Apparatus and methods for additively manufactured structures with augmented energy absorption properties

Information

  • Patent Grant
  • 11072371
  • Patent Number
    11,072,371
  • Date Filed
    Friday, October 5, 2018
    5 years ago
  • Date Issued
    Tuesday, July 27, 2021
    3 years ago
Abstract
Apparatus and methods for additively manufactured structures with augmented energy absorption properties are presented herein. Three dimensional (3D) additive manufacturing structures may be constructed with spatially dependent features to create crash components. When used in the construction of a transport vehicle, the crash components with spatially dependent additively manufactured features may enhance and augment crash energy absorption. This in turn absorbs and re-distributes more crash energy away from the vehicle's occupant(s), thereby improving the occupants' safety.
Description
BACKGROUND
Field

The present disclosure relates generally to techniques for manufacturing structures with augmented energy absorption properties, and more specifically to additively manufacturing collision components of a transport vehicle.


Background

Three-dimensional (3D) printing, also referred to as additive manufacturing, has presented new opportunities to efficiently build components for automobiles and other transport structures such as airplanes, boats, motorcycles, and the like. Applying additive manufacturing processes to industries that produce these products has proven to produce a structurally more efficient transport structure. An automobile produced using 3D printed components may be made stronger, lighter, and consequently, more fuel efficient.


Safety is also a concern in transport structures. According to the Association for Safe International Road Travel (ASIRT), over one million people die worldwide in road crashes each year. Many factors contribute to fatal crashes, including, for example, various aspects of driver behavior and vehicle design. During a crash, the manner in which the occupant experiences acceleration due to impact crash energy may also determine the likelihood of survival. There is a need to improve vehicle safety by addressing the manner in which this crash energy is absorbed and distributed.


SUMMARY

Several aspects of techniques for additively manufacturing structures with augmented energy absorption properties will be described more fully hereinafter with reference to three-dimensional (3D) printing techniques.


In one aspect, a transport vehicle includes a first structure region, a second structure region, and an additively manufactured crash component. The additively manufactured crash component is positioned between the first structure region and the second structure region. The additively manufactured crash component includes at least one shell layer and a spatially dependent profile configured to absorb and re-distribute crash energy from at least one of the first and second structure regions.


The additively manufactured crash component may include a heat treated region configured to absorb the crash energy from the at least one of the first and second structure regions.


Load bearing components may enable transfer or diversion of loads to other components through defined load paths. Additively manufactured crash component, one the other hand, may be configured to absorb crash energy from the at least one of the first and second structure regions by absorbing an amount of crash energy, e.g., as the manufactured crash component undergoes controlled deformation. The amount of absorbed crash energy may be based upon the spatially dependent profile.


The spatially dependent profile may include a shell parameter. The shell parameter may be a shell thickness. The shell thickness may be configured to vary as a function of position. The shell parameter may be a shell density; the shell density may be configured to vary as a function of position. Additionally, in an aspect, spatially dependent profile may also be a function of the cross-sectional geometry, shape, or dimensions.


The spatially dependent profile may include a shell material.


The additively manufactured crash component may be configured to absorb the amount of crash energy based upon an intended air-bag deployment profile. The additively manufactured crash component may be configured to absorb the amount of crash energy based upon an intended deceleration profile.


The internal cavity may include foam. The foam may include a metal.


The additively manufactured crash component may be a frame crush rail.


In another aspect a method of additively manufacturing a crash component in a transport includes: forming a hollow region surrounded by a shell region; and controlling a shell region profile as a function of position.


Controlling the shell region profile may include varying a shell thickness. Controlling the shell region profile may include varying a material density. Controlling the shell region profile may include varying a material of the shell region. Additionally, in an aspect, spatially dependent profile may also be a function of the cross-sectional geometry, shape, or dimensions.


The method of additively manufacturing a crash component in a transport vehicle may further include injecting a foam into the hollow region.


In another aspect a transport vehicle includes an additively manufactured crash component. The additively manufactured crash component includes an internal hollow region and a shell. The shell has a variable cross section profile.


The additively manufactured crash component may further include at least one additively manufactured reinforcement element.


The variable cross section profile may be configured to enhance deformation mode and energy absorption capacity. The variable cross section profile may include a gauged thickness. The gauged thickness may be a function of a length of the crash component.


The variable cross section profile may include at least one crush initiation feature. The crush initiation feature may be configured to initiate a structural collapse of the additively manufactured crash component during an impact event.


The at least one crush initiation feature may be configured to initiate a structural collapse of the additively manufactured crash component during an impact event via a geometrical variation. The at least one crush initiation feature may be configured to initiate a structural collapse of the additively manufactured crash component during an impact event via a material variation. The at least one crush initiation feature may be an additively manufactured feature based upon a print parameter of a three dimensional (3D) printer.


