Apparatus and methods for additively manufacturing adhesive inlet and outlet ports

Information

  • Patent Grant
  • 11613078
  • Patent Number
    11,613,078
  • Date Filed
    Friday, April 20, 2018
    6 years ago
  • Date Issued
    Tuesday, March 28, 2023
    a year ago
Abstract
Apparatus and methods for additively manufacturing adhesive inlet and outlet ports are presented herein. Adhesive inlet and outlet ports are additively manufactured to include additively manufactured (AM) valves for reducing and/or eliminating sealant leakage and backflow. Robot end effectors are tailored to interface with the AM inlet and outlet ports and to provide an adhesive source and/or a vacuum source. AM inlet and outlet ports enable robust, lightweight, multi-material AM parts connected via adhesive joining.
Description
BACKGROUND
Field

The present disclosure relates generally to techniques for manufacturing inlet and outlet ports, and more specifically to additively manufacturing adhesive inlet and outlet ports.


Background

Recently three-dimensional (3D) printing, also referred to as additive manufacturing, has presented new opportunities to efficiently build parts for automobiles and other transport structures such as airplanes, boats, motorcycles, and the like. Applying additive manufacturing processes to industries that produce these products and similar mechanized assemblies has proven to produce a structurally more efficient product. An automobile produced using 3D printed components can be made stronger and lighter, and consequently, more fuel efficient. Advantageously, 3D printing, as compared to traditional manufacturing processes, does not significantly contribute to the burning of fossil fuels; therefore, the 3D printing of parts for automobiles can be more eco-friendly than conventional manufacturing techniques.


Automobiles and transport vehicles are constructed with components including panels, extrusions, nodes, and tubes. Accordingly, there is a need to develop inlet and outlet port technologies for facilitating the joining of additively manufactured (AM) parts and components.


SUMMARY

Several aspects of techniques for additively manufacturing adhesive inlet and outlet ports, will be described more fully hereinafter with reference to three-dimensional (3D) printing techniques.


In one aspect, an apparatus comprises an additively manufactured (AM) inlet port and an AM outlet port. The AM inlet port is configured to receive an adhesive. The AM outlet port comprises an AM outlet adhesive valve configured to impede an adhesive outflow at the AM outlet port.


The adhesive flow can be unidirectional from the AM inlet port to the AM outlet port.


The AM outlet adhesive valve can comprise a lattice configured to impede the adhesive outflow at the AM outlet port.


The AM outlet port can be configured to receive a vacuum. The AM outlet adhesive valve can be configured to facilitate the adhesive flow from the AM inlet port to the AM outlet port by facilitating the vacuum.


The AM outlet adhesive valve can comprise a lattice configured to facilitate the vacuum by passing air and to impede the adhesive outflow at the AM outlet port. The AM outlet adhesive valve can comprise a plurality of outlet spring loaded tangs. The plurality of outlet spring loaded tangs can be configured to couple with a vacuum effector, to facilitate the vacuum when coupled with the vacuum effector, and to impede the adhesive outflow at the AM outlet port when decoupled from the vacuum effector.


The AM outlet adhesive valve can comprise a gap region and an AM ball. The AM ball can be configured to facilitate the vacuum by passing air through the gap region and to impede the adhesive outflow at the AM outlet port by blocking the gap region when the adhesive reaches the gap region. The AM outlet adhesive valve can further comprise a spring positioned to provide support to the AM ball.


The AM outlet adhesive valve can comprise a flap configured to facilitate the vacuum by passing air and to impede the adhesive outflow at the AM outlet port by blocking the outlet port when the adhesive reaches the outlet port. The flap can be configured to lock into place upon completion of an adhesive fill within the apparatus.


The AM inlet port can comprise an AM inlet adhesive valve configured to facilitate the adhesive flow from the AM inlet port to the AM outlet port and to impede an adhesive outflow at the AM inlet port. The AM inlet adhesive valve can comprise a lattice configured to impede the adhesive outflow at the AM inlet port.


The AM inlet adhesive valve can comprise a plurality of inlet spring loaded tangs configured to couple with an adhesive effector, to facilitate the adhesive flow from the AM inlet port to the AM outlet port when coupled with the adhesive effector, and to impede the adhesive outflow at the AM inlet port when decoupled from the adhesive effector.


