This invention relates generally to spinal cord stimulation (SCS) and technique for automatic adjustments of SCS using near-infrared (NIR) reflectometry.
Spinal cord stimulation is a technique which uses an implanted electrode array to control chronic pain. The electrode array is typically implanted in a fixed position within the epidural space near the spinal cord. A signal generator delivers current pulses to the spinal cord via the implanted electrode array. The current pulses induce parasthesias which help block the perception of pain.
In
In
Surrounding spinal cord 20 is dura 21 that contains cerebrospinal fluid (CSF) 22. Epidural space 24 is the space within the spinal canal lying outside the dura.
Referring to
The anatomical distribution of parasthesias is dependent upon the spatial relationship between a stimulating electric field generated by the electrode array and the neuronal pathways within the spinal cord. The distribution may be changed by altering the current across one or more electrodes of the electrode array. Changing anode and cathode configurations of the electrode array also alters the distribution and hence, the anatomical pattern of the induced parasthesias.
Proper intensity of the current pulses is important. Excessive current produces an uncomfortable sensation. Insufficient current produces inadequate pain relief. Body motion, particularly bending and twisting, causes undesired and uncomfortable changes in stimulation due to motion of the spinal cord relative to the implanted electrode array.
There are methods and systems for controlling implanted devices within the human body. For example, Ecker et al, in U.S. Patent Application No. 2010/0105997, discloses an implantable medical device that includes a controller and a plurality of sensor modules. A sensor includes at least one light source that emits light at a particular wavelength, which scatters through blood-perfused tissue a detector senses the light reflected by blood mass of a patient.
U.S. Pat. No. 7,684,869 to Bradley, et al. discloses a system using an interelectrode impedance to determine the relative orientation of a lead with respect to other leads in the spinal column. Bradley et al. further disclose that interelectrode impedance may be used to adjust stimulation energy.
U.S. Patent Publication No. 2009/0118787 to Moffitt, et al. discloses electrical energy conveyed between electrodes to create a stimulation region. Physiological information from the patient is acquired and analyzed to locate a locus of the stimulation region. The stimulation region is electronically displaced.
Deficiencies exist in the prior art related to accuracy of spinal cord stimulation in relieving pain under changing circumstances. The deficiencies are most pronounced while the patient is moving. The prior art does not provide a satisfactory way to automatically adjust spinal cord stimulation to compensate for motion between the electrodes and the spinal cord to maintain a constant level of pain relief during patient motion.
Embodiments of the present invention operate to automatically adjust spinal cord stimulation to compensate for patient movement. Automatic adjustment results in consistent parasthesias and conservation of battery power.
The disclosure demonstrates a novel optical sensor, generally useful in many fields of endeavor, in which a probe light beam is emitted from the sensor and a responsive light beam is collected by the sensor, where the sensor comprises a negative axicon element coupled to an optical fiber. In a preferred embodiment, the negative axicon is embedded in the end of the optical fiber. The optical fiber is further coupled to an active optical element which can be an optical emitter or an optical detector.
Disclosed is a stimulator system having a stimulator lead encasing the optical fiber, a controller, an optical emitter operatively connected to the controller generating an emitted light beam into the optical fiber. An optical detector operatively connected to the controller, receives a set of reflected light beams from the optical fiber. A set of electrodes are operatively connected to the controller and the controller directs a set of currents to the set of electrodes based on the set of reflected light beams.
In a preferred embodiment of the stimulator system having two stimulator leads, the first stimulator lead encases an optical fiber coupled to an optical emitter and an optical element for emitting light into an epidural space. The second stimulator lead encases an optical fiber coupled to an optical detector and an optical element for collecting and detecting light from an epidural space. Both leads have a set of electrodes.
In another embodiment of the stimulator system, a single stimulator lead encases an optical fiber which is coupled to an optical emitter and further coupled to an optical detector in the set of optical detectors. An optical circulator is operatively coupled to the optical emitter, the optical detector and the optical fiber.
