for Disease Control and Prevention (CDC) estimates that approximately 76 million people suffer from food borne illnesses and 5,000 die from these illnesses in the United States each year. The CDC, in a review of contributing factors to food borne disease outbreaks over a five year period, estimated that poor personal hygiene was a contributing factor in over a third of the outbreaks.
In a study reported in the Journal of Infectious Diseases in Children, fecal coli-forms were detected on the hands of some twenty (20) percent of daycare staff evaluated. Further, a third of the facilities studied had poor hand washing systems and no policy for hand washing before eating or after playing outside. (Kendall, Pat, “Hand Washing Important to Preventing Spread of Disease”, Colorado State University Cooperative Extension, www.ext.colostate.edu/pubs/columnnn/nn010320.html. (Mar. 20, 2001).) These are particularly worrisome numbers when the type of infectious diseases common to these child care facilities are considered.
Diseases with respiratory tract symptoms are often spread by airborne droplets or by surfaces contaminated with nose/throat discharges. The sneezing and coughing of an infected child can result in some of the germs becoming air-borne. In addition, sick children will often contaminate their hands and other objects with infectious nasal/throat discharges. Some of the infections passed in this way are the common cold, chickenpox, influenza, measles, meningitis (viral and bacterial), mumps, whooping cough (pertussis), rubella, streptococcal infection, and viral gastroenteritis. Intestinal tract infections are often spread through exposure to viruses, bacteria, or parasites in the feces and are transmitted by the fecal-oral route. This means that the germs leave the body of the infected person in the feces and enter the body of another person through the mouth. In most situations, this happens when objects that have become contaminated with undetectable amounts of feces are placed in the mouth. (Fecal-oral transmission can also occur when food or water is contaminated with undetectable amounts of human or animal feces.) Studies have shown that the sites most frequently contaminated with feces are hands, classroom floors, toilet flush handles, toys and tabletops. Germs spread in this way include: Campylobacter species, cryptosporidium, E. coli 0157, Giardia, hepatitis A (infectious hepatitis), Salmonella species, Shigella species, and a variety of intestinal viruses. (Colorado Dept. of Public Health and Environment, “Infectious Disease In Child Care Settings: Guidelines for Child Care Providers” December 2002; www.cdphe.state.co.us/dc.epidemiology/ChildCareflipchart02a.pdf.)
Clearly, there is a grave health risk present when proper sanitary methods are not employed and diseases, not limited to those listed above, are spread. Physicians agree that the best way to prevent the spread of illness is washing the hands properly, but how can one be sure that hands have been washed properly, whether in a home, daycare, medical, industrial, commercial or other setting? The present art does not allow for real time testing of the hands or other small objects to check for contaminants. Therefore, there is a strong felt need in the art for an apparatus and method for real time testing of hands or other body parts for contaminants in order to avoid unnecessary transmission of such contaminants.
Further, this danger can be extended. Small items may also carry germs that can put one's health at risk. A dropped pacifier or a toy handled by another child can easily transmit germs to a healthy child. To carry the analogy to the business world, a spatula dropped in a restaurant can become contaminated with whatever germs the restaurant's employees have “walked in”. (Germs are often carried on shoes.) Further, there are conceivable instances where the utmost care should be taken in disease or contaminant prevention: hospitals, in particular, operating rooms or intensive care units, and clean rooms for industry. These types of specialized environments require the highest level of cleanliness. Unfortunately, until now, the most relied on “check” for cleanliness has been the honor system—trusting workers to sufficiently scrub up.
The problems the honor system creates can be clearly seen in the CDS's own “Guideline for Hand Hygiene in Heath-Care Settings: Recommendations of the Healthcare Infection Control Practice Advisory Committee and the HICPAC/SHEA/APIC/IDSA Hand Hygiene Task Force”, published at www.cdc/gov/mmwr/preview/mmwrhtml/rr5116a1.htm and at MMWR Recommendations and Reports 51 (RR16); 1-44 (Oct. 25, 2002). This guide sets forth the state of the art: that the performance indicator for hand washing is for health care facilities to periodically monitor and record adherence as the number of hand-hygiene episodes performed by personnel/number of hand hygiene opportunities and to provide feedback to the personnel. Therefore, the only feedback that could be given would be subjective based on the number of hand washings and, likely, the duration. There is no method or apparatus in use to actually check for contamination.
There is clearly a need in the art for actual contaminant detection capability to facilitate a quick, reliable answer to individuals in industry, healthcare, and on a personal basis of the presence of contaminants. Further, the process needs to be repeatably reliable. Additionally, it would be extremely desirable to avoid complicated processes such as plating specimens in order to detect contaminants. Clearly unusable in a home situation, such detection methods are so time consuming as to be non-useful in other situations (such as commercial or medical) as well. Furthermore, there is a need in the art for identification of individuals in industry or healthcare that have not adequately cleaned their hands in hand washing. Subjective monitoring is not sufficient and impractical for continued monitoring.