The AM inlet adhesive valve can comprise a flap configured to facilitate the adhesive flow from the AM inlet port to the AM outlet port when the adhesive is applied at the inlet port and to impede the adhesive outflow at the AM inlet port by blocking the inlet port when the adhesive is removed from the inlet port. The flap can be configured to lock into place upon completion of an adhesive fill within the apparatus.


In another aspect, an apparatus comprises an AM effector for applying adhesive to an AM adhesive port. The AM effector comprises a first channel and a second channel. The first channel supports a seal plug, and the second channel is coupled to the first channel and configured to provide an adhesive to the AM adhesive port. The AM adhesive port can comprise an AM plug acceptor co-printed with the AM effector.


In another aspect, a method of manufacturing an AM node comprises: additively manufacturing an AM inlet port and additively manufacturing an AM outlet port. The AM inlet port is configured to receive an adhesive. The AM outlet port comprises an AM outlet adhesive valve configured to facilitate an adhesive flow from the AM inlet port to the AM outlet port and to impede an adhesive outflow at the AM outlet port.


The adhesive flow can be unidirectional from the AM inlet port to the AM outlet port.


Additively manufacturing the AM outlet port to comprise an AM outlet adhesive valve can further comprise additively manufacturing a lattice within the AM outlet adhesive valve. The lattice can be configured to impede the adhesive outflow at the AM outlet port.


The AM outlet port can be configured to receive a vacuum. The AM outlet adhesive valve can be configured to facilitate the unidirectional adhesive flow from the AM inlet port to the AM outlet port by facilitating the vacuum. Additively manufacturing the AM outlet port can comprise additively manufacturing a lattice within the AM outlet adhesive valve. The lattice can be configured to facilitate the vacuum by passing air and to impede the adhesive outflow at the AM outlet port.


Additively manufacturing the AM outlet port can comprise: additively manufacturing a plurality of outlet spring loaded tangs. The outlet spring loaded tangs can be configured to couple with a vacuum effector, to facilitate the vacuum when coupled with the vacuum effector, and to impede the adhesive outflow at the AM outlet port when decoupled from the vacuum effector.


Additively manufacturing the AM outlet port can comprise: additively manufacturing a gap region and additively manufacturing an AM ball. The AM ball can be configured to facilitate the vacuum by passing air through the gap region and to impede the adhesive outflow at the AM outlet port by blocking the gap region when the adhesive reaches the gap region.


Additively manufacturing the AM outlet port can further comprise additively manufacturing a spring positioned to provide support to the AM ball.


Additively manufacturing the AM outlet port can comprise additively manufacturing a flap. The flap can be configured to facilitate the vacuum by passing air and to impede the adhesive outflow at the AM outlet port by blocking the outlet port when the adhesive reaches the outlet port. The flap can be configured to lock into place upon completion of an adhesive fill.


Additively manufacturing the AM inlet port can comprise additively manufacturing the inlet port to comprise an AM inlet adhesive valve. The AM inlet adhesive valve can be configured to facilitate the unidirectional adhesive flow from the AM inlet port to the AM outlet port and to impede an adhesive outflow at the AM inlet port.


Additively manufacturing the AM inlet port can comprise additively manufacturing a lattice within the AM inlet adhesive valve. The lattice can be configured to facilitate the unidirectional adhesive flow from the AM inlet port to the AM outlet port and to impede an adhesive outflow at the AM inlet port.


Additively manufacturing the AM inlet port to comprise an AM inlet adhesive valve can comprise additively manufacturing a plurality of inlet spring loaded tangs. The inlet spring loaded tangs can be configured to couple with an adhesive effector, to facilitate the unidirectional adhesive flow from the AM inlet port to the AM outlet port when coupled with the adhesive effector, and to impede the adhesive outflow at the AM inlet port when decoupled from the adhesive effector.


Additively manufacturing the AM inlet port to comprise an AM inlet adhesive valve can comprise additively manufacturing a flap. The flap can be configured to facilitate the unidirectional adhesive flow from the AM inlet port to the AM outlet port when the adhesive is applied at the inlet port and to impede the adhesive outflow at the AM inlet port by blocking the inlet port when the adhesive is removed from the inlet port. The flap can be configured to lock into place upon completion of an adhesive fill.


In another aspect a method of applying an adhesive to an apparatus comprising an AM inlet port and an AM outlet port comprises: providing an adhesive at the AM inlet port; facilitating an adhesive flow from the AM inlet port to the AM outlet port using an AM valve; and terminating the adhesive flow.


