The present invention relates generally to catheter control systems and methods for stabilizing images of moving tissue regions such as a heart which are captured when intravascularly accessing and/or treating regions of the body.
Conventional devices for accessing and visualizing interior regions of a body lumen are known. For example, various catheter devices are typically advanced within a patient's body, e.g., intravascularly, and advanced into a desirable position within the body. Other conventional methods have utilized catheters or probes having position sensors deployed within the body lumen, such as the interior of a cardiac chamber. These types of positional sensors are typically used to determine the movement of a cardiac tissue surface or the electrical activity within the cardiac tissue. When a sufficient number of points have been sampled by the sensors, a “map” of the cardiac tissue may be generated.
Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging. Other conventional balloons utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood.
However, many of the conventional catheter imaging systems lack the capability to provide therapeutic treatments or are difficult to manipulate in providing effective therapies. For instance, the treatment in a patient's heart for atrial fibrillation is generally made difficult by a number of factors, such as visualization of the target tissue, access to the target tissue, and instrument articulation and management, amongst others.
Conventional catheter techniques and devices, for example such as those described in U.S. Pat. Nos. 5,895,417; 5,941,845; and 6,129,724, used on the epicardial surface of the heart may be difficult in assuring a transmural lesion or complete blockage of electrical signals. In addition, current devices may have difficulty dealing with varying thickness of tissue through which a transmural lesion is desired.
Conventional accompanying imaging devices, such as fluoroscopy, are unable to detect perpendicular electrode orientation, catheter movement during the cardiac cycle, and image catheter position throughout lesion formation. The absence of real-time visualization also poses the risk of incorrect placement and ablation of structures such as sinus node tissue which can lead to fatal consequences.
Moreover, because of the uneven anatomy of tissue surfaces, imaging devices which can accommodate various anatomies as well as effectively deliver energy to these tissue regions with uneven surfaces are desirable.
A tissue-imaging and manipulation apparatus described herein which may be used for ablation by passing energy such as an electric current through the clearing fluid such that the energy passes directly to the tissue region being imaged and the electrical energy is conducted through the fluid without the need for a separate ablation probe or instrument to ablate the tissue being viewed. Details of such visual electrode ablation systems are described in further detail in U.S. patent application Ser. No. 12/118,439 filed May 9, 2008 (U.S. Pat. Pub. 2009/0030412), which is incorporated herein by reference in its entirety. Mechanisms for channeling the energy to the deeper regions of tissue or instruments which may deploy the effective position of the hood aperture beyond the surface of the hood may be utilized so that the energy can be delivered to the target tissue despite small or large irregularities in the target tissue surface and/or changes in the relative distances between the hood and the target tissue.
One variation is a hood assembly which defines an aperture but has a distal membrane which is relatively more rounded or, extended beyond the circumferential atraumatic contact lip or edge defined by the hood. This variation of the rounded distal membrane may be used to treat tissue surfaces with some depressions or pockets or invaginations. Alternatively, an elongated tubular or conduit features that extend from the distal membrane of the hood may also be designed, configured, or shaped such that they enter, nest, or, locate within the areas of the tissue surface with invaginations due to the mechanical resilience and/or shape of the feature. Another variation may include a hood assembly having an elongated feature and an additional fluid permeable feature, such as a screen, mesh, grating, or porous membrane through which fluid can exchange yet with limited transport in order to better limit blood from entering the hood.
The elongated feature may also contain a stiffening element around the aperture where the stiffening member may minimize distortion at the aperture that could potentially affect the opening area so as to prevent the energy delivered per unit time from altering during delivery. The stiffening element may comprise any number of shapes (e.g., partial or complete hoop, ring, band, etc.) and may further comprise any number of biocompatible materials (shape memory metals, polymers, any combination of materials, etc.) that provides a substantially stiffer component than the hood material member and can be utilized to predictably support the shape of the hood aperture and thereby maintain an accurate energy density during energy delivery. Prior to deployment, the stiffening member may be configured into a collapsed low-profile shape for delivery, e.g., through a sheath, with the collapsed hood but once deployed, the stiffening member can regain its pre-deformed shape.
Additionally and/or optionally, the elongated tubular/conduit feature can be collapsed or retracted (within the hood open area) when visualizing along tissue surfaces or treating the tissue, if so desired, such that the hood face can maintain close contact relative to the tissue. Deployment and/or retraction of the elongated feature may be accomplished by a number of different mechanisms. For example, the elongated feature may be preferentially configured due to the nature of the material or to the molding of the feature to become biased in one or both configurations. In this example, if elongated feature is retracted within the expanded hood, the introduction of the clearing fluid within the hood may push or urge the elongated feature to deploy. Additionally, retraction of the elongated feature may be accomplished by depressing the feature against a tissue surface such that the feature is biased to invaginate or deflect inwardly with respect to the rest of the hood.
Another variation may incorporate a fluid permeable feature such that when the interior of the hood is pressurized to create an internal positive pressure, the elongated feature may be urged to extend or deploy from the hood. Similarly, the hood interior may be de-pressurized to create an internal negative and/or reduced pressure that effectively retracts the elongated feature proximally into the open area of the hood. The elongated feature may be configured to deploy and/or retract at predetermined pressures.
Another variation of the hood may incorporate a relatively rigid internal support member attached to the stiffening member which may be pushed or pulled axially through the catheter to impart a force, to the stiffening member. In use, the internal support member may be selectively pushed relative to the catheter and hood to deploy the elongated feature. Similarly, the support member may be selectively pulled to retract the elongated feature.
In any of the variations shown and described herein, the permeable feature may be optionally incorporated over the aperture with or without the elongated features to provide additional rigidity to the hood shape while being partially pressurized with fluid for flushing/irrigating. This added rigidity may minimize distortions and deformations of the hood aperture and therefore facilitate an even energy density distribution during ablation.
In yet another variation, alternatively and/or additionally to the elongated feature, an electrode tipped shaft or catheter may be advanced or retracted through the catheter and hood open area to deliver energy either through the hood aperture or distal to the aperture. In yet another variation, the electrode having a slidable sheath can be advanced through the hood open area where a position of the sheath can be independently controlled relative to the electrode. By adjusting the position of sheath relative to the electrode location, the amount of exposed surface area of the electrode can be controlled to adjust the output energy density given a certain power setting to adjust the lesion formation characteristics.
Yet another variation of the hood may further incorporate an optional porous or fluid dispersing feature over the aperture. In this example, the porous or fluid dispersing feature may generally comprise a cap-like or domed structure which curves distally beyond the hood face in an arcuate manner. The fluid dispersing feature may define one or more (e.g., a plurality) of openings over the feature which allow for the free passage of the clearing fluid through the feature in a dispersed manner much like a shower head. The feature may be energized or charged via one or more connections, e.g., through support struts, to provide for the application of energy through the clearing fluid as the fluid is dispersed through the feature. Accordingly, the feature may be comprised of a metallic or electrically conductive material. Alternatively, the clearing fluid may be energized via an electrode within the hood interior and then pass through the dispersing feature to the underlying tissue. In other variations, the fluid dispersing feature may instead be configured as a tubular or cylindrical structure which covers the aperture and further extends distally from the hood.