The present invention is a method and apparatus for contaminant detection to ensure cleanliness and/or that sanitary procedures have been undertaken and were successful. Particularly, the method and apparatus involve collecting air samples containing aerosolized contaminate particles from an object and analyzing the sample for presence of a contaminate. Aerosol lab-on-a-chip and/or electronic nose devices are utilized for the detection of contaminant particles
More particularly, the invention includes a method for detecting contamination of objects (including but not limited to body parts, whole bodies, utensils, clothing such as gloves, gowns, masks, shoes, foot covers, clean suits, etc.) including providing an object; collecting air surrounding the object; and analyzing the collected air by utilizing an ALOC detector to determine the presence of contaminated particles. Additional steps may include creating airflow across the object before collecting the air; utilizing an odor marker, utilizing an odor within a known object as an odor marker. The method may have additional steps of providing exchangeable objects having known odor markers and maintaining a database or record of the analysis of the odor markers to indicate use of particular exchangeable objects, for example, using gloves with different odor markers and requiring use of certain gloves at certain times of day to ensure gloves are changed frequently. The contaminant may be selected from the group consisting of bacteria, viruses, protozoans, blood, body fluids, tissues, chemicals, and dirt.
The invention also includes an apparatus having a collector unit and an ALOC detector unit in fluid connection with the collector unit for detecting the presence of contaminants on objects. The apparatus may also have a telemetry unit in electrical connection with the detector unit, a controller unit in electrical connection with the detector unit, and/or a controller unit in electrical connection with a telemetry unit.
The collector unit has a collecting surface with at least one air inlet, and can have at least one funnel-type device surrounding the at least one air inlet. It may also have an air handling unit disposed to create air flow across an object and into the collector. The air handling unit may have at least one air nozzle disposed within a cavity of an object, and may be electronically controlled by a controlling unit.
The apparatus may be a portable unit. Additionally, it may have an odor marking unit. Alternately, the detector unit may comprise an electronic nose device.
The present invention comprises a novel detection apparatus and method for detection of contaminants on hands, other body parts, clean suits, small objects and the like. More particularly, it involves use of a contaminant detector utilizing an aerosol lab-on-a-chip (ALOC) device or electronic nose device to chemically detect contaminants by sampling the surrounding air.
For the purposes of this disclosure the following definitions shall apply:
Aerosol lab-on-a-chip (ALOC) is a device which integrates one or more of a variety of aerosol collection, classification, concentration (enrichment), and characterization processes onto a single substrate or layered stack of substrates;
Contaminants are materials or organisms found on the item to be examined which are foreign (or present in unusually high number) to the object itself and may include, but are not limited to, chemicals, fecal material, dirt and other detritus, microbes, viruses, fungi and protozoa;
Electronic noses are devices which are used for automated detection and classification of odors, vapors and gases. They are comprised of a chemical sensing system and a pattern recognition system (artificial neural network).
Items to be examined are any items small enough to fit in the detection unit, typically, body parts, including but not limited to hands and feet, small objects (such as spatulas, pens, etc.), whole persons, including but not limited to clean suits, shoes, gloves, hairnets, or clean room booties examination.
The preferred embodiment of the invention comprises a contaminant detection apparatus. The detection method comprises providing an object for analysis, collecting aerosolized contaminant particles from air surrounding the object, and analyzing the air to detect the presence of contaminant. Optionally, the additional step of creating airflow across the object may be used before the collection step.
The contaminant detector of the invention comprises an aerosol collector in fluid connection with a detector. The detector may utilize an aerosol-lab-on-a-chip or an electronic nose device. The apparatus may additionally comprise a controller and/or telemetry devices in electrical and/or electronic connection with the detector. Optionally, the controller may be in electrical and/or electronic connection with an optional air handling unit which provides an air flow across the object which is to be evaluated. Further optionally, an odor marker may be utilized for detection which will alert the controller that an object is in place and/or that the object has engaged in the sanitation process (i.e., hand-, foot-, object-washing). Finally, the apparatus may additionally utilize drying devices known in the industry, and may additionally comprise monitoring devices, preferably including card reader technology, including but not limited to RF technology and bar code readers, to alert monitoring stations to non-compliant hands, objects, etc. by sending an electronic signal or maintaining an internal electronic database tracking the testing and results of particular individuals.
