This invention is directed towards an apparatus and process for improving, the cutting tool life of a cutting tool used on a CNC machine and provides a more efficient operation of the CNC machine.
CNC cutting machines are widely used to machine parts from a variety of substrates including metals and hard plastics. An industry-wide problem is that as the cutting tool is cutting, localized high temperatures are generated which can degrade the cutting tool and may damage the substrate.
For some applications, CNC machines will employ a chemical coolant that is used in proximity to the cutting edge of the cutting tool. However, the current use of coolant results in a pattern of heating and cooling cycles which can lead to thermal cracking of the cutting edge and may further damage the substrate. The coolant currently used is directed along stationary lines which mean that at some point, the cutting tool and substrate are in a less than desired orientation relevant to the coolant. Accordingly, the cutting tool and substrate will reach elevated temperatures from the substrate removal process and then is suddenly cooled when once again exposed to the coolant.
An additional problem is that chips generated from the substrate removal process can stick to a heated portion of the substrate or the cutting tool and interfere with the substrate removal operation and may lead to cutting tool breakage. This is a particular problem when coolant is used because coolant causes the chips to become tacky and thus more prone to stick together and the use of a coolant will add to the weight of the chips. When the substrate is cut with air, the chips are lighter and are less prone to stick together or bind to the substrate.
It is known in the art to use a coolant that passes through the spindle tool holder be externally supplied and directed toward the tool and or tool holder. However, a fixed design employed by those types of apparatuses has inherent problems. One, the material will often block the tool from receiving the coolant. Additionally, the tool holder is spinning at high rate of speed when the coolant is being applied, to the cutting tool. The coolant, passing through the rotating tool holder, moves in an outward pattern due to centrifugal forces and does not interact with the cutting edge of the tool in an effective manner. Any static positioned coolant line will at some point during a machining process, will not deliver adequate cooling flow in terms of either the volume of coolant or a desired direction of coolant flow.
When chemical coolants have been used, the disadvantages include the expense of the coolants, the environmental/disposal issues of using coolants, and the fact that for some substrates, the chips and other scrap material, once exposed to coolant, is less useful for scrap recycling.
Accordingly, there is room for variation and improvement within the art.
It is one aspect of at least one of the present embodiments to provide for a pressurized airflow that can be moved to maintain a desired vector/angle of airflow relative to the cutting tool which enables the substrate and the tool to dissipate heat.
It is a further aspect of at least one embodiment of the present invention to provide for an apparatus and process that will remove cut chips from the cutting tool/substrate environment.
It is a further aspect of at least one embodiment of the present invention to provide for an apparatus and process that provides for a continuous airflow that is rotatably adjusted and will maintain a proper orientation relative to the cutting tool and substrate of a CNC machine, the pressurized airflow allowing cooling of both the cutting tool and substrate as well as providing for the effective removal of chips from the cutting tool/substrate interface.
It is a further aspect of at least one embodiment of the present invention to provide for an apparatus and process in which a directed air device is rotatably mounted to at least one of a CNC machine spindle, a table within the CNC machine, or placement within a separate device, all of which allow for the programmed control of the airflow direction, angle, and velocity relative to the cutting tool/substrate interface.
It is a further aspect of at least one embodiment of the present invention to provide for an apparatus and process in which a servo motor, responsive to the CNC machine, is used to direct a pressurized airflow at a desired angle and velocity relative to a cutting tool, movement of the one or more air nozzles being in response to movement of the cutting tool relative to the substrate.
It is a further aspect of at least one embodiment of the present invention to a process of operating a CNC machine comprising the steps of: providing a substrate to be cut; engaging the substrate with a rotating cutting tool controlled by a CNC machine, the position of the cutting tool axis and or vector direction relative to the substrate changing as the substrate is cut; directing a stream of air from a nozzle to a leading edge of the rotary cutting tool; moving the nozzle in a synchronized manner relative to the movement of the cutting tool axis and or vector direction, thereby maintaining a continuous flow of air in a desired orientation to the cutting tool.