The additively manufactured crash component may be configured to substantially absorb an amount of impact energy during the impact event. The additively manufactured crash component may be configured to substantially absorb and re-distribute an amount of impact energy away from an occupant of the transport vehicle during an impact event.


In another aspect a method of gauging a support structure in a transport vehicle includes: forming a hollow region surrounded by a shell region; and controlling a cross section profile as a function of position.


Controlling the cross section profile as a function of position may include controlling the cross section profile as a function of position. The cross section profile may be controlled as a function of position so as to enhance deformation mode and energy absorption capacity.


Controlling the cross section profile as a function of position may include varying a thickness of the cross section profile as a function of position. Varying a thickness of the cross section profile as a function of position may include placing at least one crush initiator at a select position within the cross section profile.


In another aspect a transport vehicle includes an additively manufactured crash structure. The additively manufactured crash structure includes a target impact location and an additively manufactured open cell structure located at the target impact location.


The additively manufactured crash structure may be positioned at the front of the transport vehicle. The target impact location may be the front of the additively manufactured crash structure.


The additively manufactured crash structure may be positioned at the rear of the transport vehicle. The target impact location may be the rear of the additively manufactured crash structure.


The additively manufactured open cell structure may include a lattice. The lattice may include a variable lattice density as a function of distance from the target impact location; and the variable lattice density may be least at the target impact location.


The additively manufactured lattice structure may be a bumper.


In another aspect a method of additively manufacturing a crash structure includes: defining a target impact location on the crash structure; and forming an open cell structure at the target impact location.


Forming an open cell structure at the target impact location may include additively manufacturing at least one reinforcement structure. Forming an open cell structure at the target impact location may include additively manufacturing a lattice concurrently with the at least one reinforcement structure.


Additively manufacturing the lattice may include varying a density of the lattice such that the density is least at the target impact location. Injecting foam into the lattice may occur after the additively manufacturing of the lattice.


It will be understood that other aspects of additively manufacturing structures with augmented energy absorption properties will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be appreciated by those skilled in the art, the additively manufacturing structures with augmented energy absorption properties may be realized with other embodiments without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of techniques for additively manufacturing structures with augmented energy absorption properties will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIGS. 1A-D illustrate an example 3-D printer system during different stages of operation;



FIG. 2A illustrates a side view perspective of an additively manufactured crash component prior to inserting a foam block according to an embodiment.



FIG. 2B illustrates a front view perspective of the additively manufactured crash component after inserting the foam block according to the embodiment of FIG. 1A.



FIG. 3A illustrates a side view perspective of a structurally gauged crash component according to an embodiment.



FIG. 3B illustrates a two dimensional representation of the structurally gauged crash component according to the embodiment of FIG. 2A.



FIG. 3C illustrates a first cross section of the structurally gauged crash component according to the embodiment of FIG. 2A.



FIG. 3D illustrates a second cross section of the structurally gauged crash component according to the embodiment of FIG. 2A.



FIG. 3E illustrates a graph of acceleration versus time plots relating to a structurally gauged crash component according to the embodiment of FIG. 2A.



FIG. 4A illustrates a two dimensional representation of a structurally gauged crash component according to another embodiment.



FIG. 4B illustrates a first cross section of the structurally gauged crash component according to the embodiment of FIG. 3A.



FIG. 4C illustrates a second cross section of the structurally gauged crash component according to the embodiment of FIG. 3A.



FIG. 5 illustrates an additively manufactured bumper according to an embodiment.



FIG. 6A illustrates a conceptual flow diagram for additively manufacturing closed shell crash structures according to the teachings herein.



FIG. 6B illustrates a conceptual flow diagram for additively manufacturing open cell crash structures according to the teachings herein.



FIGS. 7A-7C illustrate an example cross section of a rectangular tube that may include an area that acts as a crumple initiator.



FIGS. 8A-8B are diagrams providing an example of a mandrel and a structural lattice that may be made using the mandrel.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the drawings is intended to provide a description of exemplary embodiments of additively manufacturing structures with augmented energy absorption, and it is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


The use of 3-D printing provides significant flexibility for enabling manufacturers of mechanical structures and mechanized assemblies to manufacture complex parts. Additive manufacturing may enable techniques for manufacturing structures with augmented energy absorption properties, and more specifically to additively manufacturing collision components of a transport vehicle. For example, 3-D printing techniques provide manufacturers with the flexibility to design and build parts having energy absorption properties, which may be used for collision components of a transport vehicle.