The preferred contaminant detector apparatus 10 of the invention, as shown depicted in
Object/objects for analysis 22, (which may include body parts, such as but not limited to hands and feet, whole bodies, gloves, masks, hats, hair nets, hair covers, clean room suits or booties, utensils, medical equipment, containers, and other objects sized for proximity to the detector) as shown in
Naturally or mechanically aerosolized contaminant particles 34 arising from contaminant 36 on object 22 will be moved by air current or ambient air from object 22 and combined air current/aerosolized contaminant particles 38 or air current/aerosolized odor marker particles 52 will flow naturally (or in an assisted manner if forced air current 32 is applied) to aerosol collector 16 and into aerosol collector inlets 44. An assisted air flow is not required, but may be helpful in moving aerosolized contaminant particles or in providing the mechanical assist to aerosolize the particles from the surface of the object. Aerosol collector 16 is maintained in fluid (gaseous) connection with detector 14, preferably, by utilizing tubing 46 or other connective apparatus known in the art, disposed between collector 16 and detector 14, thereby allowing collected combined air flow/contaminant and/or combined air flow/odor marker stream 58 to flow from collector 16 to detector 14. Detector 14 preferably comprises an aerosol lab-on-a-chip as described in U.S. Pat. No. 6,386,015 to Rader, et al. and as depicted in
Detector 14 comprises an ALOC device as disclosed in Rader '015: a tool to collect, classify, concentrate, and/or characterize gas-borne particles. The basic principle underlying the ALOC is to take advantage of micro-machining capabilities to integrate a variety of aerosol collection, classification, concentration (enrichment), and characterization processes into a single package which is compact, rugged, self-contained, and inexpensive to manufacture. Thus, a suite of discrete laboratory aerosol characterization techniques could be combined onto a single substrate, or stack of substrates, along with aerosol pre-conditioners and gas handling processes. The ALOC is analogous to the integrated circuit, wherein a variety of discrete electronic (aerosol) components are combined onto a single chip to build-up complex electrical (aerosol characterization) systems. The performance of several of these analytic aerosol characterization techniques would benefit by miniaturization (e.g., particularly the inertial techniques). By constructing arrays of identical parallel modules, it should be possible to reduce gas velocities that could give a quadratic reduction in pressure drop and consequently a quadratic reduction in power consumption. As pointed out above, sampling discrepancies would also be reduced; i.e., by virtue of their close proximity on the chip, each technique could be analyzing essentially the same sample. The performance of pre-conditioners, such as concentrators or size sorters, would also benefit by miniaturization, and could be built into layers above the diagnostics as needed. Gas-moving devices, such as pumps or fans, can be provided external to or fabricated onto the ALOC to provide the gas throughput needed for the aerosol sampling and analysis but are optional not essential. Electronic circuitry could also be fabricated onto the ALOC to provide for process control (valves, switches, etc.), signal processing, data analysis, and telemetry. Moreover, if the ALOC can be made sufficiently small and rugged, it could be placed directly into harsh (corrosive, high temperature, etc.) environments.
A schematic of an embodiment of the ALOC is shown for a single aerosol characterization technique in
Finally, power for the device is provided by a standard low-voltage source, such as a battery 219, through a set of leads 220 connected to a data/power bus 221 located on the integrated chip. Power also may be supplied by a battery incorporated directly onto the ALOC substrate, or by any other means known to those skilled in the art.
The functions of the individual components are described briefly now. 1) The aerosol inlet must provide a path that admits the particle-laden gas into the ALOC assembly. The shape of the inlet must be designed carefully, as is well known in the prior art, so as to avoid particle inertial inlet losses and to provide a suitable gas inlet velocity profile, and to avoid large pressure drops. 2) The term aerosol condition is used hereinafter to describe any collection of processes that may be used to either classify, concentrate, or in some way manipulate an incoming stream of particles comprising an aerosol prior to those particles reaching a characterization module. As a classifier, the conditioner can be used to accept or reject particles above or below a desired size, or within a desired size range. As a concentrator, the conditioner can be used to preferentially increase the local concentration of particles in a desired size range. 3) The purpose of the aerosol characterization module is to provide a measurement of some physical property of the particle, including prior art such as techniques based on particle light including prior art such as techniques based on particle light scattering, inertial response, or electric mobility. Many of the in situ or extractive techniques discussed above would be suitable for miniaturization. A complete characterization of the aerosol would require a determination of the distribution of size, shape, and chemical, physical, and biological composition of the suspended particles comprising the aerosol. 4) A gas moving device may be necessary, in the absence of a moving gas stream, in order to establish a flow of a sufficient volume and velocity of gas, and therefore, an adequate number of particles, through the characterization module(s) in order to ensure an accurate measurement. The gas moving device can be any means capable of generating a pressure differential such as a mechanical pump, a sorp pump, a fan, or ion or diffusion pumps, and can be external to or fabricated onto the ALOC. 5) Active process control would include sensors, circuitry, and control devices on-board the ALOC that would collectively act to maintain critical process parameters within acceptable operating ranges. Lumped into this module are additional flow handling devices, such as channels and valves, which may be needed to distribute/direct the gas flow among the various characterization modules. 6) Circuitry could also be provided to allow on-board signal processing or data analysis that would be used to reduce raw physical measurements from the aerosol characterization module into useful form. As an example, a pulse-height analyzer could be used to determine the peak scattering intensity needed to size a particle based on its scattering profile while passing through an illumination source. Systems could also be envisioned that would collect single-particle data and reduce it to obtain size distribution functions. 7) Telemetry could be used to send the acquired data to a remote collection unit. 8) Power to the ALOC is supplied by a standard low-voltage source, such as by a battery, which could be either external to, or built onto, the ALOC substrate.