A tissue-imaging and manipulation apparatus described herein is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions. Such an apparatus may be utilized for many procedures, e.g., facilitating transseptal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures. Although intravascular applications are described, other extravascular approaches or applications may be utilized with the devices and methods herein.
One variation of a tissue access and imaging apparatus is shown in the detail perspective views of
When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in
Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods. Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue. When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged. Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest. Moreover, the diameter of imaging hood 12 at its maximum fully deployed diameter, e.g., at contact lip or edge 22, is typically greater relative to a diameter, of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16). For instance, the contact edge diameter may range anywhere from 1 to 5 times (or even greater, as practicable) a diameter of deployment catheter 16.
As seen in the example of
Although contact edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 back into open area 26. Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface. Once the blood 30 has been displaced from imaging hood 12, an image may then be viewed of the underlying tissue through the clear fluid 30. This image may then be recorded or available for real-time viewing for performing a therapeutic procedure. The positive flow of fluid 28 may be maintained continuously to provide for clear viewing of the underlying tissue. Alternatively, the fluid 28 may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow 28 may cease and blood 30 may be allowed to seep or flow back into imaging hood 12. This process may be repeated a number of times at the same tissue region or at multiple tissue regions.
In utilizing the imaging hood 12 in any one of the procedures described herein, the hood 12 may have an open field which is uncovered and clear to provide direct tissue contact between the hood interior and the underlying tissue to effect any number of treatments upon the tissue, as described above. Yet in additional variations, imaging hood 12 may utilize other configurations. An additional variation of the imaging hood 12 is shown in the perspective and end views, respectively, of
Aperture 42 may function generally as a restricting passageway to reduce the rate of fluid out-flow from the hood 12 when the interior of the hood 12 is infused with the clear fluid through which underlying tissue regions may be visualized. Aside from restricting out-flow of clear fluid from within hood 12, aperture 42 may also restrict external surrounding fluids from entering hood 12 too rapidly. The reduction in the rate of fluid out-flow from the hood and blood in-flow into the hood may improve visualization conditions as hood 12 may be more readily filled with transparent fluid rather than being filled by opaque blood which may obstruct direct visualization by the visualization instruments.
Moreover, aperture 42 may be aligned with catheter 16 such that any instruments (e.g., piercing instruments, guidewires, tissue engagers, etc.) that are advanced into the hood interior may directly access the underlying tissue uninhibited or unrestricted for treatment through aperture 42. In other variations wherein aperture 42 may not be aligned with catheter 16, instruments passed through catheter 16 may still access the underlying tissue by simply piercing through membrane 40.
In an additional variation,
In utilizing the devices and methods above, various procedures may be accomplished. One example of such a procedure is crossing a tissue region such as in a transseptal procedure where a septal wall is pierced and traversed, e.g., crossing from a right atrial chamber to a left atrial chamber in a heart of a subject. Generally, in piercing and traversing a septal wall, the visualization and treatment devices described herein may be utilized for visualizing the tissue region to be pierced as well as monitoring the piercing and access through the tissue. Details of transseptal visualization catheters and methods for transseptal access which may be utilized with the apparatus and methods described herein are described in U.S. patent application Ser. No. 11/763,399 filed Jun. 14, 2007 (U.S. Pat. Pub. 2007/0293724 A1), which is incorporated herein by reference in its entirety. Additionally, details of tissue visualization and manipulation catheter which may be utilized with apparatus and methods described herein are described in U.S. patent application Ser. No. 11/259,498 filed Oct. 25, 2005 (U.S. Pat. Pub. 2006/0184048 A1), which is incorporated herein by reference in its entirety.
Moreover, any of the variations described herein may be used for ablation by passing energy such as an electric current through the clearing fluid such that the energy passes directly to the tissue region being imaged and the electrical energy is conducted through the fluid without the need for a separate ablation probe or instrument to ablate the tissue being viewed. Details of such visual electrode ablation systems are described in further detail in U.S. patent application Ser. No. 12/118,439 filed May 9, 2008 (U.S. Pat. Pub. 2009/0030412), which is incorporated herein by reference in its entirety.
When ablating tissue within the chambers of the heart, target tissue regions that are generally inaccessible or deep (e.g., distal) to the hood 12 or which are obstructed by trabeculae or other tissue structures may receive less controlled power (or focused energy density) than tissue directly adjacent to the hood aperture. Mechanisms for channeling the energy to the deeper regions of tissue or instruments which may deploy the effective position of the hood aperture beyond the surface of the hood may be utilized so that the energy can be delivered to the target tissue despite small or large irregularities in the target tissue surface and/or changes in the relative distances between the hood and the target tissue. Furthermore, mechanisms and techniques for excising, cutting and/or disrupting tissue that covers or obstructs the deeper tissue regions in order to allow the hood to be delivered even further distal are also disclosed.
The hood 12 generally enables direct visualization of tissue in a blood-filled environment by maintaining a positive flow of the clearing fluid, such as saline or other suitable liquid, that may intermittently or continuously purge blood from the open area of the hood 12 through the aperture 42 at the distal membrane 40 thereby creating an optically clear visual pathway that extends to the tissue surface intimate to the front of the hood 12. Direct apposition of the tissue to the hood distal membrane 40 may ensure good image quality and also minimize the intrusion of blood into the hood open area that could potentially degrade the clarity of the optical path. Additionally, the position of the hood 12 may be typically maintained in an orientation normal to the tissue surface relative to the catheter longitudinal axis in order to provide the most even, uniform, or least obstructed visualization field and also to prevent uneven fluid leakage from the hood aperture 42 that could also allow blood to enter the hood open area.
As described in further detail in U.S. patent application Ser. No. 12/118,439 (which has been incorporated by reference hereinabove), hood 12 can be utilized for direct ablation of tissue by energizing the fluid retained temporarily within the open area of the hood by one or more electrodes mounted within or along the hood to create a virtual electrode. The electrolytic clearing fluid is used as the energy conductor in order to ablate the tissue adjacent or in proximity to the aperture while also allowing direct visualization of the lesion formation. Direct visualization of the underlying tissue also ensures that the proper position, location, and proximity to structures or other lesions is well determined and/or identified prior to beginning, during, or after the ablation procedure.
There are several factors that can affect the efficiency and efficacy of the ablation process while utilizing such a hood structure. For example, the area of the hood aperture can be relatively constant so that the energy density is maintained during the ablation sequence/procedure. Area changes of the aperture may affect or alter the energy density and the effective power delivered which may change the lesion formation characteristics in the tissue. Additionally, the position of the one or more electrodes within the hood can impact the energy density given a specific output power and therefore can affect lesion formation. Also the distance of the hood aperture from the surface of the tissue can have an impact as well particularly if there is a sufficiently large gap, due to the potential fall-off of energy density as the current leaks out to the large blood and fluid volume surrounding the hood and ultimately directs or focuses less of the energy to the target tissue. Therefore, maintaining intimate contact with the tissue and preventing distortion of the opening are desirable parameters to control in order to ensure efficient and consistent lesion formation.