FIGS. 1A-D illustrate respective side views of an exemplary 3-D printer system. In this example, the 3-D printer system is a powder-bed fusion (PBF) system 100. FIGS. 1A-D illustrate PBF system 100 during different stages of operation. The particular embodiment illustrated in FIGS. 1A-D is one of many suitable examples of a PBF system employing principles of this disclosure. It should also be noted that elements of FIGS. 1A-D and the other figures in this disclosure are not necessarily drawn to scale, but may be drawn larger or smaller for the purpose of better illustration of concepts described herein. PBF system 100 may include a depositor 101 that may deposit each layer of metal powder, an energy beam source 103 that may generate an energy beam, a deflector 105 that may apply the energy beam to fuse the powder material, and a build plate 107 that may support one or more build pieces, such as a build piece 109. PBF system 100 may also include a build floor 111 positioned within a powder bed receptacle. The walls of the powder bed receptacle 112 generally define the boundaries of the powder bed receptacle, which is sandwiched between the walls 112 from the side and abuts a portion of the build floor 111 below. Build floor 111 may progressively lower build plate 107 so that depositor 101 may deposit a next layer. The entire mechanism may reside in a chamber 113 that may enclose the other components, thereby protecting the equipment, enabling atmospheric and temperature regulation and mitigating contamination risks. Depositor 101 may include a hopper 115 that contains a powder 117, such as a metal powder, and a leveler 119 that may level the top of each layer of deposited powder.


Referring specifically to FIG. 1A, this figure illustrates PBF system 100 after a slice of build piece 109 has been fused, but before the next layer of powder has been deposited. In fact, FIG. 1A illustrates a time at which PBF system 100 has already deposited and fused slices in multiple layers, e.g., 150 layers, to form the current state of build piece 109, e.g., formed of 150 slices. The multiple layers already deposited have created a powder bed 121, which includes powder that was deposited but not fused.



FIG. 1B illustrates PBF system 100 at a stage in which build floor 111 may lower by a powder layer thickness 123. The lowering of build floor 111 causes build piece 109 and powder bed 121 to drop by powder layer thickness 123, so that the top of the build piece and powder bed are lower than the top of powder bed receptacle wall 112 by an amount equal to the powder layer thickness. In this way, for example, a space with a consistent thickness equal to powder layer thickness 123 may be created over the top of build piece 109 and powder bed 121.



FIG. 1C illustrates PBF system 100 at a stage in which depositor 101 is positioned to deposit powder 117 in a space created over the top surfaces of build piece 109 and powder bed 121 and bounded by powder bed receptacle walls 112. In this example, depositor 101 progressively moves over the defined space while releasing powder 117 from hopper 115. Leveler 119 may level the released powder to form a powder layer 125 that has a thickness substantially equal to the powder layer thickness 123 (see FIG. 1B). Thus, the powder in a PBF system may be supported by a powder material support structure, which may include, for example, a build plate 107, a build floor 111, a build piece 109, walls 112, and the like. It should be noted that the illustrated thickness of powder layer 125 (i.e., powder layer thickness 123 (FIG. 1B)) is greater than an actual thickness used for the example involving 150 previously-deposited layers discussed above with reference to FIG. 1A.



FIG. 1D illustrates PBF system 100 at a stage in which, following the deposition of powder layer 125 (FIG. 1C), energy beam source 103 generates an energy beam 127 and deflector 105 applies the energy beam to fuse the next slice in build piece 109. In various exemplary embodiments, energy beam source 103 may be an electron beam source, in which case energy beam 127 constitutes an electron beam. Deflector 105 may include deflection plates that may generate an electric field or a magnetic field that selectively deflects the electron beam to cause the electron beam to scan across areas designated to be fused. In various embodiments, energy beam source 103 may be a laser, in which case energy beam 127 is a laser beam. Deflector 105 may include an optical system that uses reflection and/or refraction to manipulate the laser beam to scan selected areas to be fused.


In various embodiments, the deflector 105 may include one or more gimbals and actuators that may rotate and/or translate the energy beam source to position the energy beam. In various embodiments, energy beam source 103 and/or deflector 105 may modulate the energy beam, e.g., turn the energy beam on and off as the deflector scans so that the energy beam is applied only in the appropriate areas of the powder layer. For example, in various embodiments, the energy beam may be modulated by a digital signal processor (DSP).


The use of additive manufacturing in the context of additively manufacturing structures with augmented energy absorption properties provides significant flexibility and cost saving benefits that enable manufacturers of mechanical structures and mechanized assemblies to manufacture parts with complex geometries at a lower cost to the consumer. The manufacturing techniques described in the foregoing relate to structurally designing components to improve their ability of absorbing the crash energy and undergoing controlled deformation, thereby reducing the crash pulse borne by the occupants of the vehicle, and preventing intrusion into the occupant compartment. In some instances, processes for manufacturing components may include both additively manufactured parts and commercial off the shelf (COTS) components.


During a vehicle crash, collision (impact) pulse transmits through the vehicle components. When the impact energy is not properly absorbed by the crash structure, the crash pulse represents a danger to the occupants of the vehicle. Crash pulse transmission to vehicle occupants (i.e. the passenger(s) and/or the driver), depend upon the design of the vehicle's structure, components, and chassis. Accordingly, there is a need to design a vehicle's components to absorb and/or to reduce the transmission of crash pulse to the occupant. This need carries over into, among other arenas, the design of vehicles using additively manufactured components and structures.