In an aspect of the system, the stimulator lead is an implantable lead encasing the optical fiber in a lumen wherein the implantable lead further comprises an EMI shield. In a related aspect, the implantable lead further comprises carbon nanotubes.
In another aspect of the system, the controller derives a set of current amplitudes for the set of currents based on an interpolation of a set of calibrated current amplitudes.
In another aspect of the system, the controller derives a set of current amplitudes based on time averaging of a set of historical current amplitudes.
In yet another aspect of the system, the controller derives a current pulse width for the set of currents based on at least one of the group consisting of time averaging a set of current pulse widths, time averaging a set of current amplitudes, interpolating the set of current pulse widths and interpolating the set of current amplitudes.
In yet another aspect of the system, the controller derives a set of current pulse frequencies for the set of currents based on at least one of the group consisting of time averaging a set of current pulse frequencies, time averaging a set of current amplitudes, interpolating the set of current pulse frequencies and interpolating the set of current amplitudes.
In a preferred embodiment, the system further comprises a calibration and programming unit operatively connected to the controller for calibrating the set of current pulse amplitudes, pulse widths and pulse frequencies.
The following disclosure is understood best in association with the accompanying figures. Like components share like numbers.
The distance between a stimulating electrode and the spinal cord surface may be inferred from a function dependent upon: 1) the optical path lengths of light between a near infrared light emitter and a set of optical detectors, where the light is reflected from the spinal cord; 2) the spinal cord geometry; 3) the optical divergence of the light emitter; and 4) the presence of chromophores in the optical path.
The dura surrounding the spinal cord itself is translucent to near infrared light. Near infrared light will be scattered by, and will reflect from, the spinal cord. Cerebrospinal fluid (CSF) will negligibly scatter near infrared light and will not act as a significant reflector of near-infrared light. Light from the light emitter passes through the thin, relatively avascular dura to enter the CSF. Light incident on the spinal cord experiences scatter resulting in a portion being reflected and another portion being absorbed by chromophores.
Optical absorption in a fluid medium may be described by the Beer-Lambert Law (Beer's Law), which is reasonably accurate for a range of chromophores and concentrations. Beer's Law states that the optical absorbance of a fluid with a chromophore concentration varies linearly with path length through the fluid and the chromophore concentration as:
Aλ=ελbc, (Eq. 1)
where:
The absorbance (Aλ) at a wavelength λ is related to the ratio of light energy passing through the fluid, I, to the incident light energy, I0, in
Aλ=−log(I/I0). (Eq. 2)
For deoxyhemoglobin and oxyhemoglobin, the extinction coefficient spectra are well known.
The path length within the spinal cord is dependent upon the geometry of the ellipsoid shaped spinal cord and its normal vector relative to the optical axes of the emitter and detector pair.
The optical path length within CSF is roughly equal to the nominal geometric path length as the scatter is small and the index of refraction does not vary considerably along the path. Light absorption of the CSF may be approximated by that of its primary constituent, H20. Sensitivity of the system to CSF path length may be optimized using a light wavelength at a local maxima of the water extinction coefficient curve near 950-1100 nm.
When considering the light emitter wavelength, one must also consider the extinction coefficients of the primary chromophores, deoxy- and oxy-hemoglobin. To minimize effects of blood flow changes within the spinal cord (although these are thought to be insignificant in the quasi-static sense), one may select the isosbestic wavelength of these chromophore species, preferably at about 805 nm.
The geometry of the light emitter and detector aperture relative to the spinal cord is the parameter most prone to variability. The variance results from factors such as dependence upon placement of the electrode within the spinal canal, canal diameter, spinal cord shape, spinal cord caliber, and presence of scoliotic or kyphotic curvature within the spine. Consequently, this geometric parameter is the primary reason that the system must be calibrated, in situ, in vivo. Spinal cord position may then be inferred through various methods from data obtained at ordinal body positions.
The effects of geometry may be minimized by minimizing the angle between the light emitter and optical detector optical axes relative to the spinal cord surface normal vector.