Furthermore, the ability of the hood 12 to accommodate irregularities in the tissue surface (e.g., recesses, voids, invaginations, etc.) and having a hood aperture maintained in relatively close proximity to the tissue surface despite changes in orientation of the overall hood structure relative to the tissue surface are also desirable in controlling the energy delivery even despite different and varying tissue surface geometries, conditions, anatomies, anomalies, and pathologies. By having a substantially curved or rounded distal membrane 50, as shown in
Alternatively, elongated tubular or conduit features that extend from the distal membrane of the hood may also be designed, configured, or shaped such that they enter, nest, or locate within the areas of the tissue surface with invaginations due to the mechanical resilience and/or shape of the feature. One example is shown where the aperture of the hood may be extended even farther distally from the contact lip or edge 52 to reach deeper tissue regions for more direct or intimate energy delivery.
Additionally and/or optionally, the elongated tubular/conduit feature can be collapsed or retracted (within the hood open area) when visualizing along tissue surfaces or treating the tissue, if so desired, such that the hood face can maintain close contact relative to the tissue. As illustrated in the perspective views of
In any of the variations shown and described herein, the permeable feature 72 may be optionally incorporated over the aperture with or without the elongated features to provide additional rigidity to the hood shape while being partially pressurized with fluid for flushing/irrigating. This added rigidity may minimize distortions and deformations of the hood aperture and therefore facilitate an even energy density distribution during ablation.
The elongated feature 110 may be tapered and may further optionally incorporate a stiffening member 80 around its aperture 70, as previously described, to provide additional structural rigidity. A permeable feature may also be optionally incorporated as well over aperture 70, if so desired. Additionally, an optional stiffening structure 112 (such as a ring, hoop, etc.) may be positioned within the open area of the hood 12 proximal to the elongated feature 110 and proximal to the aperture 70 to limit the degree of invagination that the elongated feature 110 collapses into the hood open area, as shown in
For comparison,
Turning now to
As the hood 12 is moved to an invaginated tissue region 132, as shown in
In yet another variation, alternatively and/or additionally to the elongated feature, an electrode tipped shaft or catheter may be advanced or retracted through the catheter 16 and hood open area to deliver energy either through the hood aperture 42 or distal to the aperture 42.
In yet another variation, electrode 142 having a slidable sheath 150 can be advanced through the hood open area where a position of the sheath 150 can be independently controlled relative to the electrode 142, as shown in
In utilizing the electrode and sheath 150, different electrode configurations may be used depending upon the desired application.
In utilizing any of the assemblies described herein, regions of tissue to be visualized or treated may be obstructed by various anatomy such as trabeculae which may prevent the hood 12 from advancing or contacting the tissue to be visualized or treated. An example is illustrated in
Using any of the variations described herein, obstructed tissue may still be effectively treated. One example is shown in the cross-sectional side views of
With the energized distal region 182, the trabeculae 170 may be severed and the electrode 182 may be retracted proximally into the hood 12, as shown in
In yet another example of use for hood 12 having an elongated feature which is corrugated,
Hood 12 may further define a distally curved portion 194 supported, e.g., by distal support struts 192 connected to corresponding support struts 190. With the incorporated dispersing feature 198, the clearing fluid may be dispersed in an even manner from the hood 12 and over the underlying tissue to provide a more even distribution of energy, e.g., for ablation of the tissue.
The applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other applications as well. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.
This application claims the benefit of priority to U.S. Prov. App. 61/321,471 filed Apr. 6, 2010, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
623022 | Johnson | Apr 1899 | A |
2305462 | Wolf | Dec 1942 | A |
3874388 | King et al. | Apr 1975 | A |
4175545 | Termanini | Nov 1979 | A |
4326529 | Doss et al. | Apr 1982 | A |
4445892 | Hussein et al. | May 1984 | A |
4470407 | Hussein et al. | Sep 1984 | A |
4569335 | Tsuno | Feb 1986 | A |
4576146 | Kawazoe et al. | Mar 1986 | A |
4615333 | Taguchi | Oct 1986 | A |
4619247 | Inoue et al. | Oct 1986 | A |
4676258 | Inokuchi et al. | Jun 1987 | A |
4681093 | Ono et al. | Jul 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4710192 | Liotta et al. | Dec 1987 | A |
4727418 | Kato et al. | Feb 1988 | A |
4784133 | Mackin | Nov 1988 | A |
4848323 | Marijnissen et al. | Jul 1989 | A |
4911148 | Sosnowski et al. | Mar 1990 | A |
4914521 | Adair | Apr 1990 | A |
4943290 | Rexroth et al. | Jul 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4957484 | Murtfeldt | Sep 1990 | A |
4961738 | Mackin | Oct 1990 | A |
4976710 | Mackin | Dec 1990 | A |
4991578 | Cohen | Feb 1991 | A |
4994069 | Ritchart et al. | Feb 1991 | A |
4998916 | Hammerslag et al. | Mar 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5090959 | Samson et al. | Feb 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
RE34002 | Adair | Jul 1992 | E |
5171259 | Inoue | Dec 1992 | A |
5281238 | Chin et al. | Jan 1994 | A |