Apparatus and methods for additively manufactured structures with augmented energy absorption properties are presented herein. Three dimensional (3D) additive manufacturing structures may be constructed with spatially dependent features to create crash components. When used in the construction of a transport vehicle, the crash components with spatially dependent additively manufactured features may enhance and augment crash energy absorption. This in turn reduces the peak of the crash pulse, thereby improving the occupants' safety.



FIG. 2A illustrates a side view perspective 200a of an additively manufactured crash component 204 prior to inserting a foam block 202 according to an embodiment. FIG. 2B illustrates a front view perspective 200b of the additively manufactured crash component 204 after inserting the foam block 202. As shown in FIG. 2A, the crash component 204 may be hollow with a shell-like exterior and have an internal lattice 206 to provide structural support.


During manufacture, in order to insert the foam block 202 into the hollow regions of the crash component 204, the crash component 204 may be heated. In this way the foam block 202 may soften upon contact with crash component 204 and flow around the internal lattice 206. Once the temperature is reduced, the foam block 202 may re-solidify to fill the interior hollow regions of the crash component 204 as shown in FIG. 2B. The foam block 202 may include materials for enhancing support strength while enhancing the ability for the crash component to absorb crash energy. For instance, the foam block 202 may include metal materials and/or expanded polypropylene.


The crash component 204 may be a part of an automobile frame and/or structure and may provide an energy absorption region during a crash (impact) event. For instance, the crash component 204 may be part of an automobile frame crush rail or automobile chassis; and the crash component 204 may be an additively manufactured structure which is positioned between a first chassis region and a second chassis region to absorb crash energy. By absorbing crash energy, the crash component (structure) 204 may advantageously reduce the transmission of the crash force between the first and second chassis regions by absorbing it.


Although FIGS. 2A and 2B illustrate an embodiment in which the foam block 202 is inserted following heating of the crash components 204, other embodiments which do not require heating are possible. For instance, a foam may be injected without heat into some or all of the hollow region of the crash component 204. In this way some or all of the hollow region may be occupied by foam in order to tailor the manner in which the crash component 204 absorbs crash energy during an impact event.


In addition to having the lattice 206, the crash component 204 may have additional geometrical features made possible during the 3D printing process. For instance, during the 3D printing process, a spatially dependent profile may be additively manufactured into the crash component 204. In this way the crash component 204 may advantageously be tailored with 3D print parameters, materials, and geometrical variations to enhance the structural properties for absorbing crash energy.



FIG. 3A illustrates a side view perspective and FIG. 3B illustrates a two dimensional representation of a structurally gauged crash component 300 according to an embodiment. Structural gauging is when the thickness of a part is varied across the part's cross-section to obtain a required structural performance. As shown in FIGS. 3A and 3B, the crash component 300 has a top shell layer 302 and a bottom shell layer 304. The crash component 300 may be an additively manufactured crash component similar to that of FIGS. 2A and 2B, except additional geometrical and material features may be varied during the 3D printing process in order to tailor and enhance the crash energy absorption properties.


The shell thickness of the top shell layer 302 may be varied as a function of distance by forming the notches 306a-c. In the embodiment shown, the shell thickness of the bottom shell layer 304 is constant, although this need not be the case. The notches of the top shell layer 302 may be formed so that during a crash (impact) event, the crash component 300 may crush or deform initially at one or more of the notches 306a-c. In this way the spatial profile of the crash component 300 is tailored to incorporate a crush initiation feature, also referred to as crush initiator. The crush initiation feature or crush initiator may be a cutout or indent, for example. During a crash, the crush initiation feature may provide a controlled energy absorption crush location where the crash energy, or a substantial amount of crash energy, is absorbed into the crash component 300. Controlling the crash energy via crush initiation features may save lives by absorbing and re-distributing energy away from passengers and/or occupants of the automobile or transport structure. In an aspect, the crush initiators, e.g., notches may be along the outer surface of the component



FIG. 3C illustrates a first cross section of the structurally gauged crash component 500 delineated by the line da of FIG. 3B, and FIG. 3D illustrates a second cross section delineated by the line db drawn through the notch 306b in FIG. 3B. As illustrated by the cross sections of FIGS. 3C and 3D, the top shell layer 302 and the bottom shell layer 304 may be part of continuous shell region. In the shell region delineated by the line da, the top shell layer 302 has thickness ta, and the bottom shell layer 304 has thickness ta (see also FIG. 3B). In the shell region delineated by the line db, the top shell layer 502 has thickness tb inside the notch 306b, and the bottom shell layer 304 has thickness ta. By additively manufacturing the notch 306b to have thickness tb less than thickness ta, the notch 306b may enhance the energy absorption properties of the manufactured crash component 300. For instance, as shown in FIG. 3E, the energy absorption properties may be tailored to reduce a net acceleration experienced by the transport vehicle's occupant(s).