The beam divergence of the light emitter relative to the incident and reflected rays will influence the detected light amplitude.
It is desirable to maintain a constant electric field at a group of target cells in the spinal cord as the spinal cord moves in order to consistently reduce the transmission of a pain sensation to the brain. With the patient in a prone position or bending forward (0° direction), the spinal cord moves anterior within its orbit in the spinal canal. An equal increase in stimulation pulse amplitude for each electrode pair is required to maintain the same electric field density. In the right lateral position or bent to the right (90° direction), the spinal cord moves to the right within its orbit in the spinal canal. A decrease in electrode stimulation pulse amplitude in the right electrode and an increase in electrode stimulation pulse amplitude in the left electrode of the electrode pair is required. In the supine position or bending backward (180° direction), the spinal cord moves dorsally within its orbit within the spinal canal. A decrease in electrode stimulation pulse amplitude bilaterally is required to maintain a constant electric field across the spinal cord. In the left lateral position or bent toward the left (270° direction), the spinal cord moves to the left within its orbit. A decrease in electrode stimulation pulse amplitude in the left electrode and an increase in electrode stimulation pulse amplitude in the right electrode of the electrode pair is required.
Referring to
A suitable optical circulator is the PIOC310P component from AC Photonics, Inc., of Santa Clara, Calif., operating at a wavelength of 1060 nm Optical circulators of smaller size and operating at wavelengths longer than 1060 nm are also suited for these embodiments. Optical circulators of larger size and operating at wavelengths shorter than 1060 nm are also suited for these embodiments.
Distal optical element 602 extends into cap 609. In a preferred embodiment, cap 609 is an extension of lead cable 610 which is sealed at the distal tip and bonded to lead cable 610 with adhesive at 611. Cap 609 is a NIR-transparent hollow cylinder preferably comprised of glass or plastic and may contain an index matching fluid.
In another embodiment, cap 609 is comprised of a solid cylinder formed in place around distal optical element 602. In this embodiment, the cylinder is not hollow and is comprised of a transparent plastic such as Lexan™. In another embodiment, cap 609 is a continuation of the lead cable 610 which may be constructed of polyurethane or other suitable material and is sealed at the distal tip.
Referring to
In an alternate embodiment an additional lumen is included in the stimulator lead to provide a separate cavity for the wire stylet.
In a preferred embodiment, sheathed outer surface 615 includes an EMI shield. Filler material 619 preferably includes a polyimide polymer. Filler material 619 can also include additional materials with physical properties that enhance the EMI shielding capability of lead cable 610.
In an alternate embodiment, filler material 619 may include a carbon nano-tube composite such as that disclosed in U.S. Pat. No. 7,413,474 to Liu, et al. The disclosure of U.S. Pat. No. 7,413,474 is incorporated herein by reference.
Referring to
Referring again to
Responsive light beam 660 is generated through interaction between probe light beam 661 and tissue within the spinal canal. For example, probe light beam propagates through spinal canal, experiences absorption, is reflected by components within the spinal canal, and then experiences additional absorption before being collected as a responsive light beam with a different intensity and a different spectral profile.
In
In
A negative axicon can be fabricated in an optical fiber end by a chemical etching process using about a 50% solution of hydrofluoric acid with a buffer of NH4F in deionized water. Volume ratio of HF to buffer is varied to achieve varying negative axicon angles.
In
In
In
Referring to
Electrode 801 and optical element 802 are positioned toward the dura and within an operational range of target cells 819. Target cells 819 are positioned within spinal cord 820 in an arbitrary but constant position with respect to the spinal cord.
In
In
In
In
Since D2 and D4 are less than D1, the photocurrents I2 and I4 are observed to be greater than I1. Since D3 is less than D1, D2 or D4 the light is attenuated less, and the photocurrent I3 is observed to be greater than I1, I2 or I4.