5282827 | Kensey et al. | Feb 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5313943 | Houser et al. | May 1994 | A |
5330496 | Alferness | Jul 1994 | A |
5334159 | Turkel | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5339800 | Wilta et al. | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5353792 | Lubbers et al. | Oct 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5373840 | Knighton | Dec 1994 | A |
5375612 | Cottenceau et al. | Dec 1994 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5421338 | Crowley et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5453785 | Lenhardt et al. | Sep 1995 | A |
5462521 | Brucker et al. | Oct 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5498230 | Adair | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5515853 | Smith et al. | May 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5549603 | Feiring | Aug 1996 | A |
5558619 | Kami et al. | Sep 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5575756 | Karasawa et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5584872 | LaFontaine et al. | Dec 1996 | A |
5591119 | Adair | Jan 1997 | A |
5593422 | Muijs Van de Moer et al. | Jan 1997 | A |
5593424 | Northrup, III | Jan 1997 | A |
5672153 | Lax et al. | Sep 1997 | A |
5676693 | LaFontaine | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5697281 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5709224 | Behl et al. | Jan 1998 | A |
5713907 | Hogendijk et al. | Feb 1998 | A |
5713946 | Ben-Haim | Feb 1998 | A |
5716321 | Kerin et al. | Feb 1998 | A |
5722403 | McGee et al. | Mar 1998 | A |
5725523 | Mueller | Mar 1998 | A |
5746747 | McKeating | May 1998 | A |
5749846 | Edwards et al. | May 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5754313 | Pelchy et al. | May 1998 | A |
5766137 | Omata | Jun 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5792045 | Adair | Aug 1998 | A |
5797903 | Swanson et al. | Aug 1998 | A |
5823947 | Yoon et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5829447 | Stevens et al. | Nov 1998 | A |
5843118 | Sepetka et al. | Dec 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5860974 | Abele | Jan 1999 | A |
5860991 | Klein et al. | Jan 1999 | A |
5865791 | Whayne et al. | Feb 1999 | A |
5873815 | Kerin et al. | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897487 | Ouchi | Apr 1999 | A |
5897553 | Mulier et al. | Apr 1999 | A |
5902328 | LaFontaine et al. | May 1999 | A |
5904651 | Swanson et al. | May 1999 | A |
5908445 | Whayne et al. | Jun 1999 | A |
5928250 | Koike et al. | Jul 1999 | A |
5929901 | Adair et al. | Jul 1999 | A |
5941845 | Tu et al. | Aug 1999 | A |
5944690 | Falwell et al. | Aug 1999 | A |
5964755 | Edwards | Oct 1999 | A |
5968053 | Revelas | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5986693 | Adair et al. | Nov 1999 | A |
5997571 | Farr et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6036685 | Mueller | Mar 2000 | A |
6043839 | Adair et al. | Mar 2000 | A |
6047218 | Whayne et al. | Apr 2000 | A |
6063077 | Schaer | May 2000 | A |
6063081 | Mulier et al. | May 2000 | A |
6068653 | LaFontaine | May 2000 | A |
6071302 | Sinofsky et al. | Jun 2000 | A |
6081740 | Gombrich et al. | Jun 2000 | A |
6086528 | Adair | Jul 2000 | A |
6086534 | Kesten | Jul 2000 | A |
6099498 | Addis | Aug 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6102905 | Baxter et al. | Aug 2000 | A |
6112123 | Kelleher et al. | Aug 2000 | A |
6115626 | Whayne et al. | Sep 2000 | A |
6123703 | Tu et al. | Sep 2000 | A |
6123718 | Tu et al. | Sep 2000 | A |
6129724 | Fleischman et al. | Oct 2000 | A |
6139508 | Simpson et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6156350 | Constantz | Dec 2000 | A |
6159203 | Sinofsky | Dec 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6167297 | Benaron | Dec 2000 | A |
6168591 | Sinofsky | Jan 2001 | B1 |
6168594 | LaFontaine et al. | Jan 2001 | B1 |
6174307 | Daniel et al. | Jan 2001 | B1 |
6178346 | Amundson et al. | Jan 2001 | B1 |
6190381 | Olsen et al. | Feb 2001 | B1 |
6211904 | Adair et al. | Apr 2001 | B1 |
6224553 | Nevo | May 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6235044 | Root et al. | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238393 | Mulier et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6254598 | Edwards et al. | Jul 2001 | B1 |
6258083 | Daniel et al. | Jul 2001 | B1 |
6270492 | Sinofsky | Aug 2001 | B1 |
6275255 | Adair et al. | Aug 2001 | B1 |
6290689 | Delaney et al. | Sep 2001 | B1 |
6306081 | Ishikawa et al. | Oct 2001 | B1 |
6310642 | Adair et al. | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6315777 | Comben | Nov 2001 | B1 |
6315778 | Gambale et al. | Nov 2001 | B1 |
6322536 | Rosengart et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6358247 | Altman et al. | Mar 2002 | B1 |
6358248 | Mulier et al. | Mar 2002 | B1 |
6375654 | McIntyre | Apr 2002 | B1 |
6379345 | Constantz | Apr 2002 | B1 |
6385476 | Osadchy et al. | May 2002 | B1 |
6387043 | Yoon | May 2002 | B1 |
6387071 | Constantz | May 2002 | B1 |
6394096 | Constantz | May 2002 | B1 |
6396873 | Goldstein et al. | May 2002 | B1 |
6398780 | Farley et al. | Jun 2002 | B1 |
6401719 | Farley et al. | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6416511 | Lesh et al. | Jul 2002 | B1 |
6419669 | Frazier et al. | Jul 2002 | B1 |
6423051 | Kaplan et al. | Jul 2002 | B1 |
6423055 | Farr et al. | Jul 2002 | B1 |
6423058 | Edwards et al. | Jul 2002 | B1 |
6428536 | Panescu et al. | Aug 2002 | B2 |
6440119 | Nakada et al. | Aug 2002 | B1 |
6458151 | Saltiel | Oct 2002 | B1 |
6464697 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475223 | Werp et al. | Nov 2002 | B1 |
6478769 | Parker | Nov 2002 | B1 |
6482162 | Moore | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6485489 | Teirstein et al. | Nov 2002 | B2 |
6488671 | Constantz et al. | Dec 2002 | B1 |
6494902 | Hoey et al. | Dec 2002 | B2 |