The AM outlet port can comprise the AM valve.


The method of applying an adhesive can further comprise impeding an adhesive outflow at the AM outlet port.


The AM valve can comprise a lattice.


Facilitating an adhesive flow from the AM inlet port to the AM outlet port can further comprise: providing a vacuum at the AM outlet port; and orienting the lattice to facilitate the adhesive flow from the AM inlet port to the AM outlet port using the AM valve.


Terminating the adhesive flow can comprise: measuring a pressure increase indicative of the adhesive reaching the lattice; and terminating the adhesive flow in response to the pressure increase.


The AM valve can comprise a plurality of spring loaded AM tangs.


Facilitating an adhesive flow from the AM inlet port to the AM outlet port can further comprise: coupling a vacuum effector with the plurality of spring loaded AM tangs; and drawing a vacuum with the vacuum effector.


Terminating the adhesive flow can comprise removing the vacuum effector when the adhesive reaches the AM outlet port.


The AM valve can comprise an AM gap region and an AM ball.


Facilitating an adhesive flow from the AM inlet port to the AM outlet port can comprise passing air through the gap region.


Terminating the adhesive flow can comprise blocking the gap region when the adhesive reaches the gap region.


The AM valve can comprise an AM spring positioned to provide support to the AM ball.


The AM valve can comprise a flap.


Facilitating an adhesive flow from the AM inlet port to the AM outlet port can comprise deflecting the flap to allow movement of air over the flap.


Terminating the adhesive flow can comprises blocking the outlet port with the flap when the adhesive reaches the outlet port.


The AM inlet port can comprise the AM valve.


The method of applying an adhesive can further comprise impeding an adhesive outflow at the AM inlet port.


The AM valve can comprise a lattice.


Facilitating an adhesive flow from the AM inlet port to the AM outlet port can comprises orienting the lattice to facilitate the adhesive flow from the AM inlet port to the AM outlet port using the AM valve.


The AM valve can comprise a plurality of spring loaded AM tangs.


Providing an adhesive at the AM inlet port can comprise coupling an adhesive effector with the plurality of spring loaded AM tangs.


Terminating the adhesive flow can comprise removing the adhesive effector when the adhesive reaches the AM outlet port.


The AM valve can comprise a flap.


Facilitating an adhesive flow from the AM inlet port to the AM outlet port can comprise deflecting the flap to pass adhesive over the flap.


Terminating the adhesive flow can comprise blocking the inlet port with the flap when the adhesive reaches the outlet port.


It will be understood that other aspects of additively manufacturing adhesive inlet and outlet ports will become readily apparent to those skilled in the art from the following detailed description, wherein it is shown and described only several embodiments by way of illustration. As will be appreciated by those skilled in the art, the additively manufactured inlet and outlet ports can be realized with other embodiments without departing from the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of apparatus and methods for additively manufacturing adhesive inlet and outlet ports will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIG. 1A illustrates a top perspective view of an additively manufactured (AM) part prepared for adhesive sealing according to the teachings herein.



FIG. 1B illustrates a cross section view of the AM part of FIG. 1A using inlet and outlet ports according to a first embodiment.



FIG. 1C illustrates a cross section view of the AM part of FIG. 1A using inlet and outlet ports according to a second embodiment.



FIG. 2A illustrates a top perspective view of an AM component with a port using spring-loaded tangs according to an embodiment.



FIG. 2B illustrates a top view of the AM component with the port of FIG. 2A.



FIG. 2C illustrates a top perspective view of a robot head positioned for interfacing at the port of FIG. 2A.



FIG. 2D illustrates a cross section view of the robot head and the port of FIG. 2C.



FIG. 2E illustrates a cross section view of the robot head interfaced with the port of the AM component according to an embodiment.



FIG. 2F illustrates a cross section view of the port of the AM component after completion of adhesive injection.



FIG. 3A illustrates a cross section view of an AM component with an outlet port using a co-printed ball valve according to an embodiment.



FIG. 3B illustrates the AM outlet port of FIG. 3A after completion of adhesive injection.



FIG. 4 illustrates a cross section view of an AM component using an AM outlet port co-printed with a ball valve and AM springs according to an embodiment.



FIG. 5A illustrates a cross section view of an AM component using an AM inlet port valve co-printed with a lattice according to an embodiment.