An electric field produced by the electrode 801 stimulates target cells 819 in the spinal cord 820. Current amplitude is the average current supplied the set of electrodes, each having pulse width PW and pulse frequency PF. For the position of the spinal cord in
Referring to
Stimulator lead 940 includes optical fiber 901 coupled to optical element 942 at the distal end and coupled to optical emitter 945 at the proximal end. Optical element 942 is configured as an optical emitter. A set of electrodes 941, near the distal end, is coupled to a current source 955 through a set of leads 903 also included in the stimulator lead 940.
Probe light beam 960 emitted from optical emitter 945 propagates through optical fiber 901 and exits from optical element 942. A responsive light beam 961 collected by optical element 932, propagates through optical fiber 902, is detected by optical detector 935 and converted to a photocurrent signal. The photocurrent signal is processed to determine an amount of current to supply to electrodes 931 and 941.
Referring to
To operatively place the two stimulator leads, a first stimulator lead is positioned into the epidural space near the spinal cord using a wire stylus inserted in a lumen of the first stimulator lead. The wire stylus is withdrawn and an optical fiber assembly is inserted in the lumen. Then, a second stimulator lead is positioned in the epidural space near the spinal cord and to the side of the first stimulator lead using the wire stylus inserted in a lumen of the second stimulator lead. The wire stylus is withdrawn and an optical fiber assembly is inserted in the lumen.
Referring to
Stimulator lead assembly 1010 is implanted outside dura 1021 having a left stimulator lead with electrode 1041 and optical element 1042 and having a right stimulator lead with electrode 1031 and optical element 1032. Optical element 1042 is optically coupled to optical emitter 1045. Optical element 1032 is optically coupled to optical detector 1035. It should be understood that optical detector 1035 will receive light originating from optical emitter 1045. In situ, the stimulator lead positions may be reversed where the stimulator lead with optical element 1032 and electrode 1031 is on the left and the stimulator lead with optical element 1042 and electrode 1041 is on the right.
Electrodes 1031 and 1041 are positioned toward the dura and within an operational range of target cells 1019. Target cells 1019 are positioned within spinal cord 1020 in an arbitrary but constant position with respect to the spinal cord.
Referring to
An electric field produced by electrodes 1031 and 1041 stimulates target cells 1019. Current amplitudes AR1 and AL1 are for the average currents supplied by electrode 1031 and electrode 1041, respectively having pulse widths PW1 and pulse frequencies PF1. For the position of the spinal cord in
Referring to
An electric field produced by electrodes 1031 and 1041 stimulates target cells 1019. Current amplitude AR2 is for the average current supplied by electrode 1031 and current amplitude AL2 is for the average current supplied by electrode 1041, each having pulse widths PW2 and pulse frequencies PF2. The current amplitudes AR2 and AL2 are greater than current amplitudes ARI and A. These foregoing results are tabulated in Table 2, row 2.
Referring to
An electric field produced by electrodes 1031 and 1041 stimulates target cells 1019. Current amplitude AR3 is for the average current supplied by electrode 1031 and current amplitude AL3 is for the average current supplied by electrode 1041, each having pulse widths PW3 and pulse frequencies PF3. The current amplitudes AR3 and AL3 are less than the current amplitudes AR1, AR2, AL1 and AL2. These foregoing results are tabulated in Table 2, row 3.
Referring to
An electric field produced by electrodes 1031 and 1041 stimulates target cells 1019. Current amplitude AR4 is for the average current supplied by electrode 1031 and current amplitude AL4 is for the average current supplied by electrode 1041, each having pulse widths PW2 and pulse frequencies PF2. The current amplitudes AR4 and AL4 are about the same as the current amplitudes AR1 and AL1. These foregoing results are tabulated in Table 2, row 4.
The distances D6 and D8, defining optical paths for the light emitted by the optical emitter and collected by the optical collector, are less than the distance D5. The distance D7 is smaller than the distances D5, D6 and D8. Comparing photocurrents of positions of
The relative relationship between received photodetector currents and required current amplitudes of the current signals to the electrodes, AL and AR, can be summarized in the following table for the four example positions of the spinal cord in the spinal canal.