6497705 | Comben | Dec 2002 | B2 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6502576 | Lesh | Jan 2003 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6517533 | Swaminathan | Feb 2003 | B1 |
6527979 | Constantz et al. | Mar 2003 | B2 |
6532380 | Close et al. | Mar 2003 | B1 |
6533767 | Johansson et al. | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6540733 | Constantz et al. | Apr 2003 | B2 |
6540744 | Hassett et al. | Apr 2003 | B2 |
6544195 | Wilson et al. | Apr 2003 | B2 |
6547780 | Sinofsky | Apr 2003 | B1 |
6558375 | Sinofsky et al. | May 2003 | B1 |
6562020 | Constantz et al. | May 2003 | B1 |
6572609 | Farr et al. | Jun 2003 | B1 |
6579285 | Sinofsky | Jun 2003 | B2 |
6585732 | Mulier et al. | Jul 2003 | B2 |
6587709 | Solf et al. | Jul 2003 | B2 |
6593884 | Gilboa et al. | Jul 2003 | B1 |
6605055 | Sinofsky et al. | Aug 2003 | B1 |
6613062 | Leckrone et al. | Sep 2003 | B1 |
6622732 | Constantz | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6626900 | Sinofsky et al. | Sep 2003 | B1 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6645202 | Pless et al. | Nov 2003 | B1 |
6650923 | Lesh et al. | Nov 2003 | B1 |
6658279 | Swanson et al. | Dec 2003 | B2 |
6659940 | Adler | Dec 2003 | B2 |
6673090 | Root et al. | Jan 2004 | B2 |
6676656 | Sinofsky | Jan 2004 | B2 |
6679836 | Couvillon, Jr. | Jan 2004 | B2 |
6682526 | Jones et al. | Jan 2004 | B1 |
6689128 | Sliwa, Jr. et al. | Feb 2004 | B2 |
6692430 | Adler | Feb 2004 | B2 |
6701581 | Senovich et al. | Mar 2004 | B2 |
6701931 | Sliwa, Jr. et al. | Mar 2004 | B2 |
6702780 | Gilboa et al. | Mar 2004 | B1 |
6704043 | Goldstein et al. | Mar 2004 | B2 |
6706039 | Mulier et al. | Mar 2004 | B2 |
6712798 | Constantz | Mar 2004 | B2 |
6719747 | Constantz et al. | Apr 2004 | B2 |
6719755 | Sliwa, Jr. et al. | Apr 2004 | B2 |
6730063 | Delaney et al. | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6751492 | Ben-Haim | Jun 2004 | B2 |
6755790 | Stewart et al. | Jun 2004 | B2 |
6755811 | Constantz | Jun 2004 | B1 |
6764487 | Mulier et al. | Jul 2004 | B2 |
6771996 | Bowe et al. | Aug 2004 | B2 |
6773402 | Govari et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6805128 | Pless et al. | Oct 2004 | B1 |
6805129 | Pless et al. | Oct 2004 | B1 |
6811562 | Pless | Nov 2004 | B1 |
6833814 | Gilboa et al. | Dec 2004 | B2 |
6840923 | Lapcevic | Jan 2005 | B1 |
6840936 | Sliwa, Jr. et al. | Jan 2005 | B2 |
6849073 | Hoey et al. | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6858026 | Sliwa, Jr. et al. | Feb 2005 | B2 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6866651 | Constantz | Mar 2005 | B2 |
6871085 | Sommer | Mar 2005 | B2 |
6887237 | McGaffigan | May 2005 | B2 |
6892091 | Ben-Haim et al. | May 2005 | B1 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6899672 | Chin et al. | May 2005 | B2 |
6915154 | Docherty et al. | Jul 2005 | B1 |
6923805 | LaFontaine et al. | Aug 2005 | B1 |
6929010 | Vaska et al. | Aug 2005 | B2 |
6932809 | Sinofsky | Aug 2005 | B2 |
6939348 | Malecki et al. | Sep 2005 | B2 |
6942657 | Sinofsky et al. | Sep 2005 | B2 |
6949095 | Vaska et al. | Sep 2005 | B2 |
6953457 | Farr et al. | Oct 2005 | B2 |
6955173 | Lesh | Oct 2005 | B2 |
6962589 | Mulier et al. | Nov 2005 | B2 |
6971394 | Sliwa, Jr. et al. | Dec 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
6979290 | Mourlas et al. | Dec 2005 | B2 |
6982740 | Adair et al. | Jan 2006 | B2 |
6984232 | Vanney et al. | Jan 2006 | B2 |
6994094 | Schwartz | Feb 2006 | B2 |
7019610 | Creighton, IV et al. | Mar 2006 | B2 |
7025746 | Tal | Apr 2006 | B2 |
7030904 | Adair et al. | Apr 2006 | B2 |
7041098 | Farley et al. | May 2006 | B2 |
7042487 | Nakashima | May 2006 | B2 |
7044135 | Lesh | May 2006 | B2 |
7052493 | Vaska et al. | May 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7118566 | Jahns | Oct 2006 | B2 |
7156845 | Mulier et al. | Jan 2007 | B2 |
7163534 | Brucker et al. | Jan 2007 | B2 |
7166537 | Jacobsen et al. | Jan 2007 | B2 |
7169144 | Hoey et al. | Jan 2007 | B2 |
7186214 | Ness | Mar 2007 | B2 |
7207984 | Farr et al. | Apr 2007 | B2 |
7217268 | Eggers et al. | May 2007 | B2 |
7242832 | Carlin et al. | Jul 2007 | B2 |
7247155 | Hoey et al. | Jul 2007 | B2 |
7261711 | Mulier et al. | Aug 2007 | B2 |
7263397 | Hauck et al. | Aug 2007 | B2 |
7276061 | Schaer et al. | Oct 2007 | B2 |
7309328 | Kaplan et al. | Dec 2007 | B2 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7527625 | Knight et al. | May 2009 | B2 |
7534204 | Starksen et al. | May 2009 | B2 |
7569052 | Phan et al. | Aug 2009 | B2 |
7736347 | Kaplan et al. | Jun 2010 | B2 |
7758499 | Adler | Jul 2010 | B2 |
7860555 | Saadat | Dec 2010 | B2 |
7860556 | Saadat | Dec 2010 | B2 |
20010005789 | Root et al. | Jun 2001 | A1 |
20010020126 | Swanson et al. | Sep 2001 | A1 |
20010031912 | Adler | Oct 2001 | A1 |
20010039416 | Moorman et al. | Nov 2001 | A1 |
20010047136 | Domanik et al. | Nov 2001 | A1 |
20010047184 | Connors | Nov 2001 | A1 |
20010052930 | Adair et al. | Dec 2001 | A1 |
20020004644 | Koblish | Jan 2002 | A1 |
20020026145 | Bagaoisan et al. | Feb 2002 | A1 |
20020054852 | Cate | May 2002 | A1 |
20020065455 | Ben-Haim et al. | May 2002 | A1 |
20020068853 | Adler | Jun 2002 | A1 |
20020080248 | Adair et al. | Jun 2002 | A1 |
20020087166 | Brock et al. | Jul 2002 | A1 |
20020087169 | Brock et al. | Jul 2002 | A1 |
20020091304 | Ogura et al. | Jul 2002 | A1 |
20020138088 | Nash et al. | Sep 2002 | A1 |
20020165598 | Wahr et al. | Nov 2002 | A1 |
20020169377 | Khairkhahan et al. | Nov 2002 | A1 |
20030036698 | Kohler et al. | Feb 2003 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030120142 | Dubuc et al. | Jun 2003 | A1 |
20030130572 | Phan et al. | Jul 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030171741 | Ziebol et al. | Sep 2003 | A1 |
20030181939 | Bonutti | Sep 2003 | A1 |