Although FIGS. 3A-3D illustrate the crash component 300 as using structurally gauged notches 306a-c in the top shell layer 302 to implement crush initiation features; other embodiments are possible. In addition to notches 306a-c, other parameters, or shell parameters, may be varied during the additive manufacturing process to form a spatially dependent crash structure profile. In some embodiments fewer or greater notches may be used. In other embodiments, the material properties including shell density and/or shell material may be varied during the additive manufacturing process. For instance, the crash component 300 may use one alloy of material in one region while using another alloy in an adjacent region. In an alternative embodiment, one or more of the notches 306a-c may also have a different shape than the curved shape shown. For example, stair-stepped shapes, notched shapes, triangular shapes, rectangular shapes, or numerous other geometrical configurations may be possible as described in certain examples below.


Additionally, the notches may be formed in a manner which maintains the structural integrity of the crash component 300. For instance, during normal operation the crash component 300 may provide structural stability within the framework of an automobile or transport vehicle so as to enhance a load bearing strength. Additionally, the crash structure may be tailored to reduce mass. In this way the additively manufactured crash component 300 may advantageously enhance a load bearing strength to mass ratio and/or figure of merit.



FIG. 3E illustrates a graph 320 of acceleration versus time plots 322 and 324 relating to the structurally gauged crash component 300. Plot 322 may represent the acceleration profile experienced by an occupant in a vehicle during a crash without a crash component installed, and plot 324 may represent the acceleration profile experienced by the occupant when the crash component 300 is installed in part of the vehicle's structure or frame. As shown in FIG. 3E, the crash component 300 enhances energy absorption in a manner which reduces the net acceleration peaks at times labeled time1 and time2. This reduction in peak acceleration indicates that crash pulse experienced by the occupant is reduced, thereby improving the occupant's chances of survival.


Although the crash component 300 of FIGS. 3A-3D has been tailored to reduce peaks of a deceleration profile experienced during a crash, other profiles may be used. For instance, the crash component 300 may be tailored to absorb energy based upon an intended air-bag deployment profile. Alternatively and additionally, the manufactured crash structure may be configured to absorb an amount of crash energy based upon alternative deceleration profiles having greater or fewer peaks.



FIG. 4A illustrates a two dimensional representation of a structurally gauged crash component 400 according to another embodiment. The crash component 400 is similar to the crash component 300, except the spatially dependent profile is additively manufactured to have a different geometry. For instance, unlike the crash component 300, the crash component 400 does not have notches 306a-c. Instead, the crash component 400 is additively manufactured with a top shell layer 402 and a bottom shell layer 404, both having a variable spatially dependent profile. The shell thickness may be additively manufactured so that the top shell layer 402 and the bottom shell layer 404 form a structure with enhanced load bearing strength to mass ratio and/or figure of merit. Having variable thickness may advantageously tailor the crash component 400 to absorb a substantial amount of crash energy; additionally the crash energy may be absorbed in a manner which follows a desired deceleration profile.



FIG. 4B illustrates a first cross section of the structurally gauged crash component 400 delineated by the line d1 of FIG. 4A, and FIG. 4B illustrates a second cross section delineated by the line d2 of FIG. 4A. As shown the cross section profile delineated by the line d1 may have a shell profile with shell thickness t1; and the cross section profile delineated by the line d2 may have a shell profile with shell thickness t2 greater than t1. In an aspect, variable thickness may be achieved by additively manufacturing a structure. Because additively manufacturing is used, no secondary operation needs to be performed and no tooling is required for the variable thickness profiles to be achieved in the structure.


Although FIGS. 4A-4C illustrate a crash component 400 with spatially dependent profiles represented by shell thickness variations; other configurations are possible. For instance, in other configurations a shell material density may be varied; alternatively, a shell material or alloy may be varied a function of position. These alternative configurations are deemed to fall within the scope of the present disclosure.


Additionally, alternative structures other than closed shell structures may be used to make crash components. For instance, skeletal features and rib (reinforcement) features may be additively manufactured into a transport structure. These reinforcement features may also be additively manufactured to have spatially dependent profiles for enhancing crash energy absorption. Also, crash component features and elements may be co-printed at the same time. For instance, a reinforcement feature may be concurrently printed with a lattice feature within a crash component.