Referring to
PGSP unit 1150 gathers and processes photodetector signals and makes adjustments to the stimulator electrode current (or voltage) based on the photodetector signals. PGSP unit 1150 is connected by wireless communication link 1152 across skin boundary 1156 to SCS controller 1153. The SCS controller is configured to allow percutaneous activation of and adjustments to positionally-sensitive spinal cord stimulator 1145. PGSP unit 1150 is also connected by wireless communication link 1155 to calibration and programming unit 1154. Calibration and programming unit 1154 is programmed to accept patient input and transmit the patient input to PGSP 1150 during calibration. In an alternate embodiment, calibration and programming unit 1154 is incorporated into SCS controller 1153.
PGSP unit 1150 is preferably powered by batteries. In an alternate embodiment, PGSP unit 1150 derives power from capacitive or inductive coupling devices. Calibration may further calibrate the batteries, the capacitive devices, or inductive coupling in PGSP unit 1150. Communication links 1152 or 1155 may further serve as a means of providing electrical charge for the batteries or capacitive devices of PGSP unit 1150.
Referring to
CPU 1270 is also connected to optical signal processor 1264. Optical signal processor 1264 is connected to photodetector 1277 and receives an optical signal from the photodetector, filters the optical signal, and correlates the optical signal to electrode current amplitude, pulse width and frequency. Optical signal processor 1264 may include a synchronized gated detection (e.g., lock-in amplifier type) function or other demodulation function to improve the signal to noise ratio of the detected light.
IR detector 1277 is connected to optical signal processor 1264 and optical fiber 1282. IR detector 1277 translates incoming light pulses from optical fiber 1282 into electrical signals which are processed by optical signal processor 1264. Optical fiber 1282 is coupled to a distal optical collector in a stimulator lead of the stimulator lead assembly.
In a preferred embodiment, the photodetector is similar to that of Part No. OP501 from Optek Technology.
CPU 1270 is connected to optical modulator 1268. IR emitter driver 1266 is connected to both optical modulator 1268 and CPU 1270. In operation, CPU 1270 activates optical modulator 1268 which generates a waveform and transmits the waveform to the IR emitter driver 1266. The IR emitter driver then causes IR emitter 1279 to launch a pulse with the waveform into optical fiber 1281.
The optical waveform may take several forms. For example, the pulse width of the optical waveform may have a low duty cycle to minimize power consumption. A single optical pulse may occur for a set of electrode stimulation pulses. The optical waveform may include frequency, phase or amplitude modulation. Typical wavelength of the IR light from the IR emitter is in a range from 800 nm to 870 nm. Typical output intensity of the IR emitter is 1 to 2 mW and a suitable part is Part No. VSMY1859 from Vishay Intertechnology, Inc.
Pulse generator 1260 is connected to the set of electrodes in stimulator lead assembly 1140. In order to generate a pulse to the electrodes, CPU 1270 consults a calibration table stored in onboard memory 1272 to determine pulse width PW, pulse frequency Pf and pulse amplitudes for the set of electrodes, respectively. The pulse width and frequency are transmitted to pulse modulator 1262 which creates a modified square wave signal. The modified square wave signal is passed to pulse generator 1260. CPU 1270 passes the amplitudes for the set of electrodes to pulse generator 1260 in digital form. Pulse generator 1260 then amplifies the modified square waves according to the pulse amplitudes and transmits them to the set of electrodes. CPU 1270 is in transcutaneous communications, via RF transceiver 1271, with calibration and programming unit 1154 and SCS controller 1153.
The modified square wave has an amplitude and duration (or width). Pulse widths varying from 20 to 1000 microseconds have been shown to be effective. The frequency of the pulse waveforms between 20 and 10,000 hertz have been shown to be effective. The output amplitude is preferably from 0 (zero) to +/−20 mA or 0 (zero) to +/−10 V but may vary beyond those ranges according to patient sensitivity.