20030208222 | Zadno-Azizi | Nov 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030216720 | Sinofsky et al. | Nov 2003 | A1 |
20030220574 | Markus et al. | Nov 2003 | A1 |
20030222325 | Jacobsen et al. | Dec 2003 | A1 |
20040006333 | Arnold et al. | Jan 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040054335 | Lesh et al. | Mar 2004 | A1 |
20040054389 | Osypka | Mar 2004 | A1 |
20040082833 | Adler | Apr 2004 | A1 |
20040097788 | Mourlas et al. | May 2004 | A1 |
20040117032 | Roth | Jun 2004 | A1 |
20040133113 | Krishnan | Jul 2004 | A1 |
20040138707 | Greenhalgh | Jul 2004 | A1 |
20040147806 | Adler | Jul 2004 | A1 |
20040147911 | Sinofsky | Jul 2004 | A1 |
20040147912 | Sinofsky | Jul 2004 | A1 |
20040147913 | Sinofsky | Jul 2004 | A1 |
20040158143 | Flaherty et al. | Aug 2004 | A1 |
20040158289 | Girouard et al. | Aug 2004 | A1 |
20040167503 | Sinofsky | Aug 2004 | A1 |
20040181237 | Forde et al. | Sep 2004 | A1 |
20040199052 | Banik et al. | Oct 2004 | A1 |
20040210239 | Nash et al. | Oct 2004 | A1 |
20040215183 | Hoey et al. | Oct 2004 | A1 |
20040220471 | Schwartz | Nov 2004 | A1 |
20040230131 | Kassab et al. | Nov 2004 | A1 |
20040248837 | Raz et al. | Dec 2004 | A1 |
20040254523 | Fitzgerald et al. | Dec 2004 | A1 |
20040260182 | Zuluaga et al. | Dec 2004 | A1 |
20050014995 | Amundson et al. | Jan 2005 | A1 |
20050015048 | Chiu et al. | Jan 2005 | A1 |
20050020914 | Amundson et al. | Jan 2005 | A1 |
20050027163 | Chin et al. | Feb 2005 | A1 |
20050038419 | Arnold et al. | Feb 2005 | A9 |
20050059862 | Phan | Mar 2005 | A1 |
20050059954 | Constantz | Mar 2005 | A1 |
20050059965 | Eberl et al. | Mar 2005 | A1 |
20050065504 | Melsky et al. | Mar 2005 | A1 |
20050090818 | Pike, Jr. et al. | Apr 2005 | A1 |
20050096643 | Brucker et al. | May 2005 | A1 |
20050101984 | Chanduszko et al. | May 2005 | A1 |
20050107736 | Landman et al. | May 2005 | A1 |
20050119523 | Starksen et al. | Jun 2005 | A1 |
20050124969 | Fitzgerald et al. | Jun 2005 | A1 |
20050131401 | Malecki et al. | Jun 2005 | A1 |
20050154252 | Sharkey et al. | Jul 2005 | A1 |
20050158899 | Jacobsen et al. | Jul 2005 | A1 |
20050159702 | Sekiguchi et al. | Jul 2005 | A1 |
20050165279 | Adler et al. | Jul 2005 | A1 |
20050165391 | Maguire et al. | Jul 2005 | A1 |
20050165466 | Morris et al. | Jul 2005 | A1 |
20050182465 | Ness | Aug 2005 | A1 |
20050197530 | Wallace et al. | Sep 2005 | A1 |
20050197623 | Leeflang et al. | Sep 2005 | A1 |
20050215895 | Popp et al. | Sep 2005 | A1 |
20050222557 | Baxter et al. | Oct 2005 | A1 |
20050222558 | Baxter et al. | Oct 2005 | A1 |
20050228452 | Mourlas et al. | Oct 2005 | A1 |
20050234436 | Baxter et al. | Oct 2005 | A1 |
20050234437 | Baxter et al. | Oct 2005 | A1 |
20050267328 | Blumzvig et al. | Dec 2005 | A1 |
20050267452 | Farr et al. | Dec 2005 | A1 |
20060009715 | Khairkhahan et al. | Jan 2006 | A1 |
20060009737 | Whiting et al. | Jan 2006 | A1 |
20060015096 | Hauck et al. | Jan 2006 | A1 |
20060022234 | Adair et al. | Feb 2006 | A1 |
20060025651 | Adler et al. | Feb 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060030844 | Knight et al. | Feb 2006 | A1 |
20060069303 | Couvillon et al. | Mar 2006 | A1 |
20060074398 | Whiting et al. | Apr 2006 | A1 |
20060084839 | Mourlas et al. | Apr 2006 | A1 |
20060084945 | Moll et al. | Apr 2006 | A1 |
20060089637 | Werneth et al. | Apr 2006 | A1 |
20060111614 | Saadat et al. | May 2006 | A1 |
20060122587 | Sharareh | Jun 2006 | A1 |
20060146172 | Jacobsen et al. | Jul 2006 | A1 |
20060149331 | Mann et al. | Jul 2006 | A1 |
20060155242 | Constantz | Jul 2006 | A1 |
20060161133 | Laird et al. | Jul 2006 | A1 |
20060167439 | Kalser et al. | Jul 2006 | A1 |
20060183992 | Kawashima | Aug 2006 | A1 |
20060184048 | Saadat | Aug 2006 | A1 |
20060217755 | Eversull et al. | Sep 2006 | A1 |
20060224167 | Weisenburgh et al. | Oct 2006 | A1 |
20060253113 | Arnold et al. | Nov 2006 | A1 |
20060271032 | Chin et al. | Nov 2006 | A1 |
20070005019 | Okishige | Jan 2007 | A1 |
20070015964 | Eversull et al. | Jan 2007 | A1 |
20070016130 | Leeflang et al. | Jan 2007 | A1 |
20070043338 | Moll et al. | Feb 2007 | A1 |
20070043413 | Eversull et al. | Feb 2007 | A1 |
20070049923 | Jahns | Mar 2007 | A1 |
20070078451 | Arnold et al. | Apr 2007 | A1 |
20070083187 | Eversull et al. | Apr 2007 | A1 |
20070083217 | Eversull et al. | Apr 2007 | A1 |
20070093808 | Mulier et al. | Apr 2007 | A1 |
20070100241 | Adler | May 2007 | A1 |
20070100324 | Tempel et al. | May 2007 | A1 |
20070106146 | Altmann et al. | May 2007 | A1 |
20070106214 | Gray et al. | May 2007 | A1 |
20070106287 | O'Sullivan | May 2007 | A1 |
20070135826 | Zaver et al. | Jun 2007 | A1 |
20070167801 | Webler et al. | Jul 2007 | A1 |
20070265609 | Thapliyal et al. | Nov 2007 | A1 |
20070265610 | Thapliyal et al. | Nov 2007 | A1 |
20070270686 | Ritter et al. | Nov 2007 | A1 |
20070287886 | Saadat | Dec 2007 | A1 |
20070293724 | Saadat et al. | Dec 2007 | A1 |
20080009747 | Saadat et al. | Jan 2008 | A1 |
20080009859 | Auth et al. | Jan 2008 | A1 |
20080015445 | Saadat et al. | Jan 2008 | A1 |
20080015563 | Hoey et al. | Jan 2008 | A1 |
20080015569 | Saadat et al. | Jan 2008 | A1 |
20080027464 | Moll et al. | Jan 2008 | A1 |
20080033290 | Saadat et al. | Feb 2008 | A1 |
20080057106 | Erickson et al. | Mar 2008 | A1 |
20080058590 | Saadat et al. | Mar 2008 | A1 |
20080058836 | Moll et al. | Mar 2008 | A1 |
20080097476 | Peh et al. | Apr 2008 | A1 |
20080183081 | Lys et al. | Jul 2008 | A1 |
20080188759 | Saadat et al. | Aug 2008 | A1 |
20080214889 | Saadat et al. | Sep 2008 | A1 |
20080228032 | Starksen et al. | Sep 2008 | A1 |
20080275300 | Rothe | Nov 2008 | A1 |
20080281293 | Peh et al. | Nov 2008 | A1 |
20080287790 | Li | Nov 2008 | A1 |
20080287805 | Li | Nov 2008 | A1 |
20090030412 | Willis et al. | Jan 2009 | A1 |
20090054803 | Saadat et al. | Feb 2009 | A1 |