FIG. 5B illustrates a cross section view of the AM component using an AM outlet port valve co-printed with a lattice according to an embodiment.



FIG. 6A illustrates a cross section view of an AM component using a co-printed flap as an inlet port valve according to an embodiment.



FIG. 6B illustrates a cross section view of an AM component using a co-printed flap as an outlet port valve according to an embodiment.



FIG. 7A illustrates a cross section view of a multifunctional end effector positioned for connection with an AM port.



FIG. 7B illustrates a cross section view of the multifunctional end effector of FIG. 7A connected with the AM port for adhesive injection.



FIG. 7C illustrates a cross section view of the multifunctional end effector of FIG. 7A connected with the AM port for sealing.



FIG. 7D illustrates a cross section view of the AM port following the adhesive injection and sealing by the multifunctional end effector of FIG. 7A.



FIG. 8 illustrates a conceptual flow diagram for additively manufacturing an AM node according to the teachings herein.



FIG. 9 illustrates a conceptual flow diagram for applying an adhesive to an AM part comprising AM inlet and outlet ports.



FIG. 10 illustrates a cross section view of an outlet port with a pop-in element installed inside.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the drawings is intended to provide a description of exemplary embodiments of technology relating to additively manufactured adhesive inlet and outlet ports, and it is not intended to represent the only embodiments in which the invention may be practiced. The term “exemplary” used throughout this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the invention to those skilled in the art. However, the invention may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


The use of additive manufacturing in the context of inlet and outlet ports provides significant flexibility and cost saving benefits that enable manufacturers of mechanical structures and mechanized assemblies to manufacture parts and components with complex geometries at a lower cost to the consumer. The AM inlet and outlet ports described in the foregoing may be used in one or more steps in the process for connecting additively manufactured parts and/or commercial off the shelf (COTS) components. Additively manufactured (AM) parts are printed three-dimensional (3D) parts that are printed by adding layer upon layer of a material based on a preprogrammed design. The parts described in the foregoing may be parts used to assemble a transport structure such as an automobile. However, those skilled in the art will appreciate that the manufactured parts may be used to assemble other complex mechanical products such as vehicles, trucks, trains, motorcycles, boats, aircraft, and the like without departing from the scope of the invention.


Additive manufacturing provides the ability to create complex structures within a part. For example, a node is a structural member that may include one or more interfaces used to connect to other spanning components such as tubes, extrusions, panels, and the like. Using additive manufacturing, a node may be constructed to include additional features and functions, depending on the objectives. For example, a node may be printed with one or more inlet and outlet ports that enable the ability to secure two or more components by injecting an adhesive rather than traditional welding.


During adhesive injection, one or more AM part (component) regions are evacuated and hermetically sealed when a vacuum is drawn through channels connecting the inlet and outlet ports. By first evacuating a channel with a vacuum or negative pressure source, a hermetic seal is formed along a channel path. Once the path is completely evacuated, adhesive is injected, and one or more O-rings can ensure that the adhesive hermetically seals the channel and connected channel regions. After the adhesive is cured and a bond forms between the components, O-rings can advantageously maintain the hermetic seal.


Although the process of drawing a vacuum and applying an adhesive can offer an alternative to conventional welding, adhesive joining does present several challenges. For instance, adhesive may leak out of an inlet and/or outlet port prior to the curing process. This can occur due to backflow following the removal of an adhesive injector at an adhesive inlet port. Also, there can be adhesive leakage upon removal of a vacuum at an outlet part. Unfortunately, backflow and leakage can degrade the adhesive bond quality by introducing air bubbles. Accordingly, there is a need to improve the technology relating to inlet and outlet ports and to develop more effective adhesive injectors to overcome the problems associated with adhesive joining.


Apparatus and methods for additively manufacturing adhesive inlet and outlet ports are presented herein. Adhesive inlet and outlet ports are additively manufactured to include additively manufactured (AM) valves for reducing and/or eliminating sealant leakage and backflow. Robot end effectors are tailored to interface with the AM inlet and outlet ports and to provide an adhesive source and/or a vacuum source. AM inlet and outlet ports enable robust, lightweight, multi-material AM parts connected via adhesive joining.



FIG. 1A illustrates a top perspective view 100a of an additively manufactured (AM) part 101 prepared for adhesive sealing according to the teachings herein. The AM part 101 can be a node prepared for joining with other AM parts. For instance, the part 101 can join with tubes, panels, and/or other nodes using adhesive sealing.