Referring to
Referring to
Referring to
Referring to
At step 1533, if operation change code “start?” is received, the method moves to step 1542. At step 1542, CPU 1270 activates optical modulator 1268, which in turn activates IR emitter driver 1266 to generate an optical pulse from the IR emitter. At step 1543, a set of photocurrent levels for a photodetector [I] is measured by optical signal processor 1264 and passed to CPU 1270 for storage in memory.
At step 1547, the CPU determines a set of amplitudes [A] of a train of pulses to be sent to the set of electrodes, based on the photocurrent level and a calibration table. In step 1547, the set of amplitudes are interpolated from the calibration table using the photocurrent level. At step 1549, optionally, the CPU sets the values of the pulse width PW and frequency Pf of the pulse train to be sent to the set of electrodes.
At step 1552, the CPU activates the pulse modulator to create the waveforms of the pulse trains to be sent to the set of electrodes and then activates pulse generator 1260 to generate the pulse trains. At step 1554, the CPU stores the values of [I], [A], PW and Pf in a time series of data in memory for future retrieval. The method then returns to step 1531.
If at step 1533, the operation change code is not “start?”, the method proceeds to step 1535. At step 1535, the CPU determines if the operation change code is “calibrate?” If so, the method moves to step 1537. At step 1537, the CPU transmits the time series of data to calibration and programming unit 1154. At step 1539, the CPU enters the calibration routine as will be described more fully below. The method then returns to step 1531.
If at step 1535, the operation change code is not “calibrate?”, the method moves to step 1541. At step 1541, the CPU determines if the operation change code is “stop?”. If so, the method returns to step 1531. If not, the method proceeds to step 1542 and continues as previously described.
In the preferred embodiment, the pulse width and frequency is kept constant for a given patient and only the set of electrode amplitudes are varied. In another embodiment, step 1549 is performed whereby pulse width and pulse frequency are dynamically varied according to the calibration values stored in the calibration table for each electrode.
Referring to
At step 1596, the following equation is applied:
where wk=predetermined weight for the values of Aj at the current time k and earlier times k−1, k−2, . . . , etc., and where Aj=jth electrode amplitude. At step 1598, if there are separate left and right electrode amplitudes, steps 1590, 1592, 1594 and 1596 are repeated for each electrode.
Referring to
If the level of parasthesia is not optimal according to the patient feedback, then the method moves to step 1633. At step 1633, the processor monitors the input/output device to determine if amplitude values need to be increased or decreased, or if the level of paresthesia is sufficient. If an amplitude value needs to be adjusted, then the amplitude value is correspondingly increased or decreased by a discrete amount. If the amplitude value reaches a maximum level or a minimum level and cannot be adjusted further, step 1634 is performed where an alert is indicated by the calibration and programming unit. The alert in step 1634 may be a visual indication, audio indication or both visual and audio indication.
After adjustment of the amplitude values, step 1620 is repeated, and a train of pulses is delivered to each electrode at the new amplitude levels. At step 1625, patient paresthesia feedback is again solicited. If, at step 1630, the level of paresthesia is still not optimal according to the patient feedback, the method repeats steps 1633 and 1634 as required. If, at step 1630, the level of paresthesia is sufficient according to patient feedback, the method moves to step 1635.
At step 1635, the CPU stores the new amplitude levels for the electrodes. At step 1638, the optical signal processor measures the photocurrent [I] for the photodetector and transfers the corresponding photocurrent value to the CPU. At step 1640, the photocurrent [I] and amplitude levels [A] are recorded in a calibration table. At step 1642, the calibration method steps complete by returning control to the calibration control program.
Referring to
At step 1750, RF transceiver 1412 receives a signal indicative of a request to move the patient to a prone position and passes it to the calibration processor 1410. At step 1752, the patient is positioned in a prone position. At step 1754, calibration method 1600, is carried out to optimize the level of paresthesia experienced by the patient.
At step 1760, RF transceiver 1412 receives a signal indicative of a request to move the patient to a right lateral position and passes it to processor 1410. At step 1762, the patient is positioned in a right lateral position. At step 1764, calibration method 1600 is then carried out to optimize the level of paresthesia experienced by the patient.