Alternately, the apparatus of the invention may utilize electronic nose technology as detector 14. The two main components of an electronic nose are the sensing system and the automated pattern recognition system. The sensing system can be an array of several different sensing elements (e.g., chemical sensors), where each element measures a different property of the sensed chemical, or it can be a single sensing device (e.g., spectrometer) that produces an array of measurements for each chemical, or it can be a combination. Each chemical vapor presented to the sensor array produces a signature or pattern characteristic of the vapor. By presenting many different chemicals to the sensor array, a database of signatures is built up. This database of labeled signatures is used to train the pattern recognition system. The goal of this training process is to configure the recognition system to produce unique classifications of each chemical so that an automated identification can be implemented.
The quantity and complexity of the data collected by sensors array can make conventional chemical analysis of data in an automated fashion difficult. One approach to chemical vapor identification is to build an array of sensors, where each sensor in the array is designed to respond to a specific chemical. With this approach, the number of unique sensors must be at least as great as the number of chemicals being monitored. It is both expensive and difficult to build highly selective chemical sensors.
Alternate embodiments of the apparatus of the invention may utilize natural air flows instead of or in addition to fans or pumps for directing aerosol particles into collector 16.
Further alternate embodiments would comprise portable units wherein an alternate power source known in the art (such as, but not limited to, batteries) would be utilized for the optional air handler 28, detector unit 14, optional controller unit 18, quality control devices as discussed below, optional telemetry devices 19 for the transmission of user and results information, and optional security devices 20 as discussed herein.
Quality control devices may be utilized to ensure that the air flow is sufficient and directionally oriented to detect contaminants. In particular, as shown in
Additional control devices that may be assistive to a user could include optional display modules 152, 153, 154, 155, 156, for example, as shown in
Further, the unit 10 may comprise a card reader or other ID sensor 151 which could identify a particular individual for either identification and/or record keeping purposes. Further, the unit may utilize remote technology, telemetry, such as RF technology to indicate to a monitor in a remote position what the analysis has indicated. Antenna 157, as shown in
Further, in the case of some types of objects, it may be beneficial to provide an embodiment for detecting contaminants within a cavity area, for example, inside a container cavity.
It is envisioned that the apparatus of the present invention would be extremely useful not only for detecting contaminants on hands, such as after hand washing, but also for more stringent cleanliness requirements such as for a clean room or an operating room. As shown in
Preferably, in such situations where strict cleanliness requirements are needed, alternate security devices will be employed by the unit 10b and/or 10. For example, as depicted in
The apparatus of the present invention optionally additionally comprises a controller unit, typically comprising a processor, as known in the art, which is capable of following pre-determined pathways based on input from the detector and extraneous optional sensors in electronic connection with the processor of the controller unit. Based on the outcome of the pre-determined pathways, the controller sends a signal, either by electronic connection or through, for example radio frequency transmissions/receivers or other means known in the art, to the corresponding unit, for instance the air handler to dictate, by pre-determined pathways what action to undertake, i.e., increase or decrease air flow. Any pathway may be programmed into the processor as desired. A preferred logic pathway for the processor is depicted in
The device of the invention could easily be modified to be used in a handheld or otherwise portable device, and/or in conjunction with already existing detectors such as fluorescence, metal, plastic or other types of contaminant detectors, in conjunction with restroom hand dryers or for any configuration necessary to accommodate industry. The essentials for the operation of the device are air flow over an object surface into collectors for analysis. It is envisioned that many differing configurations will be utilized and the embodiments depicted herein are offered to be illustrative but not limiting of the invention.
This Application entitled “Apparatus and Method of Washed Hand and Object Detection” is a Continuation Application of application Ser. No. 12/982,949 filed Dec. 31, 2010 entitled “Apparatus and Method of Contaminant Detection” and application Ser. No. 11/026,373 filed Dec. 29, 2004, also entitled “Apparatus and Method of Contaminant Detection”, now U.S. Pat. No. 8,006,542. Priority is claimed to both applications and the applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12982949 | Dec 2010 | US |
Child | 13912346 | US |