FIG. 1B illustrates a cross section view 100b of the AM part 101 of FIG. 1A using an inlet port 102 and an outlet port 104 according to a first embodiment. The cross section view 100b further illustrates a second component 103 fitted along the outside of the AM part 101. O-rings 106a-d are fitted between the AM part 101 and the second component 103 to improve component sealing.


A vacuum can be applied to the outlet port 104 and an adhesive (sealant) can be applied at the inlet port 102. The vacuum can draw the sealant through adhesive channels 110a-d so as to fill regions between the AM part 101 and the second component 103. Once the adhesive travels to all regions within the adhesive channels 110a-d and within chambers between the AM part 101 and second component 103, the adhesive can be cured to provide a secure connection.


According to the teachings herein, the inlet port 102 and the outlet port 104 can use AM valves for reducing and/or eliminating sealant leakage and backflow.


Although the first embodiment of FIG. 1B shows the inlet port 102 and the outlet port 104 as protruding from AM part 101, other port configurations are possible. For instance, FIG. 1C illustrates a cross section view 100c of the AM part of FIG. 1A using a recessed inlet port 122 and a recessed outlet port 124 according to a second embodiment. Also, although the embodiments shown in cross section views of 100b-c show the AM part 101 are having one inlet port (e.g. inlet port 102 or 122) and one outlet port (e.g. outlet port 104 or 124), other configurations having greater or fewer ports are possible. For instance, an AM part may have more than one inlet port and/or more than one outlet port. In other embodiments, an AM part may use one inlet port to inject adhesive without using a vacuum at an outlet port.



FIG. 2A illustrates a top perspective view 200a of an AM component 201 with a port using spring-loaded tangs 202a-h according to an embodiment; and FIG. 2B illustrates a top view 200b of the AM component 201 with the port of FIG. 2A. The spring-loaded tangs 202a-h can be co-printed with the AM component 201 to function as an inlet port valve and/or as an outlet port valve.



FIG. 2C illustrates a top perspective view 200c of a robot head 250 positioned for interfacing at the port of FIG. 2A; and FIG. 2D illustrates a cross section view 200d of the robot head 250 and the port of FIG. 2C. The robot head includes an end effector 252 and alignment O-rings 254a-b for interfacing with the port of AM component 201. The end effector 252 can displace and open the spring-loaded tangs 202a-h by pushing them downward.


When the port is an input adhesive port, then the end effector 252 can be an adhesive injection effector functioning as a nozzle to displace the tangs 202a-h downward. The effector can inject an adhesive through the port. When the port is an outlet port, the end effector 252 can be configured for drawing a vacuum.



FIG. 2E illustrates a cross section view 200e of the robot head 250 interfaced with the port of the AM component 201 according to an embodiment. In the embodiment of FIG. 2E, the port is an adhesive inlet port and the end effector 252 is configured for injecting adhesive 257 through an adhesive conduit 256. For purposes of illustration, the cross section view 200e depicts the robot end effector 252 as displacing the tangs 292f and 202c. Although not shown in the cross section view 200e, the robot end effector 252 can displace all spring loaded tangs 202a-h in order to open the port of the AM component 201. The alignment O-rings 254a-b contact the AM component 201 to enhance the seal and ensure the fidelity of the adhesive injection.



FIG. 2F illustrates a cross section view 200f of the port of the AM component 201 after completion of adhesive injection. As shown, upon completion of the fill, the end effector 252 is removed and the tangs 202c and 202f snap back in place to seal the port and contain adhesive 257.



FIG. 3A illustrates a cross section view 300a of an AM component 301 with an outlet port using a co-printed ball valve 304 according to an embodiment; and FIG. 3B illustrates the outlet port of FIG. 3A after completion of adhesive injection. The outlet port can be a vacuum port where a vacuum is provided to draw adhesive toward the outlet port in the direction of vector 317; and the ball 306 can co-printed within the ball valve 304.


When the vacuum is provided, the ball 306 can be displaced so as to allow air passage around the ball. An adhesive may be injected through a conventional port and/or an AM inlet port. The adhesive can flow through adhesive channels within the AM component 301 and be drawn toward the co-printed ball valve 304. As soon as adhesive reaches and flows into the ball valve 304 it can lock the ball 306 into the region 309 as shown in FIG. 3B. In this way the co-printed ball valve realizes a sealed vacuum tight adhesive connection.