At step 1770, RF transceiver 1412 receives a signal indicative of a request to move the patient to a supine position and passes it to processor 1410. At step 1772, the patient is positioned in a supine position. At step 1774, calibration method 1600 is then carried out to optimize the level of paresthesia experienced by the patient.
At step 1780, RF transceiver 1412 receives a signal indicative of a request to move the patient to a left lateral position and passes it to processor 1410. At step 1782, the patient is positioned in a left lateral position. At step 1784, calibration method 1600 is then carried out to optimize the level of paresthesia experienced by the patient.
After steps 1780, 1782 and 1784 are performed, the calibration program is complete.
The order of patient positions in calibration program 1700 may be changed in alternative embodiments. Additional patient positions may be added to calibration program 1700 in alternative embodiments, for example, the patient may be rotated clockwise to calibrate a level of paresthesia required for a clockwise position. The result of carrying out a calibration using methods 1600 and 1700 is a calibration table with each record having a stored patient position, at least one photocurrent level and at least one corresponding electrode amplitude.
Referring to
If a “stop” signal is received from I/O device 1306, at step 1809, processor 1300 passes a “stop” signal to RF transceiver 1302, which in turn sends the “stop” signal to PGSP 1150. The processor then returns to wait state 1305.
If a “calibrate” signal is received from I/O device 1306, at step 1811, processor 1300 transmits a “calibrate” signal to RF transceiver 1302, which in turn sends the “calibrate” signal to PGSP 1150. Processor 1300 then returns to wait state 1805.
Patient position identifier 1942 in a preferred embodiment includes four positions, forward (prone)—0°, right—90°, left—270°, back (supine—180°). Each row in calibration table 1940 is associated with one of the four patient positions. Electrode stimulation pulse amplitude 1946 includes values which are derived during calibration and recorded for different spinal cord positions, corresponding to the patient position. In the preferred embodiment, the electrode stimulation pulse amplitude 1946 prescribes a stimulation energy to neurons in the vicinity of spinal cord.
To construct table 1940, calibration methods 1600 and 1700 are performed to identify a set of stimulator lead values for the pulse amplitude, width and frequency with a set of photocurrent levels.
To construct table 2040, calibration methods 1600 and 1700 are performed to identify a set of right stimulator lead values for a right electrode pulse amplitude, width and frequency with a set of photocurrent levels and to identify a set of left stimulator lead values for a left electrode pulse amplitude, width and frequency with the set of photocurrent levels. The set of left stimulator lead values can be different than the set of right stimulator lead values.
In another embodiment, calibration methods 1600 and 1700 are performed where the electrode stimulation pulse amplitude for the left and right leads always have the same value.
In an alternate embodiment, calibration is performed for additional physical positions such that additional rows are placed in calibration table 1940 or calibration table 2040.
In tables 1940 and 2040, the electrode stimulation pulse width and electrode stimulation pulse frequency are shown as having constant values. However, in an alternate embodiment, the values of electrode stimulation pulse width and electrode stimulation pulse frequency are varied through a predetermined range during calibration and recorded for each patient position.
While the present invention has been described in terms of specific embodiments thereof, it will be understood in view of the present disclosure, that numerous variations upon the invention are now enabled to those skilled in the art, which variations yet reside within the scope of the present teaching. Accordingly, the invention is to be broadly construed and limited only by the scope and spirit of the claims now appended hereto.
This application is a Continuation-in-Part Application of U.S. patent application Ser. No. 13/780,470, filed Feb. 28, 2013, which is a Continuation-in-Part Application of U.S. patent application Ser. No. 13/567,966, filed Aug. 6, 2012, which is continuation of U.S. patent application Ser. No. 12/925,231, filed Oct. 14, 2010, now U.S. Pat. No. 8,239,038. This application claims priority to U.S. Provisional Patent Application No. 61/867,413, filed Aug. 19, 2013. Each patent application identified above is incorporated here by reference in its entirety to provide continuity of disclosure.