20090062790 | Malchano et al. | Mar 2009 | A1 |
20090076489 | Welches et al. | Mar 2009 | A1 |
20090076498 | Saadat et al. | Mar 2009 | A1 |
20090125022 | Saadat et al. | May 2009 | A1 |
20090143640 | Saadat et al. | Jun 2009 | A1 |
20090264727 | Markowitz et al. | Oct 2009 | A1 |
20090267773 | Markowitz et al. | Oct 2009 | A1 |
20100004506 | Saadat | Jan 2010 | A1 |
20100004661 | Verin et al. | Jan 2010 | A1 |
20110060227 | Saadat | Mar 2011 | A1 |
20110060298 | Saadat | Mar 2011 | A1 |
20110144576 | Rothe et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
10028155 | Dec 2000 | DE |
0283661 | Sep 1988 | EP |
0301288 | Feb 1999 | EP |
59093413 | May 1984 | JP |
59-181315 | Oct 1984 | JP |
01-221133 | Sep 1989 | JP |
03-284265 | Dec 1991 | JP |
05-103746 | Apr 1993 | JP |
09-051897 | Feb 1997 | JP |
11-299725 | Nov 1999 | JP |
2001-258822 | Sep 2001 | JP |
WO 9221292 | Dec 1992 | WO |
WO 9407413 | Apr 1994 | WO |
WO 9503843 | Feb 1995 | WO |
WO 9818388 | May 1998 | WO |
WO 03039350 | May 2003 | WO |
WO 03053491 | Jul 2003 | WO |
WO 03101287 | Dec 2003 | WO |
WO 2004043272 | May 2004 | WO |
WO 2004080508 | Sep 2004 | WO |
WO 2005070330 | Aug 2005 | WO |
WO 2005077435 | Aug 2005 | WO |
WO 2005081202 | Sep 2005 | WO |
WO 2006017517 | Feb 2006 | WO |
WO 2006024015 | Mar 2006 | WO |
WO 2006083794 | Aug 2006 | WO |
WO 2006091597 | Aug 2006 | WO |
WO 2006126979 | Nov 2006 | WO |
WO 2007067323 | Jun 2007 | WO |
WO 2007079268 | Jul 2007 | WO |
WO 2007133845 | Nov 2007 | WO |
WO 2007134258 | Nov 2007 | WO |
WO 2008015625 | Feb 2008 | WO |
WO 2008021994 | Feb 2008 | WO |
WO 2008021997 | Feb 2008 | WO |
WO 2008021998 | Feb 2008 | WO |
WO 2008024261 | Feb 2008 | WO |
WO 2008079828 | Jul 2008 | WO |
WO 2009112262 | Sep 2009 | WO |
Entry |
---|
Avitall, “A Catheter System to Ablate Atrial Fibrillation in a Sterile Pericarditis Dog Model”, PACE, vol. 17, p. 774, 1994. |
Avitall, “Right-Sided Driven Atrial Fibrillation in a Sterile Pericarditis Dog Model”, PACE, vol. 17, p. 774, 1994. |
Avitall, “Vagally Mediated Atrial Fibrillation in a Dog Model can be Ablated by Placing Linear Radiofrequency Lesions at the Junction of the Right Atrial Appendage and the Superior Vena Cava”, PACE, vol. 18, p. 857, 1995. |
Baker, “Nonpharmacologic Approaches to the Treatment of Atrial Fibrillation and Atrial Flutter”, J. Cardiovasc. Electrophysiol., vol. 6, pp. 972-978, 1995. |
Bhakta, “Principles of Electroanatomic Mapping”, Indian Pacing & Electrophysiol J., vol. 8, No. 1, pp. 32-50, 2008. |
Bidoggia, “Transseptal Left Heart Catheterization: Usefulness of the Intracavitary Electrocardiogram in the Localization of the Fossa Ovalis”, Cathet Cardiovasc Diagn., vol. 24, No. 3, pp. 221-225, 1991. |
Bredikis, “Surgery of Tachyarrhythmia: Intracardiac Closed Heart Cryoablation”, PACE, vol. 13, pp. 1980-1984, 1990. |
Cox, “Cardiac Surgery for Arrhythmias”, J. Cardiovasc. Electrophysiol., vol. 15, pp. 250-262, 2004. |
Cox, “Five-Year Experience With the Maze Procedure for Atrial Fibrillation”, The Annals Thoracic Surgery, vol. 56, pp. 814-824, 1993. |
Cox, “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation”, The Journal of Thoracic and Cardiovascular Surgery, vol. 110, pp. 473-484, 1995. |
Cox, “The Status of Surgery for Cardiac Arrhythmias”, Circulation, vol. 71, pp. 413-417, 1985. |
Cox, “The Surgical Treatment of Atrial Fibrillation”, The Journal of Thoracic and Cardiovascular Surgery, vol. 101, pp. 584-592, 1991. |
Elvan, Replication of the “Maze” Procedure by Radiofrequency Catheter Ablation Reduces the Ability to Induce Atrial Fibrillation, PACE, vol. 17, p. 774, 1994. |
Elvan, Radiofrequency Catheter Ablation (RFCA) of the Atria Effectively Abolishes Pacing Induced Chronic Atrial Fibrillation, PACE, vol. 18, p. 856, 1995. |
Elvan, Radiofrequency Catheter Ablation of the Atria Reduces Inducibility and Duration of Atrial Fibrillation in Dogs, Circulation, vol. 91, pp. 2235-2244, 1995. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., Examination Communication dated May 18, 2010. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., extended European Search Report dated Jul. 1, 2009. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Saadat et al., office action dated Oct. 23, 2009. |
European Patent Application No. 07841754.0 filed Aug. 31, 2007 in the name of Saadat et al., Supplemental European Search Report dated Jun. 30, 2010. |
European Patent Application No. 08746822.9 filed Apr. 24, 2008 in the name of Rothe et al., European Search Report dated Mar. 29, 2010. |
European Patent Application No. 08746822.9 filed Apr. 24, 2008 in the name of Rothe et al., Office Action dated Jul. 13, 2010. |
Fieguth, Inhibition of Atrial Fibrillation by Pulmonary Vein Isolation and Auricular Resection—Experimental Study in a Sheep Model, European J. Cardiothorac. Surg., vol. 11, pp. 714-721, 1997. |
Hoey, Intramural Ablation Using Radiofrequency Energy Via Screw-Tip Catheter and Saline Electrode, PACE, vol. 18, p. 487, 1995. |
Huang, Increase in the Lesion Size and Decrease in the Impedance Rise with a Saline Infusion Electrode Catheter for Radiofrequency, Circulation, vol. 80, No. 4, pp. II-324, 1989. |
Moser, Angioscopic Visualization of Pulmonary Emboli, CHEST, vol. 77, No. 2, pp. 198-201, 1980. |
Nakamura, Percutaneous Intracardiac Surgery With Cardioscopic Guidance, SPIE, vol. 1652, pp. 214-216, 1992. |
Pappone, Circumferential Radiofrequency Ablation of Pulmonary Vein Ostia, Circulation, vol. 102, pp. 2619-2628, 2000. |
Sethi, Transseptal Catheterization for the Electrophysiologist: Modification with a “View”, J. Interv. Card. Electrophysiol., vol. 5, pp. 97-99, 2001, Kluwer Academic Publishers, Netherlands. |
Thiagalingam, Cooled Needle Catheter Ablation Creates Deeper and Wider Lesions than Irrigated Tip Catheter Ablation, J. Cardiovasc. Electrophysiol., vol. 16, pp. 1-8, 2005. |