FIG. 5 illustrates a cross-sectional view of an additively manufactured bumper 500 according to an embodiment. The additively manufactured bumper has a support region 506 with hollow sections 508a-c. Adjacent the support region 506 is an additively manufactured lattice 504 having a first lattice density; and in front of the bumper is a series of additively manufactured lattice elements 502a-j having a second lattice density less than the first lattice density. The additively manufactured bumper may be placed in the front or rear of a transport vehicle so that during a crash, the lattice elements 502a-j may absorb energy first by being located closest to the point of impact. In the event of an impact with a pedestrian, such an architecture would prevent significant harm to the pedestrian. Having a series of lattice elements 502a-j with lower density at the impact location may advantageously absorb energy and reduce the crash pulse transmitted to either the occupants of the vehicle, or the pedestrian being impacted. The higher density lattice 504 may further absorb crash energy before it reaches the support region 506. Having hollow sections 508a-c may further reduce mass of the bumper structure while maintaining a high load bearing strength to mass ratio and/or figure of merit.


Although the additively manufactured bumper 500 shows an embodiment using an additively manufactured lattice 504 of a first lattice density and a series of lattice elements 502a-j of a second density located at a defined impact location, other configurations are possible. For instance, additional lattice regions of variable densities may be included between the series of lattice elements 502a-j and the support region 506. Also, greater or fewer hollow sections 508a-c may be included within the support region 506. In addition to having lattice elements 502a-j, skeletal features may also be implemented with reinforcement sections which may be concurrently printed with the lattice elements 502a-j. In other embodiments, foam may be injected into the lattice regions to enhance energy absorption properties. These features disclosed in the illustrations above may be implemented individually, or combined in part or in whole to maximize the safety profile for the occupants in the vehicle or other transport structure.


Often energy absorbing structures may be used so that a catastrophic failure of a part may be controlled or avoided. For example, energy absorbing structures may be used so that the catastrophic failure of a part may be controlled under a crash load. In an aspect, higher energy absorbing structures may be additively manufactured. For example, higher energy absorbing structures may be additively manufactured, may be achievable by (1) additive deposition of a lower strength, higher ductility material at specific spots to act as a crumple initiator, (2) using a mandrel (plastic, metal) to create a structural lattice in the shape of a thin walled crash rail, (3) using specific high ductility, low yield materials placed strategically in the lattice, or (4) using multiple mixed materials in specific geometric patterns to cause crash energy to be directed to areas where conversion may take place.



FIG. 6A illustrates a conceptual flow diagram 600 for additively manufacturing closed shell crash structures (components) according to the teachings herein. In step 602 the additively manufactured crash component (structure) is defined to be a closed structure having a shell. The crash component may correspond to crash component 300 and/or crash component 400 and be defined to absorb crash energy based upon an occupant deceleration profile. The crash component may additionally be defined to have crush initiation features. In step 604 the shell cross section profile is varied using additive manufacturing. Shell parameters including thickness, material type, and density may be varied as a function of position.



FIG. 6B illustrates a conceptual flow diagram 630 for additively manufacturing open cell crash structures (components) according to the teachings herein. Open cell crash components may include bumpers and structures created with open regions and reinforcement structures. In step 632 a target impact location for the crash structure having an open cell structure may be defined by using computational methods. In step 634 at least one reinforcement structure may be additively manufactured with a spatially dependent profile according to a deceleration profile; and a lattice may be concurrently co-printed with the reinforcement structure.



FIGS. 7A-7C illustrate an example cross section of a rectangular tube 700 that may include an area that acts as a crumple initiator 714. The rectangular tube 700 may include sides of an initial tube 702. Materials such as a first material 704, a second material 708, and a third material 710 may be additive deposited, e.g., using a cold spray nozzle 706. As discussed above, in one aspect, an additive deposition of a lower strength, higher ductility material at specific spots may be used to act as a crumple initiator 714. Optionally, the rectangular tube 700 may be coated with an external layer 712 made of first material 712. Examples of lower strength, higher ductility material that may be used may include, but are not limited to magnesium, copper, aluminum, titanium, iron, plastics, ceramics, or combinations thereof. The lower strength, higher ductility material may, however, be any material that is at least one of lower strength or higher ductility as compared to a material on to which the additive deposition is occurring. In an aspect, the additive deposition may be coldspray additive manufacturing, printer using a 3-D printer system, other additive manufacturing or some combination of these. (The example of FIGS. 7A-7C uses coldspray.) Coldspray is a manufacturing process wherein the material being deposited is kept below its melting point, configured to impact the base material at a speed high enough to induce solid state welding. The locations or spots where the lower strength, higher ductility material may be directed may be any area where a small increase in strength may provide a crumple initiator 718 or crumple location.


As discussed above, one aspect may additively deposit material on a standardized extrusion or other part to selectively strengthen some areas over other areas. For example, the initial tube 702 may be a standardized extrusion or other part. Selectively strengthening some areas over other areas may better control crumpling. For example, material 708 may be repeated multiple times to increase crumpling areas of a structure. Increased crumpling may increase energy absorption. For example, one aspect may coldspray material 708, 3-D printing material 708, or otherwise additively manufacturing materials 708 onto a standardized extrusion or other part to selectively strengthen some areas over other areas. In an aspect, coldspraying (or otherwise additively manufacturing) material onto a standardized extrusion or other parts may better control crumpling. For example, crumpling may be increased. Increased crumpling may increase energy absorption of a part having the increased crumpling.