FIG. 4 illustrates a cross section view 400 of an AM component 401 using an outlet port co-printed with a ball valve 404 and AM springs 410 according to an embodiment. The ball valve 404 is similar to ball valve 304 except it uses AM springs 410 which are added at an opening to lock the ball 406. The AM springs 410 can either be co-printed, or added after printing the AM component 401. The AM springs 410 can ensure that the ball 406 does not block the outlet port prematurely, thereby allowing airflow around the ball 406 through the AM springs 410.


The AM springs 410 can be printed to have a mesh size and geometrical features which impede the flow of adhesive. The air and adhesive flow, shown by vector 420, continues until adhesive reaches and fills the ball valve 404. The adhesive injection pressure may then lock the ball 406 and the AM springs 410 into place, thereby sealing the ball valve 404 and advantageously preventing adhesive spillage due to the impeding action of the AM springs 410.



FIG. 5A illustrates a cross section view 500a of an AM component 501 using an AM inlet port valve 504 co-printed with a lattice 510 according to an embodiment. The co-printed lattice 510 can be co-printed with an orientation and geometry so as to ensure unidirectional flow. The lattice 510 can be co-printed so as to facilitate flow in the adhesive inflow direction shown by vector 520 while impeding flow opposite to vector 520. In this way adhesive can flow into the AM component 501 and opposite backflow can be reduced and/or eliminated.



FIG. 5B illustrates a cross section view 500b of the AM component 501 using an AM outlet port valve 524 co-printed with a lattice 530 according to an embodiment. The embodiment of FIG. 5B is similar to that of FIG. 5A, except the lattice 530 is oriented so as to impede adhesive flow as the adhesive enters the outlet port valve 524 along the flow vector 540. The lattice 530 can be co-printed to provide a reduced volume for flow.


A pressure spike resulting from the adhesive flow at the lattice 530 can be used in automating adhesive injection into the AM component 501. For instance, the resulting pressure spike can be used as a signal to a control module to send instructions for terminating adhesive injection. In this way the lattice 530 can advantageously operate as a flow sensor which senses, via pressure spikes, when to terminate injection. Additionally, the lattice 530 can advantageously prevent adhesive leakage out of the AM component 501.



FIG. 6A illustrates a cross section view 600a of an AM component 601 using a co-printed flap 605 as an inlet port valve according to an embodiment. The co-printed flap 605 with the extension 612 can function as a valve to ensure unidirectional flow in the direction of flow vector 610. The flap 605 can be configured to deflect away from the extension 612 during adhesive injection, and can prevent flow of the adhesive in the direction opposite to the flow vector 610. Flow is prevented and/or impeded in the opposite direction when the flap 605 pushes against the extension 612 to prevent flow.



FIG. 6B illustrates a cross section view 600b of an AM component 621 using a co-printed flap 625 as an outlet port valve according to an embodiment. In this embodiment the flap 625 functions similar to flap 605 except the flow direction is in the direction of flow vector 620. The outlet port valve includes a first extension 622 and a second extension 624 which facilitate vacuum air flow in the direction of the flow vector 620 while impeding adhesive flow in the direction of flow vector 620. Thus, once the adhesive reaches the output port valve and the AM part 621 is completely filled, the valve can lock into place and prevent outflow.



FIG. 7A illustrates a cross section view 700a of a multifunctional end effector 702 positioned for connection with an AM port 706. The AM port 706 extends from the surface 712 of the AM part 701 and can serve as an inlet port for injecting adhesive and/or as a vacuum port for drawing an adhesive via the vacuum.


When used for adhesive injection at the AM port 706, the multifunctional end effector 702 can provide at least two functions: adhesive injection, and post injection plugging. As shown in FIG. 7A, post injection plugging can be effected through a first channel 704 holding a plug 709; and adhesive injection can be effected through a second channel 703. During adhesive injection, adhesive flows through the second channel 703 and into the AM port 706 through a channel 707. Upon completion of the fill, a section 708 of the AM port 706 is additively manufactured and available as a plug acceptor feature to receive and hold the plug 709. For example, the plug 709 may be snapped into place at section 708 when the fill is completed. A partition 705 can be used to route the adhesive injected through the second channel 703 into the AM port 706.



