The present invention relates to protective structures for use with subsea installations utilised in the field of subsea oil and gas recovery operations. More specifically, the present invention relates to a structure for protecting a subsea installation located on the seabed.
In order to recover oil and gas from fields located below seabed level, a drilling operation is first undertaken to produce a well. Once the well has been drilled, it is conventional for installation equipment such as valves, for example, to be positioned over, and connected to, the well in order to control the recovery of the oil or gas to the surface. With this type of installation the equipment sits exposed on the seabed, and it is possible for the equipment to be damaged by dropped objects, anchors, trawler nets and other similar hazards. It is therefore advantageous to provide some type of protection for such subsea installations.
Attempts at protecting the installations have included steel framed, fixed geometry structures, which are lowered over the installation by a crane from a supply vessel on the surface. Due to their size and fixed geometry, these structures occupy a significant amount of space on the supply vessel, which normally means that the vessel may only carry one structure at a time. The deployment of these structures can also be restricted in bad weather conditions as a result of the large hydrodynamic forces created by their size and also by their fixed geometry.
In order to attempt to address the problems of such fixed geometry structures, collapsible structures have also been utilised, and such structure is shown in International Patent Publication No WO03/071092. As they are collapsible, the structures can be lowered to the installation site in their collapsed states, before being set up over the installation on the seabed. Although an improvement over fixed geometry structures, these collapsible structures include components such as folding legs and anchors which still restrict the storage possibilities on vessels and also create significant hydrodynamic forces when being lowered to the site. Furthermore, these known fixed and collapsible structures are provided with openings—usually between the legs of the structure—to allow access to the installation equipment. With such openings, there still exists the possibility that one of the subsea hazards previously listed could enter these openings and interfere with and/or damage the installation equipment. This multiplicity of openings can be closed by protective plates or grills, but this adds to the complexity of the design and/or further exacerbates the hydrodynamic loadings during launch.
According to a first aspect of the present invention there is provided a protective structure for a subsea installation, the structure comprising first and second body portions and a hinge member, wherein the body portions are pivotally mounted to the hinge member such that at least one of the body portions may pivot relative to the other body portion from a first configuration which facilitates transportation and/or deployment to the seabed and a second configuration in which the body portions are adapted to substantially enclose the subsea installation when the structure has been positioned over it.
Typically, the first configuration comprises a folded state and the second configuration comprises an unfolded state.
Preferably, both body portions rotate relative to one another when the structure moves from the folded state to the unfolded state.
Preferably, each body portion comprises a base member and at least one side panel, the at least one side panel having a pair of longitudinal edges, and wherein one of the longitudinal edges is fixed to the base member and the other longitudinal edge is fixed to the hinge member.
Preferably, each base member has first and second end portions at respective ends of the base member, the first and second end portions adapted so as to project inwardly from the base member towards the centre of the structure when the structure is in the unfolded state. Preferably, each body portion comprises at least one side panel and first and second end panels, wherein the side panel has a pair of lateral edges and wherein each of the first and second end panels is fixed to a respective lateral edge of the side panel. Each end panel typically has a free edge, and the body portions are adapted such that the free edges of the end panels of the respective body portions abut one another when the structure is in the unfolded state.
Preferably, each base member has a hinged stabiliser plate pivotally attached thereto, each plate adapted to move from a retracted position which is preferably against the structure to a deployed position which is preferably on the seabed.
Preferably, at least one of the body portions has a closable access opening adapted to allow access to the interior of the structure when the structure is in the unfolded state.
Preferably, the base members lie adjacent one another when the structure is in the folded state. Preferably, the side panels lie substantially parallel to one another when the structure is in the folded state. Preferably, the structure further comprises a first locking means for locking the base members together when the structure is in the folded state. Preferably, the structure further comprises at least one second locking means for locking the first and second body portions together when the structure is in the unfolded state.
Preferably, the structure is stored and transported in the folded state.
According to a second aspect of the present invention, there is provided a method of protecting a subsea installation, the method comprising the steps of:
Typically, the first configuration comprises a folded state and the second configuration comprises an unfolded state.