As discussed above, one aspect may use a tube 702 that may be a hollow square composite tube (e.g. carbon fiber composite) and coldspray a strong ductile aluminum alloy on the outside to create a hybrid CFRP-aluminum crash rail. In an aspect, hollow square composite tube may be brittle, e.g., before the addition of the strong ductile aluminum alloy on the outside to create the hybrid CFRP-aluminum crash rail.


As discussed above, one aspect may use additive deposition. The additive deposition may be an additive deposition of metals with higher ductility and lower strength. The higher ductility and lower strength material may be, but is not limited to magnesium, copper, aluminum, titanium, iron, plastics, ceramics, or combinations thereof, for example. The higher ductility and lower strength material may be additive deposition through coldspray (or otherwise additively manufacturing). The higher ductility and lower strength material may be additive deposition at specific areas. The coldspray (or otherwise additively manufacturing) at specific areas may allow for tunable crumple propagation.



FIGS. 8A-8B are diagrams 800 providing an example of a mandrel 802 and a structural lattice 804 that may be made using the mandrel 802. In an aspect, the mandrel may be sacrificial. Accordingly, the mandrel may be removed after the deposition is complete in some examples. The structural lattice 804 may include a first material 806 and a second material 808. The first material 806 and the second material 808 may be cold spray deposited 810 (or otherwise additively manufactured).


As discussed above, one aspect may use of the mandrel 802 (e.g., of plastic, metal) to create the structural lattice 804 in the shape of a thin walled crash rail. The structural lattice 804 may be wrapped around, placed on, secured to, or otherwise coupled or connected to a structure (such as a tube). The structural lattice 804 may provide increased strength to the structure, e.g., tube. The increased strength to the structure may allow the structure to be used as a thin walled crash rail.