FIG. 7B illustrates a cross section view 700b of the multifunctional end effector 702 of FIG. 7A connected with the AM port 706 for adhesive injection. As shown in FIG. 7B, the multifunctional end effector 702 fits over the AM port 706 and can contact the surface 712. Adhesive flows along flow vector 720 and into the AM port 706.



FIG. 7C illustrates a cross section view 700c of the multifunctional end effector 702 of FIG. 7A. On completion of the adhesive fill, the partition 705 blocks the second channel 703; and the plug 709 is inserted from the first channel 704 in the direction of vector 724.



FIG. 7D illustrates a cross section view 700d of the AM port 706 following the adhesive injection and sealing by the multifunctional end effector of FIG. 7A. The plug 709 snaps into place at the co-printed plug acceptor region 708 (FIG. 7A). Using the multifunctional end effector 704 can advantageously reduce and/or eliminate the need for pressure equalization. This in turn can reduce air gulping, a phenomenon which occurs when conventional injection effectors are disconnected.


In some embodiments the AM port 706 can be an outlet port for operating as a conventional vacuum port. In other embodiments the AM port 706 can be co-printed with mesh, a pop-in element, or another structure designed to ease the process flow.



FIG. 8 illustrates a conceptual flow diagram 800 for additively manufacturing an AM node according to the teachings herein. In step 802 an inlet port is additively manufactured; and in step 804 an outlet port is additively manufactured with an outlet adhesive valve. The outlet adhesive valve can comprise the AM outlet port valve features presented above. For instance, the AM outlet valve can be a ball valve or use co-printed tangs. In some embodiments the inlet port can also include a co-printed inlet valve as discussed in FIGS. 1A-7D.



FIG. 9 illustrates a conceptual flow diagram 900 for applying an adhesive to an AM part comprising AM inlet and outlet ports. The AM part can comprise any of the AM components/parts having both AM inlet and outlet ports as described above. In step 902 an adhesive is provided at an AM inlet port. In step 904 adhesive flow is facilitated from the inlet port to the outlet port using an AM port valve. In this step a vacuum can optionally be attached to an outlet port. An AM inlet port valve and/or an AM outlet port valve may be used in the inlet and outlet ports, respectively. For instance, the co-printed ball valve of FIGS. 3A-B may be used to facilitate unidirectional flow. Step 906 is a decision step to determine if the adhesive flow is complete. If the flow is not complete, then the flow diagram returns to step 904 and adhesive continues to flow. In order to determine if the flow is complete a pressure sensor such as lattice 530 can be used in a control system to determine when to exit the decision step. If the adhesive flow is complete and adhesive has reached the outlet port, then the flow diagram terminates adhesive flow at step 908, e.g., as described in the embodiments of FIGS. 7C-D, above.



FIG. 10 illustrates a cross section view of an adhesive outlet port 1015 with a pop-in element 1009 installed inside outlet port 1015 of the AM component 1001. In this embodiment, the pop-in element 1009 may be utilized to determine when the AM component 1001 has reached the adhesive full point. The pop-in element 1009 may be made of a material such as an elastomer. The element 1009 would be configured to pop into the adhesive outlet port 1015 by the application of some pressure, which action may temporarily disfigure the pop-in element. The element 1009 would have sufficient elasticity to spring back to its original dimensions after it has been popped into the adhesive outlet port. The diameter (or opening profile) of the adhesive outlet port 1015 may in an embodiment be smaller than the pop-in element 1009 in its original shape, such that pop-in element 1009 may effectively captured in the port 1015.