Preferably, step e) occurs before step f) although step f) could, in certain embodiments, occur before step e).
A preferred embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
a)
b)
c)
To form the shell of the structure, panels are fixed between the beam members 2,4,6. The panels may be manufactured from steel, glass-reinforced plastics, aluminium or the like. The panels are attached to the beam members 2,4,6 such that two body portions, or “half shells”, 12,14 are formed, which when brought together form the complete structure. The first half shell 12 is formed by fixing panels between the first and third beam members 2,6, whilst the second half shell 14 is formed by fixing panels between the second and third beam members 4,6. Each half shell 12,14 is formed from a side panel 8,10 and a pair of end panels 9,11. The side panels 8,10 each have a pair of longitudinal edges, one of which is fixed to the third beam member 6 and the other to the respective first or second beam member 2,4 accordingly. In this preferred embodiment, the end panels 9,11 are generally triangular and have one edge fixed to the end 2a,4a,2b,4b of the respective first or second beam member 2,4 and another edge fixed to the adjacent lateral edge of the respective side panel 8,10. The remaining edges of each end panel 9,11 are free edges which will abut the corresponding free edges of the end panels of the other half shell when the structure is in the unfolded state. As stated above, the beams and panels are arranged such that the half shells 12,14 ensure that the structure will substantially enclose the installation when in use.
As previously described, the structure is transported in the folded state shown in
The purpose of transporting the structure in its folded state is to allow easier transportation and installation than conventional protective subsea structures. As shown in
To install the structure, it is supplied to the surface vessel with the first and second slings 18 already passed between the beam members 2,4 and attached to the beam member 6. A crane on the vessel can then lift the structure into the water in its folded state and lowers the structure to the seabed. Different aspects of the structure being lowered through the water are shown in
With the hinged beam 6 still held by first sling, the release of the locking means 16 causes the two half shells 12,14 of the structure to fall about the hinge 6 into the closed state shown in
With the arrangement of embodiments of the present invention, a number of advantages are provided over existing protective subsea apparatus. Firstly, when protective structure is in the folded state, a number of these may be stored either on top of one other or else alongside one another. Therefore, a number of the structures may be transported by a vessel at the same time in, effectively, a “flat-packed” arrangement. This allows the vessel to install a number of the structures without needing to make individual return trips to shore for each installation.
Furthermore, thanks to the configuration of the embodiments when in the folded state, the surface area of the structure exposed to hydrodynamic forces during launch throughout the air/sea interface and when being lowered to the seabed is also significantly reduced. This means that the structure is easier to deliver to the seabed and also can be delivered in worse weather conditions than with known structures.
Finally, the embodiments are configured so that substantially full enclosure of the installation is achieved. This means that there are no access openings which could be entered by subsea hazards. If access is required at any time, one or more access panels can be removed as necessary. In addition, as the structure uses panels instead of grilles or mesh covers, the likelihood of something snagging on the structure is also reduced.
In order to prevent damage to the two shells when they are released from the open state, a friction mechanism can be employed to slow the fall of the half shells into the closed state. For example, a wire running through a friction clamp could be attached to each shell during the folding of the shells into the closed state. Alternatively, a special rigging arrangement could be employed for this purpose.
Furthermore, the structure could be installed using only one sling attached to the first and second beams. In this case, the unfolding of the half shells would occur on the seabed so as to control the unfolding procedure. Once unfolded, the structure can be lifted from the seabed until the two halves come together in the closed state and are locked to form the structure that can then be placed over the installation as normal. A further alternative method would be to lay the “open” structure on its side on the seabed, unlock the two half shells from one another, and then rotate the uppermost half shell through 180 degrees until it too lies on the seabed. The structure can then be lifted from the seabed and installed in the manner previously described.
Although the access door illustrated in the preferred embodiment is shown located at the top of the closed structure, it should be understood that a door or doors may be located at any appropriate location. The location of the doors will simply depend on the location of the components to which access is required on the subsea installation.
These and other modifications and improvements may be incorporated departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
0402428.7 | Feb 2004 | GB | national |