As discussed above, one aspect may increase a structural lattice's ability to absorb energy with specific high ductility, low yield materials placed strategically in the lattice 804. For example, the structural lattice 804 may be made of various materials, including, but not limited to magnesium, copper, aluminum, titanium, iron, plastics, ceramics, or combinations thereof. The material or materials used may provide the structural lattice 804 with the ability to absorb energy. The materials may be specific high ductility, low yield materials placed strategically in the lattice. The location of the materials within the structural lattice 804 may increase the structural lattice's 804 ability to absorb energy. As discussed above, one aspect may increase a structural lattice's 804 ability to absorb energy with multiple mixed materials in specific geometric patterns to cause crash energy to be directed to areas where conversion may take place.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for printing structures with augmented energy absorption properties. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. An energy absorbing structure comprising: a first structure region;a second structure region; andan additively manufactured crash component positioned between the first structure region and the second structure region, the additively manufactured crash component comprising at least one shell layer and a spatially dependent profile configured to absorb and re-distribute crash energy from at least one of the first and second structure regions.
  • 2. The energy absorbing structure of claim 1, wherein the additively manufactured crash component comprises a heat treated region configured to absorb and re-distribute the crash energy from the at least one of the first and second structure regions.
  • 3. The energy absorbing structure of claim 1, wherein the additively manufactured crash component is configured to absorb and re-distribute crash energy from the at least one of the first and second structure regions by absorbing an amount of crash energy; andwherein the amount of crash energy is based upon the spatially dependent profile.
  • 4. The energy absorbing structure of claim 3, wherein the spatially dependent profile comprises a shell parameter.
  • 5. The energy absorbing structure of claim 4, wherein the shell parameter comprises at least one of a shell thickness, the shell thickness configured to vary as a function of position; cross-sectional geometry; sell dimensions, or a shell density, the shell density configured to vary as a function of position.
  • 6. The energy absorbing structure of claim 3, wherein the spatially dependent profile comprises a shell material.
  • 7. The energy absorbing structure of claim 3, wherein the additively manufactured crash component is configured to absorb the amount of crash energy based upon at least one of an intended air-bag deployment profile or a deceleration profile.
  • 8. The energy absorbing structure of claim 1, wherein the internal cavity comprises foam.
  • 9. The energy absorbing structure of claim 1, wherein the additively manufactured crash component is a frame crush rail.
  • 10. A energy absorbing structure comprising an additively manufactured crash component, the additively manufactured crash component comprising: an internal hollow region;a shell having a variable cross section profile.
  • 11. The energy absorbing structure of claim 10, wherein the additively manufactured crash component further comprises at least one additively manufactured reinforcement element.
  • 12. The energy absorbing structure of claim 10, wherein the variable cross section profile is configured to enhance deformation mode and energy absorption capacity.
  • 13. The energy absorbing structure of claim 10, wherein the variable cross section profile comprises a gauged thickness, the gauged thickness a function of a length of the crash component.
  • 14. The energy absorbing structure of claim 13, wherein the variable cross section profile comprises at least one crush initiation feature configured to initiate a structural collapse of the additively manufactured crash component during an impact event.
  • 15. The energy absorbing structure of claim 14, wherein the at least one crush initiation feature is configured to initiate a structural collapse of the additively manufactured crash component during an impact event via at least one of a geometrical variation or a material variation.
  • 16. The energy absorbing structure of claim 14, wherein the at least one crush initiation feature is an additively manufactured feature based upon a print parameter of a three dimensional (3D) printer.
  • 17. The energy absorbing structure of claim 14, wherein the additively manufactured crash component is configured to perform at least one of substantially absorb an amount of impact energy during the impact event or substantially absorb and re-distribute an amount of impact energy away from an occupant during an impact event.
  • 18. A energy absorbing structure comprising an additively manufactured crash structure, the additively manufactured crash structure comprising: a target impact location; andan additively manufactured open cell structure located at the target impact location.
  • 19. The energy absorbing structure of claim 18, wherein the additively manufactured crash structure is positioned at the front of a transport vehicle incorporating the energy absorbing structure; andwherein the target impact location is the front of the additively manufactured crash structure.
  • 20. The energy absorbing structure of claim 18, wherein the additively manufactured crash structure is positioned at the rear of a transport vehicle incorporating the energy absorbing structure; andwherein the target impact location is the rear of the additively manufactured crash structure.
  • 21. The energy absorbing structure of claim 18, wherein the additively manufactured open cell structure comprises a lattice.
  • 22. The energy absorbing structure of claim 21, wherein the lattice comprises a variable lattice density as a function of distance from the target impact location; andwherein the variable lattice density is least at the target impact location.
  • 23. The energy absorbing structure of claim 21, wherein the additively manufactured lattice comprises a bumper.
  • 24. A energy absorbing structure comprising: a first structure region;a second structure region; andan additively manufactured crash component positioned between the first structure region and the second structure region, the additively manufactured crash component including: a base structure, anda subordinate structure, added to the base structure and configured to form, in combination with the base structure, an energy absorbing structure.
  • 25. The energy absorbing structure of claim 24, wherein the subordinate structure comprises an additively deposited material having a lower strength, higher ductility material relative to the base structure, the additively deposited material additively deposited at locations on the base structure selected so that the energy absorbing structure is configured to act as a crumple initiator.
  • 26. The energy absorbing structure of claim 24, wherein the subordinate structure comprises a structural lattice configured to form a crash rail.
  • 27. The energy absorbing structure of claim 26, wherein the structural lattice is configured to absorb energy using high ductility, low yield materials placed strategically in the lattice.
  • 28. The energy absorbing structure of claim 24, wherein the structural lattice is configured to directed crash energy to areas where a conversion takes place using multiple mixed materials in specific geometric patterns.
  • 29. The energy absorbing structure of claim 24, wherein the base structure is additively manufactured.
  • 30. The energy absorbing structure of claim 24, wherein the base structure is an extrusion.
  • 31. The energy absorbing structure of claim 30, wherein the subordinate structure comprises an additively deposited structure, additively deposited on the extrusion and configured to selectively strengthen one area over another area to control a crumple of the energy absorbing structure.
  • 32. The energy absorbing structure of claim 31, wherein the additively deposited structure comprises a cold spray material.
  • 33. The energy absorbing structure of claim 24, wherein the base structure is a hollow square composite tube.
  • 34. The energy absorbing structure of claim 33, wherein the subordinate structure comprises a coldspray material.
  • 35. The energy absorbing structure of claim 34, wherein the coldspray material comprises a strong ductile aluminum alloy on the outside of the hollow square composite tube to create a hybrid carbon fiber reinforced polymer (CFRP)-aluminum crash rail.
US Referenced Citations (354)
Number Name Date Kind
5203226 Hongou et al. Apr 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Lausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwäzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 Gangarao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 Gangarao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 Tenhouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20060108783 Ni et al. May 2006 A1
20140277669 Nardi et al. Sep 2014 A1
20160327113 Shelley Nov 2016 A1
20170113344 Schönberg Apr 2017 A1
20170203708 Jaradi et al. Jul 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
20180186460 Dardona et al. Jul 2018 A1
20180264719 Rolland Sep 2018 A1
20180265023 Faruque Sep 2018 A1
Foreign Referenced Citations (39)
Number Date Country
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2017147499 Aug 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (5)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
Invitation to Pay Additional Fees received in PCT/US2019/054746 dated Nov. 27, 2019.
International Search Report & Written Opinion received in PCT/US2019/054746 dated Feb. 3, 2020.
Related Publications (1)
Number Date Country
20200108870 A1 Apr 2020 US