U.S. Appl. No. 11/259,498, filed Oct. 25, 2005 in the name of Saadat et al., Non-final Office Action dated Feb. 25, 2010. |
U.S. Appl. No. 11/560,742, filed Nov. 16, 2006 in the name of Saadat, Non-final Office Action dated Jun. 10, 2010. |
U.S. Appl. No. 11/687,597, filed Mar. 16, 2007 in the name of Saadat et al., Non-final Office Action dated Jul. 21, 2010. |
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., Non-final Office Action dated Jan. 14, 2010. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., Final Office Action dated Mar. 1, 2010. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Saadat et al., Non-final Office Action dated Jun. 8, 2009. |
U.S. Appl. No. 61/286,283, filed Dec. 14, 2009 in the name of Rothe et al. |
U.S. Appl. No. 61/297,462, filed Jan. 22, 2010 in the name of Rothe et al. |
Uchida, Developmental History of Cardioscopes, Coronary Angioscopy, pp. 187-197, 2001, Futura Publishing Co., Armonk, NY. |
Willkampf, Radiofrequency Ablation with a Cooled Porous Electrode Catheter, JACC, vol. 11, No. 2, p. 17A, 1988. |
U.S. Appl. No. 11/775,771, filed Jul. 10, 2007 in the name of Saadat et al., Non-final Office Action dated Aug. 27, 2010. |
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., final Office Action dated Sep. 16, 2010. |
U.S. Appl. No. 11/259,498, filed Oct. 25, 2005 in the name of Saadat, Notice of Allowance dated Nov. 15, 2010. |
U.S. Appl. No. 11/560,742, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance dated Nov. 15, 2010. |
U.S. Appl. No. 12/464,800, filed May 12, 2009 in the name of Peh et al., non-final Office Action dated Nov. 24, 2010. |
U.S. Appl. No. 11/848,429, filed Aug. 31, 2007 in the name of Peh et al., non-final Office Action dated Nov. 24, 2010. |
European Patent Application No. 06734083.6 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Office Action dated Nov. 12, 2010. |
European Patent Application No. 07812146.4 filed Jun. 14, 2007 in the name of Voyage Medical, Inc., European Search Report dated Nov. 18, 2010. |
European Patent Application No. 07799466.3 filed Jul. 10, 2007 in the name of Voyage Medical, Inc., European Search Report dated Nov. 18, 2010. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., non-final Office Action dated Dec. 16, 2010. |
U.S. Appl. No. 12/026,455, filed Feb. 5, 2008 in the name of Saadat et al., non-final Office Action dated Dec. 27, 2010. |
U.S. Appl. No. 12/947,198, filed Nov. 16, 2010 in the name of Saadat, non-final Office Action dated Feb. 18, 2011. |
U.S. Appl. No. 11/560,732, filed Nov. 16, 2006 in the name of Saadat, Notice of Allowance dated Feb. 3, 2011. |
U.S. Appl. No. 12/947,246, filed Nov. 16, 2006 in the name of Saadat, non-final Office Action dated Feb. 18, 2011. |
U.S. Appl. No. 11/687,597, filed Mar. 16, 2007 in the name of Saadat, Notice of Allowance dated Feb. 24, 2011. |
U.S. Appl. No. 11/560,732, filed Mar. 16, 2007 in the name of Saadat, Notice of Allowance dated Feb. 24, 2011. |
U.S. Appl. No. 11/848,207, filed Aug. 30, 2007 in the name of Saadat et al., non-final Office Action dated Feb. 25, 2011. |
Japanese Patent Application No. 2007-554156 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Office Action dated Feb. 15, 2011. |
European Patent Application No. 07758716.0 filed Mar. 16, 2007 in the name of Voyage Medical, Inc., Supplemental European Search Report dated Feb. 28, 2011. |
U.S. Appl. No. 11/848,202, filed Aug. 30, 2007 in the name of Saadat et al., non-final Office Action dated Mar. 11, 2011. |
U.S. Appl. No. 11/763,399, filed Jun. 14, 2007 in the name of Saadat et al., non-final Office Action dated Apr. 11, 2011. |
U.S. Appl. No. 12/499,011, filed Jul. 7, 2009 in the name of Rothe et al., non-final Office Action dated Apr. 12, 2011. |
U.S. Appl. No. 12/367,019, filed Feb. 6, 2009 in the name of Miller et al., non-final Office Action dated Apr. 22, 2011. |
U.S. Appl. No. 11/959,158, filed Dec. 18, 2007 in the name of Saadat et al., non-final Office Action dated Apr. 25, 2011. |
U.S. Appl. No. 11/848,532, filed Aug. 31, 2007 in the name of Saadat et al., non-final Office Action dated Apr. 26, 2011. |
U.S. Appl. No. 11/828,281, filed Jul. 25, 2007 in the name of Peh et al., non-final Office Action dated Apr. 27, 2011. |
U.S. Appl. No. 11/961,950, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action dated May 9, 2011. |
U.S. Appl. No. 11/961,995, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action dated May 9, 2011. |
U.S. Appl. No. 11/962,029, filed Dec. 20, 2007 in the name of Saadat et al., non-final Office Action dated May 9, 2011. |
U.S. Appl. No. 11/828,267, filed Jul. 25, 2007 in the name of Saadat et al., non-final Office Action dated May 11, 2011. |
Japanese Patent Application No. 2009-500630 filed Mar. 16, 2007 in the name of Voyage Medical, Inc., Office Action dated Apr. 27, 2011. |
U.S. Appl. No. 11/775,771, filed Jul. 10, 2007 in the name of Saadat et al., final Office Action dated May 12, 2011. |
U.S. Appl. No. 11/877,386, filed Oct. 23, 2007 in the name of Saadat et al., non-final Office Action dated May 20, 2011. |
U.S. Appl. No. 11/775,819, filed Jul. 10, 2007 in the name of Saadat et al., non-final Office Action dated May 20, 2011. |
U.S. Appl. No. 11/775,837, filed Jul. 10, 2007 in the name of Saadat et al., non-final Office Action dated May 23, 2011. |
U.S. Appl. No. 12/117,655, filed May 8, 2008 in the name of Peh et al., final Office Action dated Jun. 2, 2011. |
U.S. Appl. No. 12/323,281, filed Nov. 25, 2008 in the name of Saadat et al., non-final Office Action dated Jun. 7, 2011. |
Japanese Patent Application No. 2007-554156 filed Jan. 30, 2006 in the name of Voyage Medical, Inc., Notice of Allowance dated Jun. 13, 2011. |
Voyage Medical, Inc., Notice of Allowance dated Jun. 13, 2011. |
Number | Date | Country | |
---|---|---|---|
20120059366 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61321471 | Apr 2010 | US |