Number | Name | Date | Kind |
---|---|---|---|
5076270 | Stutz, Jr. | Dec 1991 | A |
5350405 | Silvian | Sep 1994 | A |
5556421 | Prutchi et al. | Sep 1996 | A |
5730628 | Hawkins | Mar 1998 | A |
5824021 | Rise | Oct 1998 | A |
6058331 | King | May 2000 | A |
6120467 | Schallhorn | Sep 2000 | A |
H1929 | Citak | Dec 2000 | H |
6169924 | Meloy et al. | Jan 2001 | B1 |
6587724 | Mann | Jul 2003 | B2 |
6622048 | Mann et al. | Sep 2003 | B1 |
6871099 | Whitehurst et al. | Mar 2005 | B1 |
6937882 | Steuer et al. | Aug 2005 | B2 |
7127296 | Bradley | Oct 2006 | B2 |
7162304 | Bradley | Jan 2007 | B1 |
7216000 | Sieracki et al. | May 2007 | B2 |
7263402 | Thacker | Aug 2007 | B2 |
7330762 | Boveja | Feb 2008 | B2 |
7333857 | Campbell | Feb 2008 | B2 |
7359751 | Erickson et al. | Apr 2008 | B1 |
7463927 | Chaouat | Dec 2008 | B1 |
7539543 | Schiff et al. | May 2009 | B2 |
7650190 | Zhou et al. | Jan 2010 | B2 |
7684869 | Bradley et al. | Mar 2010 | B2 |
7801621 | Thacker | Sep 2010 | B1 |
7805197 | Bradley | Sep 2010 | B2 |
8165676 | Donofrio | Apr 2012 | B2 |
20030065366 | Merritt | Apr 2003 | A1 |
20030153959 | Thacker | Aug 2003 | A1 |
20050096720 | Sharma | May 2005 | A1 |
20050222628 | Krakousky | Oct 2005 | A1 |
20060217793 | Costello | Sep 2006 | A1 |
20070027514 | Gerber | Feb 2007 | A1 |
20070100398 | Sloan | May 2007 | A1 |
20070282403 | Tearney | Dec 2007 | A1 |
20080077190 | Kane et al. | Mar 2008 | A1 |
20090118787 | Moffitt et al. | May 2009 | A1 |
20090270960 | Zhao et al. | Oct 2009 | A1 |
20100022861 | Cinbis et al. | Jan 2010 | A1 |
20100105997 | Ecker et al. | Apr 2010 | A1 |
20100106220 | Ecker et al. | Apr 2010 | A1 |
20110029049 | Vertikov | Feb 2011 | A1 |
20150306414 | Nielsen et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
2007059362 | May 2007 | WO |
Entry |
---|
Philip, Geo M., et al., Fabrication of Negative Micro Axicons in Optical Fibers via Chemical Etching, ICOP 2009—International Conference on Optics and Photonics, Oct. 30, 2009, CSIO, Chandigarh, India. |
Utzinger, Urs, et al., Fiber Optic Probes for Biomedical Optical Spectroscopy, Feb. 2001, Tucson, Arizona. |
Scott Prahl, Tabulated Molar Extinction Coefficient for Hemoglobin in Water, http://omlc.ogi.edu/spectra/hemoglobin/summary.html, Mar. 4, 1998, pp. 1-7. |
Urs Utzinger, Oxygen saturation, http://www2.engr.arizona.edu/˜bme517/supporting%20documents/PulseOximeter/Pulse%20Oxi%20Meter%20Laboratory.htm#—Toc67647950, 2002, pp. 1-24. |
Number | Date | Country | |
---|---|---|---|
20140005755 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61867413 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12925231 | Oct 2010 | US |
Child | 13567966 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13780470 | Feb 2013 | US |
Child | 14019240 | US | |
Parent | 13567966 | Aug 2012 | US |
Child | 13780470 | US |