It is a further aspect of at least one embodiment of the present invention to a CNC machine comprising: a spindle; a tool holder; a cutting tool; and a rotatable housing supported by the CNC machine and in a position above the cutting tool; and at least one nozzle extending from the rotatable housing and adapted for directing a stream of air to an edge portion of a cutting tool.
It is a further aspect of at least one embodiment of the present invention to a tool head assembly for a CNC machine, displaceable along orthogonal x, y, and z-axes comprising: a support assembly; a tool carrier assembly supported on said support assembly having a rotatable tool axes and being displaceable relative to said support assembly; a rotatable housing supported by the support assembly and in a position above the tool carrier; and at least one nozzle extending from the rotatable housing and adapted for directing a stream of air to an edge portion of a cutting tool.
A fully enabling disclosure of the present invention, including the best mode thereof to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings.
Reference will now be made in detail to the embodiments of the invention, one or more examples of which are set forth below. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in, the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. Other objects, features, and aspects of the present invention are disclosed in the following detailed description. It is to be description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
In describing the various figures herein, the same reference numbers are used throughout to describe the same material, apparatus, or process pathway. To avoid redundancy, detailed descriptions of much of the apparatus once described in relation to a figure is not repeated in the descriptions of subsequent figures, although such apparatus or process is labeled with the same reference numbers.
The use and technology surrounding CNC machines is well known. U.S. Pat. No. 7,853,351, which is incorporated herein by reference, describes a CNC machine and control processes for using the machine.
U.S. Pat. No. 6,932,547, which is incorporated herein by reference provides for a CNC machine having x, y, and z-axes control systems.
U.S. Pat. No. 9,981,356, which is incorporated herein by reference, describes a CNC machine and control system in which a cutting fluid is applied to a substrate using discharge nozzles in proximity to the cutting tool.
As set forth in
As further seen in reference to
As set forth in
As further seen in reference to
As set forth in
In the preferred embodiment, the servo motor 30 provides for rotation at a controlled speed and direction and allows for precise controlling of the speed and direction of an air/coolant delivery system. In accordance with the present invention, it has been found that using a customized air/coolant delivery system is beneficial in that the direction of air flow, relative to the cutting tool direction of engagement, allows for improved removal of cut chips, and provides a more consistent temperature regulation of the substrate and the cutting tool blade.
As seen in reference to
As set forth in
As seen in reference to
The construction and design of the control system can also be influenced by the distance of the air/coolant line relative to the cutting tool and the axial position relative to the cutting tool where the air/coolant is being directed. Additionally, the amount of pressure of the air/coolant being delivered to the edge of the cutting tool can influence the beneficial properties of cooling the substrate and cutting tool as well as the effective removal of cut chips from the path of the cutting tool. By incorporating the air/coolant delivery via the CNC program further allows the ability of the program to regulate in an “on” and “off” manner the coolant flow from any given nozzle as well as to vary the volume and/or pressure of air/coolant being delivered from a nozzle based upon the position of the cutting tool, movement within the substrate, and changes in the cutting tool path.
As set forth in
As seen in reference to
The rotary union 100 uses retaining rings 102, top bearings 104, bottom bearings 106, and a plurality of seals 108 to allow rotation between the stationary housing 110 and the rotating housing 140. Suitable rotary unions are commercially available from Rotary Systems, Inc. (Ramsey, Minn., USA) and Dynamic Sealing Technologies. Inc. (Andover, Minn., USA).
Although preferred embodiments of the invention have been described using specific terms, devices, and methods, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present invention as set forth herein. In addition, it should be understood that aspects of the various embodiments may be interchanged, both in whole, or in part. Therefore, the spirit and scope of the invention should not be limited to the description of the preferred versions contained therein.
This application claims the benefit of U.S. Application Ser. No. 62/523,839 filed on Jun. 23, 2017 and which is incorporated herein by reference
Number | Date | Country | |
---|---|---|---|
62523839 | Jun 2017 | US |