In operation, the pop-in element 1009 would be a mesh-like or restrictor element. In this capacity, the element 1009 would allow for air to be drawn through it. However, when an adhesive 999 flows through it from inner channels 1011 as it is attracted to the vacuum (or solely is pushed by a force from the adhesive inlet port, where no vacuum is applied), a restricted flow 1004 indicative of a sudden pressure change or pressure spike would be produced. This restricted flow 1004 may be recorded during the adhesive injection process and would indicate a complete fill. The adhesive injection apparatus would then be disconnected. Depending on the elasticity of the pop-in element 1009 and other characteristics, the pressure building from the restricted flow 1004 may result in a sufficient upward pressure on the element 1009 to selectively disfigures it or, in some embodiments, lodges it out of place. The restricted flow 1004 is intended to conceptually convey that a sudden change of pressure in the direction of arrow 1010 can be observed at the outlet port by virtue of the pop-in element 1009. It does not necessarily mean that the restricted flow will resemble the illustration exactly.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other techniques for additively manufacturing adhesive inlet and outlet ports. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. An apparatus comprising: a body;an additively manufactured (AM) inlet port configured to receive an adhesive;an AM outlet port comprising an AM outlet adhesive valve configured to impede an adhesive outflow at the AM outlet port; anda channel connecting the inlet and outlet ports for enabling the adhesive to fill a desired region in the body,wherein the AM outlet adhesive valve comprises a lattice distributed across an area of the AM outlet port internal to and near an outer surface of the body,wherein the lattice comprises a flow sensor configured to sense a pressure spike at the lattice caused by an accumulation of adhesive in the desired region and to thereby prevent adhesive leakage.
  • 2. The apparatus of claim 1, wherein the adhesive flow is unidirectional from the AM inlet port to the AM outlet port.
  • 3. The apparatus of claim 1, wherein the AM outlet port is configured to receive a vacuum; andwherein the AM outlet adhesive valve is configured to facilitate the adhesive flow from the AM inlet port to the AM outlet port by engaging the vacuum.
  • 4. The apparatus of claim 3, wherein the lattice is configured to: engage the vacuum by passing air; andimpede the adhesive outflow at the AM outlet port when the fill is complete.
  • 5. The apparatus of claim 4, wherein the AM outlet adhesive valve comprises a plurality of outlet spring loaded tangs configured to: couple with a vacuum effector;facilitate the vacuum when coupled with the vacuum effector; andimpede the adhesive outflow at the AM outlet port when decoupled from the vacuum effector.
  • 6. The apparatus of claim 1, wherein the AM inlet port comprises an AM inlet adhesive valve configured to: facilitate the adhesive flow from the AM inlet port to the AM outlet port; andimpede an adhesive outflow at the AM inlet port.
  • 7. The apparatus of claim 6, wherein the AM inlet adhesive valve comprises a lattice configured to impede the adhesive outflow at the AM inlet port.
  • 8. The apparatus of claim 6, wherein the AM inlet adhesive valve comprises a plurality of inlet spring loaded tangs configured to: couple with an adhesive effector;facilitate the adhesive flow from the AM inlet port to the AM outlet port when coupled with the adhesive effector; andimpede the adhesive outflow at the AM inlet port when decoupled from the adhesive effector.
  • 9. The apparatus of claim 6, wherein the AM inlet adhesive valve comprises a flap configured to: facilitate the adhesive flow from the AM inlet port to the AM outlet port when the adhesive is applied at the inlet port; andimpede the adhesive outflow at the AM inlet port by blocking the inlet port when the adhesive is removed from the inlet port.
  • 10. The apparatus of claim 9, wherein the flap is configured to lock into place upon completion of an adhesive fill within the apparatus.
  • 11. The apparatus of claim 1, wherein the flow sensor is configured to send a signal to a control module to terminate the filling in response to sensing the pressure spike.
  • 12. The apparatus of claim 1, wherein the pressure spike from the adhesive flow is configured to automate adhesive injection.
  • 13. The apparatus of claim 1, wherein the lattice is co-printed with an orientation and geometry to reduce leakage to the outer surface.
  • 14. The apparatus of claim 1, where elements of the lattice are positioned evenly across the AM outlet port in rows.
US Referenced Citations (359)
Number Name Date Kind
3343564 Peeples Sep 1967 A
4249568 Duggan Feb 1981 A
4622085 Yamada Nov 1986 A
5203226 Hongou et al. Apr 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
20020036675 Yoshihira Mar 2002 A1
20040218990 Stevenson Nov 2004 A1
20060108783 Ni et al. May 2006 A1
20090013875 Widanagamage Don Jan 2009 A1
20140277669 Nardi et al. Sep 2014 A1
20160016229 Czinger Jan 2016 A1
20170113344 Schönberg Apr 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
20180281204 Fromm Oct 2018 A1
20190111795 Rhodes Apr 2019 A1
20190247922 Poole Aug 2019 A1
Foreign Referenced Citations (39)
Number Date Country
202515386 Nov 2012 CN
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (5)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
Marlin Steel, 3D Printing vs Traditional Manufacturing, Dec. 7, 2015, Accessed Jun. 2, 2020. (Year: 2015).
Machine English translation of CN-202515386-U (Year: 2012).
Related Publications (1)
Number Date Country
20190322040 A1 Oct 2019 US